Abstract

Gold nanoshells (dielectric silica core/gold shell) are a novel class of hybrid metal nanoparticles whose unique optical properties have spawned new applications including more sensitive molecular assays and cancer therapy. We report a new photo-physical property of nanoshells (NS) whereby these particles glow brightly when excited by near-infrared light. We characterized the luminescence brightness of NS, comparing to that of gold nanorods (NR) and fluorescent beads (FB). We find that NS are as bright as NR and 140 times brighter than FB. To demonstrate the potential application of this bright two-photon-induced photoluminescence (TPIP) signal for biological imaging, we imaged the 3D distribution of gold nanoshells targeted to murine tumors.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano Lett. 5, 709-711 (2005).
    [CrossRef] [PubMed]
  2. R. D. Averitt, D. Sarkar, and N. J. Halas, "Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth," Phys. Rev. Lett. 78, 4217-4220 (1997).
    [CrossRef]
  3. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, "Nanoengineering of optical resonances," Chem. Phys. Lett. 288, 243-247 (1998).
    [CrossRef]
  4. S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, "Light scattering from dipole and quadrupole nanoshell antennas," Appl. Phys. Lett. 75, 2897-2899 (1999).
    [CrossRef]
  5. E. Prodan, and P. Nordlander, "Structural tunability of the plasmon resonances in metallic nanoshells," Nano Lett. 3, 543-547 (2003).
    [CrossRef]
  6. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, "Nanoscale imaging of chemical interactions: fluorine on graphite," Proc. Natl. Acad. Sci. U.S.A. 100, 13549-13554 (2003).
    [CrossRef] [PubMed]
  7. H. Maeda, J. Fang, T. Inutsuka, and Y. Kitamoto, "Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications," Int. Immunopharmacol. 3, 319-328 (2003).
    [CrossRef] [PubMed]
  8. D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, "Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles," Cancer Lett. 209, 171-176 (2004).
    [CrossRef] [PubMed]
  9. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, "Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy," Nano Lett. 7, 1929-1934 (2007).
    [CrossRef] [PubMed]
  10. M. Ferrari, "Cancer nanotechnology: opportunities and challenges," Nat. Rev. Cancer 5, 161-171 (2005).
    [CrossRef] [PubMed]
  11. C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, "Nanoshell-enabled photonics-based imaging and therapy of cancer,"Technol. Cancer Res. Treat. 3, 33-40 (2004).
    [PubMed]
  12. C. Loo, L. Hirsch, M. H. Lee, E. Chang, J. West, N. Halas and R. Drezek, "Gold nanoshell bioconjugates for molecular imaging in living cells," Opt. Lett. 30, 1012-1014 (2005).
    [CrossRef] [PubMed]
  13. C. Wu, X. Liang, and H. Jiang, "Metal nanoshells as a contrast agent in near-infrared diffuse optical tomography," Opt. Commun. 253, 214-221 (2005).
    [CrossRef]
  14. A. Mooradian, "Photoluminescence of metals," Phys. Rev. Lett. 22, 185-187 (1969).
    [CrossRef]
  15. K. Imura, T. Nagahara, and H. Okamoto, "Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes," J. Phys. Chem. B 109,13214-13220 (2005).
    [CrossRef]
  16. G. T. Boyd, Z. H. Yu, and Y. R. Shen, "Photoinduced luminescence from the noble metal and its enhancement on roughened surfaces," Phys. Rev. B 33, 7923-7936 (1986).
    [CrossRef]
  17. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. Cheng, "In vitro and in vivo two-photon luminescence imaging of single gold nanorods," Proc. Natl. Acad. Sci. U.S.A. 102, 15752-15756 (2005).
    [CrossRef] [PubMed]
  18. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, "Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods," Nano Lett. 7, 941-945 (2007).
    [CrossRef] [PubMed]
  19. W. R. Zipfel, R. M. Williams, and W. W. Webb, "Nonlinear magic: Multiphoton. microscopy in the biosciences," Nat. Biotechnol. 21, 1369-1377 (2003).
    [CrossRef] [PubMed]
  20. D. G. Duff, A. Baiker, and P. P. Edwards, "A new hydrosol of gold clusters. 1. formation and particle size. Variation," Langmuir 9, 2301-2309 (1993).
    [CrossRef]
  21. X. H. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, "Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods," J. Am. Chem. Soc. 128, 2115-2120 (2006).
    [CrossRef] [PubMed]
  22. M. R. Beversluis, A. Bouhelier, and L. Novotny, "Continuum generation from single gold nanostructures through near-field mediated intraband transitions," Phys. Rev. B 68, 115433-1-115433-10 (2003).
    [CrossRef]
  23. N. Nishimura, C. B. Schaffer, B. Friedman, P. S. Tsai, P. D. Lyden, and D. Kleinfeld, "Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke," Nat. Methods 3, 99-108 (2006).
    [CrossRef] [PubMed]

2007

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, "Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy," Nano Lett. 7, 1929-1934 (2007).
[CrossRef] [PubMed]

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, "Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods," Nano Lett. 7, 941-945 (2007).
[CrossRef] [PubMed]

2006

X. H. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, "Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods," J. Am. Chem. Soc. 128, 2115-2120 (2006).
[CrossRef] [PubMed]

N. Nishimura, C. B. Schaffer, B. Friedman, P. S. Tsai, P. D. Lyden, and D. Kleinfeld, "Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke," Nat. Methods 3, 99-108 (2006).
[CrossRef] [PubMed]

2005

C. Loo, L. Hirsch, M. H. Lee, E. Chang, J. West, N. Halas and R. Drezek, "Gold nanoshell bioconjugates for molecular imaging in living cells," Opt. Lett. 30, 1012-1014 (2005).
[CrossRef] [PubMed]

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. Cheng, "In vitro and in vivo two-photon luminescence imaging of single gold nanorods," Proc. Natl. Acad. Sci. U.S.A. 102, 15752-15756 (2005).
[CrossRef] [PubMed]

C. Wu, X. Liang, and H. Jiang, "Metal nanoshells as a contrast agent in near-infrared diffuse optical tomography," Opt. Commun. 253, 214-221 (2005).
[CrossRef]

K. Imura, T. Nagahara, and H. Okamoto, "Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes," J. Phys. Chem. B 109,13214-13220 (2005).
[CrossRef]

M. Ferrari, "Cancer nanotechnology: opportunities and challenges," Nat. Rev. Cancer 5, 161-171 (2005).
[CrossRef] [PubMed]

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano Lett. 5, 709-711 (2005).
[CrossRef] [PubMed]

2004

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, "Nanoshell-enabled photonics-based imaging and therapy of cancer,"Technol. Cancer Res. Treat. 3, 33-40 (2004).
[PubMed]

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, "Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles," Cancer Lett. 209, 171-176 (2004).
[CrossRef] [PubMed]

2003

W. R. Zipfel, R. M. Williams, and W. W. Webb, "Nonlinear magic: Multiphoton. microscopy in the biosciences," Nat. Biotechnol. 21, 1369-1377 (2003).
[CrossRef] [PubMed]

E. Prodan, and P. Nordlander, "Structural tunability of the plasmon resonances in metallic nanoshells," Nano Lett. 3, 543-547 (2003).
[CrossRef]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, "Nanoscale imaging of chemical interactions: fluorine on graphite," Proc. Natl. Acad. Sci. U.S.A. 100, 13549-13554 (2003).
[CrossRef] [PubMed]

H. Maeda, J. Fang, T. Inutsuka, and Y. Kitamoto, "Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications," Int. Immunopharmacol. 3, 319-328 (2003).
[CrossRef] [PubMed]

1999

S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, "Light scattering from dipole and quadrupole nanoshell antennas," Appl. Phys. Lett. 75, 2897-2899 (1999).
[CrossRef]

1998

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, "Nanoengineering of optical resonances," Chem. Phys. Lett. 288, 243-247 (1998).
[CrossRef]

1997

R. D. Averitt, D. Sarkar, and N. J. Halas, "Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth," Phys. Rev. Lett. 78, 4217-4220 (1997).
[CrossRef]

1993

D. G. Duff, A. Baiker, and P. P. Edwards, "A new hydrosol of gold clusters. 1. formation and particle size. Variation," Langmuir 9, 2301-2309 (1993).
[CrossRef]

1986

G. T. Boyd, Z. H. Yu, and Y. R. Shen, "Photoinduced luminescence from the noble metal and its enhancement on roughened surfaces," Phys. Rev. B 33, 7923-7936 (1986).
[CrossRef]

1969

A. Mooradian, "Photoluminescence of metals," Phys. Rev. Lett. 22, 185-187 (1969).
[CrossRef]

Appl. Phys. Lett.

S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, "Light scattering from dipole and quadrupole nanoshell antennas," Appl. Phys. Lett. 75, 2897-2899 (1999).
[CrossRef]

Cancer Lett.

D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, "Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles," Cancer Lett. 209, 171-176 (2004).
[CrossRef] [PubMed]

Chem. Phys. Lett.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, "Nanoengineering of optical resonances," Chem. Phys. Lett. 288, 243-247 (1998).
[CrossRef]

Int. Immunopharmacol.

H. Maeda, J. Fang, T. Inutsuka, and Y. Kitamoto, "Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications," Int. Immunopharmacol. 3, 319-328 (2003).
[CrossRef] [PubMed]

J. Am. Chem. Soc.

X. H. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, "Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods," J. Am. Chem. Soc. 128, 2115-2120 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. B

K. Imura, T. Nagahara, and H. Okamoto, "Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes," J. Phys. Chem. B 109,13214-13220 (2005).
[CrossRef]

Langmuir

D. G. Duff, A. Baiker, and P. P. Edwards, "A new hydrosol of gold clusters. 1. formation and particle size. Variation," Langmuir 9, 2301-2309 (1993).
[CrossRef]

Nano Lett.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, "Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods," Nano Lett. 7, 941-945 (2007).
[CrossRef] [PubMed]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, "Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy," Nano Lett. 7, 1929-1934 (2007).
[CrossRef] [PubMed]

E. Prodan, and P. Nordlander, "Structural tunability of the plasmon resonances in metallic nanoshells," Nano Lett. 3, 543-547 (2003).
[CrossRef]

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, "Immunotargeted nanoshells for integrated cancer imaging and therapy," Nano Lett. 5, 709-711 (2005).
[CrossRef] [PubMed]

Nat. Biotechnol.

W. R. Zipfel, R. M. Williams, and W. W. Webb, "Nonlinear magic: Multiphoton. microscopy in the biosciences," Nat. Biotechnol. 21, 1369-1377 (2003).
[CrossRef] [PubMed]

Nat. Methods

N. Nishimura, C. B. Schaffer, B. Friedman, P. S. Tsai, P. D. Lyden, and D. Kleinfeld, "Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke," Nat. Methods 3, 99-108 (2006).
[CrossRef] [PubMed]

Nat. Rev. Cancer

M. Ferrari, "Cancer nanotechnology: opportunities and challenges," Nat. Rev. Cancer 5, 161-171 (2005).
[CrossRef] [PubMed]

Opt. Commun.

C. Wu, X. Liang, and H. Jiang, "Metal nanoshells as a contrast agent in near-infrared diffuse optical tomography," Opt. Commun. 253, 214-221 (2005).
[CrossRef]

Opt. Lett.

Phys. Rev. B

G. T. Boyd, Z. H. Yu, and Y. R. Shen, "Photoinduced luminescence from the noble metal and its enhancement on roughened surfaces," Phys. Rev. B 33, 7923-7936 (1986).
[CrossRef]

Phys. Rev. Lett.

A. Mooradian, "Photoluminescence of metals," Phys. Rev. Lett. 22, 185-187 (1969).
[CrossRef]

R. D. Averitt, D. Sarkar, and N. J. Halas, "Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth," Phys. Rev. Lett. 78, 4217-4220 (1997).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, "Nanoscale imaging of chemical interactions: fluorine on graphite," Proc. Natl. Acad. Sci. U.S.A. 100, 13549-13554 (2003).
[CrossRef] [PubMed]

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. Cheng, "In vitro and in vivo two-photon luminescence imaging of single gold nanorods," Proc. Natl. Acad. Sci. U.S.A. 102, 15752-15756 (2005).
[CrossRef] [PubMed]

Technol. Cancer Res. Treat.

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, "Nanoshell-enabled photonics-based imaging and therapy of cancer,"Technol. Cancer Res. Treat. 3, 33-40 (2004).
[PubMed]

Other

M. R. Beversluis, A. Bouhelier, and L. Novotny, "Continuum generation from single gold nanostructures through near-field mediated intraband transitions," Phys. Rev. B 68, 115433-1-115433-10 (2003).
[CrossRef]

Supplementary Material (2)

» Media 1: MOV (1902 KB)     
» Media 2: MOV (1903 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of the custom built NIR laser scanning multi-photon microscope.

Fig. 2.
Fig. 2.

Photo-physical properties of the gold nanoshells and nanorods used for this study. (a) TEM image of synthesized gold nanoshells. (b) Extinction spectra of gold nanoshells. (c) TEM image of nanorods. (d) Extinction spectra of gold nanorods. (Scale bar: 200 nm (a) and 100 nm (c))

Fig. 3.
Fig. 3.

Nonlinear property of two-photon-induced photoluminescence and emission spectrum. (a) Quadratic dependence of luminescence intensity on the excitation power at 780 nm. Error bars represent standard deviation (n=3). (b) Luminescence emission spectrum of gold nanoshells in solution.

Fig. 4.
Fig. 4.

TEM images of nanoshells irradiated with 4.5 mW and 1.5 mW incident laser powers. (a)–(d) Melted gold shells and silica cores after 4.5 mW irradiation. (e) Intact nanoshells after 1.5 mW irradiation. (Scale bar: 500 nm (a, b) and 100 nm (c–e))

Fig. 5.
Fig. 5.

Standard white light images and two-photon induced photoluminescence (TPIP) images from subcutaneous tumors. (a), (c) White light images of tumor with and without nanoshells. (b), (d) TPIP images from tumors with and without nanoshells. (Scale bar: 1 mm (a, c) and 50 µm (b, d))

Fig. 6.
Fig. 6.

Two-photon induced photoluminescence (TPIP) images of distribution of gold nanoshells in tumor. (a) (1.85 MB) A movie file of 3D luminescence images from nanoshell-injected tumor. (b) x-y (en-face) plane images of TPIP with field of view of 124 µm×124 µm. (c) x-z (cross-sectional) plane images of TPIP in tumor from surface (0 µm) down to 150 µm deep. (Scale bar: 50 µm (b, c)) [Media 1]

Fig. 7.
Fig. 7.

3D visualization of nanoshells (green) and blood vessels (red) in tumor. (a) z-projection of x-y images from tumor. (red: fluorescein in blood vessels, green: gold nanoshells) (b) y-projection of x-z images with field of view 198 µm×80 µm. (c)–(f) 3D images of nanoshells in tumor at different rotational angles (c: movie file, 1.85 MB). (Scale bar: 50 µm (a, b)) [Media 2]

Metrics