Abstract

We investigated the contribution of the absorption and phase gratings to the total diffraction efficiency of volume holographic gratings written in glass-like polymer recording materials based on poly(methyl methacrylate) and its thermostable derivative (copolymer with acrylic acid) with distributed phenanthrenequinone. The typical maximal diffraction efficiency was 0.5%–2.0% for the absorption grating and 22–32% for the phase grating. The modulation of the absorption coefficient varied between 10cm-1 and 100cm-1 and the modulation of the refractive index was about 10-4-10-3.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. V. Veniaminov, E. Bartsch, A. P. Popov, "Postexposure Evolution of a Photoinduced Grating in a Polymer Material with Phenanthrenequinone," Opt. Spectrosc. 99, 744 (2005).
    [CrossRef]
  2. R. K. Kostuk, W. Maeda, Ch.-H. Chen, I. Djordjevic, B. Vasic, "Cascaded holographic polymer reflection grating filters for optical-code-division multiple-access applications," Appl. Opt. 44, 7581 (2005).
    [CrossRef] [PubMed]
  3. U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, R. Kowarschik, "Holographic volume gratings in a glass-like polymer material," Appl. Phys. B 82, 299 (2006).
    [CrossRef]
  4. Sh. H. Lin, K. Y. Hsu, W.-Zh. Chen, W. T. Whang, "Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage," Opt. Lett. 25, 451 (2000).
    [CrossRef]
  5. A. Popov, I. Novikov, K. Lapushka, I. Zyuzin, Yu. Ponosov, Yu. Ashcheulov, A. Veniaminov, "Spectrally selective holographic optical elements based on a thick polymer medium with diffusional amplification," J. Opt. A: Pure Appl. Opt. 2, 494 (2000).
    [CrossRef]
  6. K. Y. Hsu, Sh. H. Lin, Y.-N. Hsiao, W. T. Whang, "Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage," Opt. Eng. 42, 1390 (2003).
    [CrossRef]
  7. Y.-N. Hsiao, W.-T. Whang, S. H. Lin, "Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate) hybrid materials," Opt. Eng. 43, 1993 (2004).
    [CrossRef]
  8. G. J. Steckman, I. O. Solomatine, G. Zhou, D. Psaltis, "Characterization ofphenanthrenequinone-doped poly(methyl methacrylate) forholographic memory," Opt. Lett. 23, 1310 (1998).
    [CrossRef]
  9. A. V. Veniaminov, H. Sillescu, "Polymer and Dye Probe Diffusion in Poly(methyl methacrylate) below the Glass Transition Studied by Forced Rayleigh Scattering," Macromolecules 32, 1828 (1999).
    [CrossRef]
  10. A. Sato, R. K. Kostuk, "Holographic Grating for Dense Wavelength Division Optical Filters at 1550 nm using Phenanthrenequinone Doped Poly(methyl methacrylate)," SPIE Proceedings 5216, 44 (2003).
    [CrossRef]
  11. Y.-N. Hsiao, W.-T. Whang, S. H. Lin, "Effect of ZnMA on Optical and Holographic Characteristics of Doped PQ/PMMA Photopolymer," Jpn. J. Appl. Phys 44, 914 (2005).
    [CrossRef]
  12. J. M. Russo, Ch.-H. Chen, R. K. Kostuk, "Temperature dependence and characterization of gratings in PQ/PMMA holographic materials," SPIE Proceedings 6335, 505 (2006).
  13. J. Mumbru, I. Solomatine, D. Psaltis, Sh. H. Lin, K. Y. Hsu, W.-Zh. Chen, W. T. Whang, „Comparison of the recording dynamics of phenanthrenequinone-doped poly(methyl methacrylate) materials," Opt. Commun. 194, 103 (2001).
    [CrossRef]
  14. L. P. Krul, V. Matusevich, D. Hoff, R. Kowarschik, Yu. I. Matusevich, G. V. Butovskaya, E. A. Murashko, "Modified polymethylmethacrylate as a base for thermostable optical recording media," Opt. Express. 15, 8543 (2007).
    [CrossRef] [PubMed]
  15. H. Kogelnik, "Coupled Wave Theory for Thick Hologram Gratings," Bell. Syst. Tech. J. 48, 2909 (1969).

2007 (1)

L. P. Krul, V. Matusevich, D. Hoff, R. Kowarschik, Yu. I. Matusevich, G. V. Butovskaya, E. A. Murashko, "Modified polymethylmethacrylate as a base for thermostable optical recording media," Opt. Express. 15, 8543 (2007).
[CrossRef] [PubMed]

2006 (2)

J. M. Russo, Ch.-H. Chen, R. K. Kostuk, "Temperature dependence and characterization of gratings in PQ/PMMA holographic materials," SPIE Proceedings 6335, 505 (2006).

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, R. Kowarschik, "Holographic volume gratings in a glass-like polymer material," Appl. Phys. B 82, 299 (2006).
[CrossRef]

2005 (3)

A. V. Veniaminov, E. Bartsch, A. P. Popov, "Postexposure Evolution of a Photoinduced Grating in a Polymer Material with Phenanthrenequinone," Opt. Spectrosc. 99, 744 (2005).
[CrossRef]

Y.-N. Hsiao, W.-T. Whang, S. H. Lin, "Effect of ZnMA on Optical and Holographic Characteristics of Doped PQ/PMMA Photopolymer," Jpn. J. Appl. Phys 44, 914 (2005).
[CrossRef]

R. K. Kostuk, W. Maeda, Ch.-H. Chen, I. Djordjevic, B. Vasic, "Cascaded holographic polymer reflection grating filters for optical-code-division multiple-access applications," Appl. Opt. 44, 7581 (2005).
[CrossRef] [PubMed]

2004 (1)

Y.-N. Hsiao, W.-T. Whang, S. H. Lin, "Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate) hybrid materials," Opt. Eng. 43, 1993 (2004).
[CrossRef]

2003 (2)

A. Sato, R. K. Kostuk, "Holographic Grating for Dense Wavelength Division Optical Filters at 1550 nm using Phenanthrenequinone Doped Poly(methyl methacrylate)," SPIE Proceedings 5216, 44 (2003).
[CrossRef]

K. Y. Hsu, Sh. H. Lin, Y.-N. Hsiao, W. T. Whang, "Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage," Opt. Eng. 42, 1390 (2003).
[CrossRef]

2001 (1)

J. Mumbru, I. Solomatine, D. Psaltis, Sh. H. Lin, K. Y. Hsu, W.-Zh. Chen, W. T. Whang, „Comparison of the recording dynamics of phenanthrenequinone-doped poly(methyl methacrylate) materials," Opt. Commun. 194, 103 (2001).
[CrossRef]

2000 (2)

Sh. H. Lin, K. Y. Hsu, W.-Zh. Chen, W. T. Whang, "Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage," Opt. Lett. 25, 451 (2000).
[CrossRef]

A. Popov, I. Novikov, K. Lapushka, I. Zyuzin, Yu. Ponosov, Yu. Ashcheulov, A. Veniaminov, "Spectrally selective holographic optical elements based on a thick polymer medium with diffusional amplification," J. Opt. A: Pure Appl. Opt. 2, 494 (2000).
[CrossRef]

1999 (1)

A. V. Veniaminov, H. Sillescu, "Polymer and Dye Probe Diffusion in Poly(methyl methacrylate) below the Glass Transition Studied by Forced Rayleigh Scattering," Macromolecules 32, 1828 (1999).
[CrossRef]

1998 (1)

1969 (1)

H. Kogelnik, "Coupled Wave Theory for Thick Hologram Gratings," Bell. Syst. Tech. J. 48, 2909 (1969).

Appl. Opt. (1)

Appl. Phys. B (1)

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, R. Kowarschik, "Holographic volume gratings in a glass-like polymer material," Appl. Phys. B 82, 299 (2006).
[CrossRef]

Bell. Syst. Tech. J. (1)

H. Kogelnik, "Coupled Wave Theory for Thick Hologram Gratings," Bell. Syst. Tech. J. 48, 2909 (1969).

J. Opt. A: Pure Appl. Opt. (1)

A. Popov, I. Novikov, K. Lapushka, I. Zyuzin, Yu. Ponosov, Yu. Ashcheulov, A. Veniaminov, "Spectrally selective holographic optical elements based on a thick polymer medium with diffusional amplification," J. Opt. A: Pure Appl. Opt. 2, 494 (2000).
[CrossRef]

Jpn. J. Appl. Phys (1)

Y.-N. Hsiao, W.-T. Whang, S. H. Lin, "Effect of ZnMA on Optical and Holographic Characteristics of Doped PQ/PMMA Photopolymer," Jpn. J. Appl. Phys 44, 914 (2005).
[CrossRef]

Macromolecules (1)

A. V. Veniaminov, H. Sillescu, "Polymer and Dye Probe Diffusion in Poly(methyl methacrylate) below the Glass Transition Studied by Forced Rayleigh Scattering," Macromolecules 32, 1828 (1999).
[CrossRef]

Opt. Commun. (1)

J. Mumbru, I. Solomatine, D. Psaltis, Sh. H. Lin, K. Y. Hsu, W.-Zh. Chen, W. T. Whang, „Comparison of the recording dynamics of phenanthrenequinone-doped poly(methyl methacrylate) materials," Opt. Commun. 194, 103 (2001).
[CrossRef]

Opt. Eng. (2)

K. Y. Hsu, Sh. H. Lin, Y.-N. Hsiao, W. T. Whang, "Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage," Opt. Eng. 42, 1390 (2003).
[CrossRef]

Y.-N. Hsiao, W.-T. Whang, S. H. Lin, "Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate) hybrid materials," Opt. Eng. 43, 1993 (2004).
[CrossRef]

Opt. Express. (1)

L. P. Krul, V. Matusevich, D. Hoff, R. Kowarschik, Yu. I. Matusevich, G. V. Butovskaya, E. A. Murashko, "Modified polymethylmethacrylate as a base for thermostable optical recording media," Opt. Express. 15, 8543 (2007).
[CrossRef] [PubMed]

Opt. Lett. (2)

Opt. Spectrosc. (1)

A. V. Veniaminov, E. Bartsch, A. P. Popov, "Postexposure Evolution of a Photoinduced Grating in a Polymer Material with Phenanthrenequinone," Opt. Spectrosc. 99, 744 (2005).
[CrossRef]

SPIE Proceedings (2)

A. Sato, R. K. Kostuk, "Holographic Grating for Dense Wavelength Division Optical Filters at 1550 nm using Phenanthrenequinone Doped Poly(methyl methacrylate)," SPIE Proceedings 5216, 44 (2003).
[CrossRef]

J. M. Russo, Ch.-H. Chen, R. K. Kostuk, "Temperature dependence and characterization of gratings in PQ/PMMA holographic materials," SPIE Proceedings 6335, 505 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Spectral dependences of the internal absorption factor A of the recording media based on PMMA a) during illumination and b) after illumination during heating (120°C). The polymer was illuminated at 514 nm with the intensity of 60 mW/cm2.

Fig. 2.
Fig. 2.

Spectral dependences of the internal absorption factor A of the recording media based on PMMA+AA a) during illumination and b) after illumination during heating (120°C). The polymer was illuminated by 514 nm with the intensity of 60 mW/cm2.

Fig. 3.
Fig. 3.

Spectral dependences of the internal absorption factor A of the recording media based on a) PMMA and b) PMMA+AA without illumination during heating (120°C).

Fig. 4.
Fig. 4.

Schematic for a) recording and b) reconstruction of the grating in the polymer film layer. The Bragg angle θ is considered in the material. θ=32° for λ=514nm and θ=41° for λ=633nm.

Fig. 5.
Fig. 5.

DE of the grating in recording media based on a) PMMA and b) PMMA+AA in dependence on the recording time. The grating is written with an Ar-laser (514nm) and read out by the Ar-laser (514nm, squares) and by a He-Ne-Laser (633nm, triangles)

Fig. 6.
Fig. 6.

Normalized diffraction efficiency in dependence on heating time at 120°C: a) PMMA (value 1 corresponds to 16%), b) PMMA+AA (value 1 corresponds to 24%). The measurements were made with an accuracy of 5%.

Tables (3)

Tables Icon

Table 1. Recording. Experimental values of the thickness of the grating d, the Bragg angle θ, the absolute absorption coefficient α (saturation), the modulation of the absorption coefficient α1 (saturation); calculated values of the auxiliary parameters D0, D1; and calculated values of the DE of the absorption grating ηA. Wavelength 514nm.

Tables Icon

Table 2. Recording. Experimental values of the maximal total DE η(max) and saturated total DE η(sat); calculated values of the DE of the absorption grating ηA, of the DE of the phase grating in maximum ηPh(max) and in saturation ηPh(max), and calculated values of the refrative index modulation for maximum n1(max) and for saturation n1(sat)

Tables Icon

Table 3. Heating. Experimental values of the thickness of the grating d, the Bragg angle θ, the absolute absorption coefficient α (saturation), the modulation of the absorption coefficient α1 (saturation); calculated values of the auxiliary parameters D0, D1; and calculated values of the DE of the absorption grating ηA.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

η = I out I in · 100 % .
η A = D 1 2 4 [ D 0 + D 0 2 D 1 2 4 coth ( D 0 2 D 1 2 4 ) ] 2 ,
η Ph = η η A .
η Pn = th 2 ( πn 1 d λ cos θ ) ,

Metrics