Abstract

We demonstrate efficient cavity-enhanced second and fourth harmonic generation of an air-cooled, continuous-wave (cw), single-frequency 1064 nm fiber-amplifier system. The second harmonic generator achieves up to 88% total external conversion efficiency, generating more than 20-W power at 532 nm wavelength in a diffraction-limited beam (M2<1.05). The nonlinear medium is a critically phase-matched, 20-mm long, anti-reflection (AR) coated LBO crystal operated at 25°C. The fourth harmonic generator is based on an AR-coated, Czochralski-grown β-BaB2O4 (BBO) crystal optimized for low loss and high damage threshold. Up to 12.2 W of 266-nm deep-UV (DUV) output is obtained using a 6-mm long critically phase-matched BBO operated at 40°C. This power level is more than two times higher than previously reported for cw 266-nm generation. The total external conversion efficiency from the fundamental at 1064 nm to the fourth harmonic at 266 nm is >50%.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. Takeda, M. Furuki, H. Yamatsu, T. Kashiwagi, Y. Aki, A. Suzuki, K. Kondo, M. Oka, and S. Kubota, "Deep UV Mastering Using an All-Solid-State 266 nm Laser for an over 20 GBytes/Layer Capacity Disk," Jpn. J. Appl. Phys. 38, 1837 (1998).
    [CrossRef]
  2. N. Eguchi, M. Oka, Y. Imai, M. Saito, and S. Kubota, "A new deep-UV microscope," in Optical Engineering for Sensing and Nanotechnology (ICOSN '99), 3740 (SPIE Proceedings), 394, 1999.
  3. M. Oka, L. Y. Liu, W. Wiechmann, N. Eguchi, and S. Kubota, "All solid-state continuous-wave frequency-quadrupled Nd:YAG laser," IEEE J. Sel. Top. in Quantum Electron. 1, 859 (1995).
    [CrossRef]
  4. J. Sakuma, Y. Asakawa, and M. Obara, "Generation of 5-W deep-UV continuous-wave radiation at 266 nm by an external cavity with a CsLiB6O10 crystal," Opt. Lett. 29, 92 (2004).
    [CrossRef] [PubMed]
  5. T. Okamoto, K. Tatsuki, and S. Kubota, Sony Corporation, US Patent No. 6,248,167 B1 (2001).
  6. T. J. Kane, and R. L. Byer, "Monolithic, unidirectional single-mode Nd:YAG ring laser," Opt. Lett. 10, 65 (1985).
    [CrossRef] [PubMed]
  7. I. Zawischa, K. Plamann, C. Fallnich, H. Welling, H. Zellmer, and A. Tünnermann, "All-solid-state neodymium-based single-frequency master-oscillator fiber power-amplifier system emitting 5.5 W of radiation at 1064 nm," Opt. Lett. 24, 469 (1999).
    [CrossRef]
  8. A. Liem, J. Limpert, H. Zellmer, and A. Tünnermann, "100-W single-frequency master-oscillator fiber power amplifier," Opt. Lett. 28, 1537 (2003).
    [CrossRef] [PubMed]
  9. Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, and P. W. Turner, "Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power," Opt. Lett. 30, 459 (2005).
    [CrossRef] [PubMed]
  10. W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, "Efficient second harmonic generation of a diode-laser-pumped cw Nd:YAG laser using monlithic MgO:LiNbO3 external resonant cavities," IEEE J. Quantum Electron. 24, 913 (1988).
    [CrossRef]
  11. Z. Y. Ou, S. F. Pereira, E. S. Polzik, and H. J. Kimble, "85% efficiency for cw frequency doubling from 1.08 to 0.54 µm," Opt. Lett. 17, 640 (1992).
    [CrossRef] [PubMed]
  12. R. Paschotta, P. Kürz, R. Henking, S. Schiller, and J. Mlynek, "82% Efficient continuous-wave frequency doubling of 1.06 µm with a monolithic MgO:LiNbO3 resonator," Opt. Lett. 19, 1325 (1994).
    [CrossRef] [PubMed]
  13. K. Schneider, S. Schiller, J. Mlynek, M. Bode, and I. Freitag, "1.1-W single-frequency 532-nm radiation by second-harmonic generation of a minature Nd:YAG ring laser," Opt. Lett. 21, 1999 (1996).
    [CrossRef] [PubMed]
  14. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97 (1983).
    [CrossRef]

2005

2004

2003

1999

1998

M. Takeda, M. Furuki, H. Yamatsu, T. Kashiwagi, Y. Aki, A. Suzuki, K. Kondo, M. Oka, and S. Kubota, "Deep UV Mastering Using an All-Solid-State 266 nm Laser for an over 20 GBytes/Layer Capacity Disk," Jpn. J. Appl. Phys. 38, 1837 (1998).
[CrossRef]

1996

1995

M. Oka, L. Y. Liu, W. Wiechmann, N. Eguchi, and S. Kubota, "All solid-state continuous-wave frequency-quadrupled Nd:YAG laser," IEEE J. Sel. Top. in Quantum Electron. 1, 859 (1995).
[CrossRef]

1994

1992

1988

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, "Efficient second harmonic generation of a diode-laser-pumped cw Nd:YAG laser using monlithic MgO:LiNbO3 external resonant cavities," IEEE J. Quantum Electron. 24, 913 (1988).
[CrossRef]

1985

1983

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97 (1983).
[CrossRef]

Appl. Phys. B

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97 (1983).
[CrossRef]

IEEE J. Quantum Electron.

W. J. Kozlovsky, C. D. Nabors, and R. L. Byer, "Efficient second harmonic generation of a diode-laser-pumped cw Nd:YAG laser using monlithic MgO:LiNbO3 external resonant cavities," IEEE J. Quantum Electron. 24, 913 (1988).
[CrossRef]

J. Sel. Top. in Quantum Electron.

M. Oka, L. Y. Liu, W. Wiechmann, N. Eguchi, and S. Kubota, "All solid-state continuous-wave frequency-quadrupled Nd:YAG laser," IEEE J. Sel. Top. in Quantum Electron. 1, 859 (1995).
[CrossRef]

Jpn. J. Appl. Phys.

M. Takeda, M. Furuki, H. Yamatsu, T. Kashiwagi, Y. Aki, A. Suzuki, K. Kondo, M. Oka, and S. Kubota, "Deep UV Mastering Using an All-Solid-State 266 nm Laser for an over 20 GBytes/Layer Capacity Disk," Jpn. J. Appl. Phys. 38, 1837 (1998).
[CrossRef]

Opt. Lett.

T. J. Kane, and R. L. Byer, "Monolithic, unidirectional single-mode Nd:YAG ring laser," Opt. Lett. 10, 65 (1985).
[CrossRef] [PubMed]

Z. Y. Ou, S. F. Pereira, E. S. Polzik, and H. J. Kimble, "85% efficiency for cw frequency doubling from 1.08 to 0.54 µm," Opt. Lett. 17, 640 (1992).
[CrossRef] [PubMed]

R. Paschotta, P. Kürz, R. Henking, S. Schiller, and J. Mlynek, "82% Efficient continuous-wave frequency doubling of 1.06 µm with a monolithic MgO:LiNbO3 resonator," Opt. Lett. 19, 1325 (1994).
[CrossRef] [PubMed]

K. Schneider, S. Schiller, J. Mlynek, M. Bode, and I. Freitag, "1.1-W single-frequency 532-nm radiation by second-harmonic generation of a minature Nd:YAG ring laser," Opt. Lett. 21, 1999 (1996).
[CrossRef] [PubMed]

I. Zawischa, K. Plamann, C. Fallnich, H. Welling, H. Zellmer, and A. Tünnermann, "All-solid-state neodymium-based single-frequency master-oscillator fiber power-amplifier system emitting 5.5 W of radiation at 1064 nm," Opt. Lett. 24, 469 (1999).
[CrossRef]

A. Liem, J. Limpert, H. Zellmer, and A. Tünnermann, "100-W single-frequency master-oscillator fiber power amplifier," Opt. Lett. 28, 1537 (2003).
[CrossRef] [PubMed]

J. Sakuma, Y. Asakawa, and M. Obara, "Generation of 5-W deep-UV continuous-wave radiation at 266 nm by an external cavity with a CsLiB6O10 crystal," Opt. Lett. 29, 92 (2004).
[CrossRef] [PubMed]

Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, and P. W. Turner, "Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power," Opt. Lett. 30, 459 (2005).
[CrossRef] [PubMed]

Other

N. Eguchi, M. Oka, Y. Imai, M. Saito, and S. Kubota, "A new deep-UV microscope," in Optical Engineering for Sensing and Nanotechnology (ICOSN '99), 3740 (SPIE Proceedings), 394, 1999.

T. Okamoto, K. Tatsuki, and S. Kubota, Sony Corporation, US Patent No. 6,248,167 B1 (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup of the DUV laser system.

Fig. 2.
Fig. 2.

Schematic of the voice-coil-motor (VCM) actuator used for frequency locking of the enhancement cavities.

Fig. 3.
Fig. 3.

Measured second-harmonic output power (left axis, circles) and total external conversion efficiency (right axis, open rectangles) as a function of the IR input power.

Fig. 4.
Fig. 4.

Measured 266-nm UV output power (left axis, circles) and external conversion efficiency (right axis, open rectangles) from the 1064-nm IR to the 266-nm UV (right axis, open rectangles) as a function of the IR input power.

Fig. 5.
Fig. 5.

Preliminary long term evaluation of the DUV system (taken from a non-optimized system containing oil contaminations)

Metrics