Abstract

We study the amplitude and phase signals detected in infrared scattering-type near field optical microscopy (s-SNOM) when probing a thin sample layer on a substrate. We theoretically describe this situation by solving the electromagnetic scattering of a dipole near a planar sample consisting of a substrate covered by thin layers. We perform calculations to describe the effect of both weakly (Si and SiO2) and strongly (Au) reflecting substrates on the spectral s-SNOM signal of a thin PMMA layer. We theoretically predict, and experimentally confirm an enhancement effect in the polymer vibrational spectrum when placed on strongly reflecting substrates. We also calculate the scattered fields for a resonant tip-substrate interaction, obtaining a dramatic enhancement of the signal amplitude and spectroscopic contrast of the sample layer, together with a change of the spectral line shape. The enhanced contrast opens the possibility to perform ultra-sensitive near field infrared spectroscopy of monolayers and biomolecules.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. Y. Inouye, and S. Kawata, "Near-field scanning optical microscope with a metallic probe tip," Opt. Lett. 19,159-161 (1994).
    [CrossRef] [PubMed]
  2. F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, "Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution," Science 269,1083-1085 (1995).
    [CrossRef] [PubMed]
  3. R. Hillenbrand, and F. Keilmann, "Complex optical constants on a subwavelength scale," Phys. Rev. Lett. 85,3029-3032 (2000).
    [CrossRef] [PubMed]
  4. R. Bachelot, G. Lerondel, S. Blaize, S. Aubert, A. Bruyant, P. Royer, "Probing photonic and optoelectronic structures by apertureless scanning near-field optical microscopy," Microsc. Res. Tech. 64,441-452 (2004).
    [CrossRef] [PubMed]
  5. N. Anderson, A. Bouhelier, and L. Novotny, "Near-field photonics: tip-enhanced microscopy and spectroscopy on the nanoscale," J. Opt. A 8,S227-S233 (2006).
    [CrossRef]
  6. Z. H. Kim, and S. R. Leone, "High-resolution apertureless near-field optical imaging using gold nanosphere probes," J. Phys. Chem. B 110,19804-19809 (2006)
    [CrossRef] [PubMed]
  7. A. Lahrech, R. Bachelot, P. Gleyzes, and A. C. Boccara, "Infrared-reflection-mode near-field microscopy using an apertureless probe with a resolution of lambda / 600," Opt. Lett. 21,1315-1317 (1995).
    [CrossRef]
  8. B. Knoll, and F. Keilmann, "Near-field probing of vibrational absorption for chemical microscopy," Nature 399,134-137 (1999).
    [CrossRef]
  9. B. B. Akhremitchev, and G. C. Walker, "Apertureless Scanning Near-Field Infrared Microscopy of Rough Polymeric Surface," Langmuir. 17,2774-2781 (2001).
    [CrossRef]
  10. I. Kopf, J. S. Samson, G. Wollny, C. Grunwald, E. Brundermann, and M. Havenith, "Chemical imaging of microstructured self-assembled monolayers with nanometer resolution," J. Phys. Chem. C 111,8166-8171 (2007).
    [CrossRef]
  11. M.B. Raschke, L. Molina, T. Elsaesser, D.H. Kim,W. Knoll, and K. Hinrichs, "Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution," ChemPhysChem 6, 2197-2203 (2005).
    [CrossRef] [PubMed]
  12. A. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, and R. Hillenbrand, "Simultaneous infrared material recognition and conductivity mapping by nanoscale near-field microscopy," Adv. Mater. 19,2209-2212 (2007).
    [CrossRef]
  13. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-field Microscopy Through a SiC Superlens," Science 313,1595-1595 (2006).
    [CrossRef] [PubMed]
  14. A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, "Infrared Imaging of Single Nanoparticles via Strong Field Enhancement in a Scanning Nanogap," Phys. Rev. Lett. 97,060801 (2006).
    [CrossRef] [PubMed]
  15. A. Cvitkovic, N. Ocelic, and R. Hillenbrand, "Material-specific optical recognition of sub-10 nm particles by substrate-enhanced scattering-type near-field microscopy," Nano Lett. 7,3177-3181 (2007).
    [CrossRef] [PubMed]
  16. T. Taubner, R. Hillenbrand, and F. Keilmann, "Nanoscale polymer identification by spectral signature in scattering infrared near-field microscopy," Appl. Phys. Lett. 85,5064-5066 (2004).
    [CrossRef]
  17. M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, "Infrared Spectroscopic Mapping of Single Nanoparticles and Viruses at Nanoscale Resolution," Nanoletters 6,1307-1310 (2006).
    [CrossRef]
  18. T. Taubner, R. Hillenbrand, and F. Keilmann, "Performance of visible and mid-infrared scattering-type near-field optical microscopes," J. Microsc. 210,311-314 (2003).
    [CrossRef] [PubMed]
  19. J. A. Porto, P. Johansson, S. P. Apell, and T. Lopez-Rios, "Resonance shift effects in apertureless scanning near-field optical microscopy," Phys. Rev. B. 67, 085409 (2003).
    [CrossRef]
  20. R. M. Roth, N. C. Panoiu, M. M. Adams, R. M. Osgood, C. C. Neacsu, and M. B. Raschke, "Resonant-plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips," Opt. Express 14,2921-2931 (2006).
    [CrossRef] [PubMed]
  21. R. Esteban, R. Vogelgesang, and K. Kern, "Simulation of optical near and far fields of dielectric apertureless scanning probe," Nanotechnology 17,475-482 (2006).
    [CrossRef]
  22. R. Esteban, R. Vogelgesang, and K. Kern, "Tip-substrate interaction in optical near-field microscopy," Phys. Rev. B 75,195410 (2007).
    [CrossRef]
  23. F. Keilmann, and R. Hillenbrand, "Near-field optical microscopy by elastic light scattering from a tip," Phil. Trans. Roy. Soc. A 362, 787-805 (2004).
    [CrossRef]
  24. V. Romanov, and G. C. Walker, "Infrared near-field detection of a narrow resonance due to molecular vibrations in a nanoparticle," Langmuir 23,2829-2837 (2007).
    [CrossRef] [PubMed]
  25. R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon-enhanced light-matter interaction at the nanometer scale," Nature 418,159-162 (2002).
    [CrossRef] [PubMed]
  26. T. Taubner, F. Keilmann, and R. Hillenbrand, "Nanomechanical resonance tuning and phase effects in optical near-field interaction," Nano Lett. 4,1669-1672 (2004).
    [CrossRef]
  27. M. B. Raschke and C. Lienau, "Apertureless near-field optical microscopy: Tip-sample coupling in elastic light scattering," Appl. Phys. Lett. 83,5089-5091 (2003).
    [CrossRef]
  28. T. Taubner, F. Keilmann, and R. Hillenbrand, "Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy," Opt. Express 13,8893-8899 (2005).
    [CrossRef] [PubMed]
  29. N. Anderson, P. Anger, A. Hartschuh, and L. Novotny, "Subsurface Raman imaging with nanoscale resolution," Nano Lett. 6,744-749 (2006).
    [CrossRef] [PubMed]
  30. G. Y. Panasyuk, V. A. Markel, P. S. Carney, and J. C. Schotland, "Nonlinear inverse scattering and threedimensional near-field optical imaging," Appl. Phys. Lett. 89,221116 (2006).
    [CrossRef]
  31. E.G. Bortchagovsky, and U. C. Fischer, "On the modulation of optical transmission spectra of thin dye layers by a supporting medium," J. Chem. Phys. 117,5384-5392 (2002).
    [CrossRef]
  32. S. G. Moiseev, and S. V. Sukhov, "Near-Field optical microscopy in the presence of an intermediate layer," Opt. Spectrosc. 98,308-313 (2005).
    [CrossRef]
  33. M. Brehm, "Infrarot-Mikrospektroskopie mit einem Nahfeldmikroskop," PhD. Thesis 2006, TU Mnchen, Verlag Dr. Hut, ISBN 978-3-89963-482-2.
  34. N. Ocelic, A. Huber, and R. Hillenbrand, "Pseudoheterodyne detection for background-free near-field spectroscopy," App. Phys. Lett. 89,101124 (2006).
    [CrossRef]
  35. H. Weyl, "Ausbreitung elektromagnetischer Wellen uber einem ebenen Leiter," Ann. Phys. (Leipzig) 60,481-500 (1919).
    [CrossRef]
  36. G. W. Ford and W. H. Weber, "Electromagnetic interactions of molecules with metal surfaces," Phys. Rep. 113,195-287 (1984).
    [CrossRef]
  37. F. J. García de Abajo, "Light scattering by particle and hole arrays," Rev. Mod. Phys. 79,1267-1290 (2007).
    [CrossRef]
  38. E. D. Palik, "Handbook of optical constants of solids," Academic, New York, (1985).
  39. U. Fano, "Effects of Configuration Interaction on Intensities and Phase Shifts," Phys. Rev. B 124,1866-1878 (1961).
    [CrossRef]
  40. B.B. Akhremitchev, Y.J. Sun, L. Stebounova, and G.C. Walker, "Monolayer-sensitive infrared imaging of DNA stripes using apertureless near-field microscopy," Langmuir 18,5325-5328 (2002).
    [CrossRef]
  41. F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, "Resonances of individual metal nanowires in the infrared," Appl. Phys. Lett. 89,253104 (2006).
    [CrossRef]
  42. K.R. Rodriguez, H. Tian, J.M. Heer, S. Teeters-Kennedy, and J.V. Coe, "Interaction of an infrared surface plasmon with an excited molecular vibration," J. Chem. Phys. 126,151101 (2007).
    [CrossRef] [PubMed]
  43. H. Wang, J. Kundu, and N. J. Halas, "Plasmonic Nanoshell Arrays Combine Surface-Enhanced Vibrational Spectroscopies on a Single Substrate," Angew. Chem. 46,9040-9044 (2007).
    [CrossRef]
  44. A. V. Zayats, "Electromagnetic field enhancement in the context of apertureless near-field microscopy," Opt. Comm. 161,156-162 (1999).
    [CrossRef]
  45. A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, "Controlling the Fano interference in a plasmonic lattice," Phys. Rev. B 76, 201405(R) (2007).
    [CrossRef]
  46. U. C. Fischer, "Latex Projections Patterns, in Procedures in Scanning Probe Microscopy," Editors: R.J. Colton, et al., John Wiley & Sons. 10-11 (1998).
  47. T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, "Nanosphere lithography: Tunable Localised Surface Plasmon Resonance Spectra of Silver Nanoparticles," J. Phys. Chem. B 104,10549-10556 (2000).
    [CrossRef]
  48. M.S. Anderson, "Enhanced infrared absorption with dielectric nanoparticles," Appl. Phys. Lett. 83,2964-2966 (2003).
    [CrossRef]
  49. F. Neubrech, A. Pucci, T. W. Cornelius, and S. Karim, A. Garcia-Etxarri, and J. Aizpurua, "Giant vibrational signals from molecules by the action of a tailored infrared nanoantenna," in preparation.

2007

I. Kopf, J. S. Samson, G. Wollny, C. Grunwald, E. Brundermann, and M. Havenith, "Chemical imaging of microstructured self-assembled monolayers with nanometer resolution," J. Phys. Chem. C 111,8166-8171 (2007).
[CrossRef]

A. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, and R. Hillenbrand, "Simultaneous infrared material recognition and conductivity mapping by nanoscale near-field microscopy," Adv. Mater. 19,2209-2212 (2007).
[CrossRef]

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, "Material-specific optical recognition of sub-10 nm particles by substrate-enhanced scattering-type near-field microscopy," Nano Lett. 7,3177-3181 (2007).
[CrossRef] [PubMed]

R. Esteban, R. Vogelgesang, and K. Kern, "Tip-substrate interaction in optical near-field microscopy," Phys. Rev. B 75,195410 (2007).
[CrossRef]

V. Romanov, and G. C. Walker, "Infrared near-field detection of a narrow resonance due to molecular vibrations in a nanoparticle," Langmuir 23,2829-2837 (2007).
[CrossRef] [PubMed]

F. J. García de Abajo, "Light scattering by particle and hole arrays," Rev. Mod. Phys. 79,1267-1290 (2007).
[CrossRef]

K.R. Rodriguez, H. Tian, J.M. Heer, S. Teeters-Kennedy, and J.V. Coe, "Interaction of an infrared surface plasmon with an excited molecular vibration," J. Chem. Phys. 126,151101 (2007).
[CrossRef] [PubMed]

H. Wang, J. Kundu, and N. J. Halas, "Plasmonic Nanoshell Arrays Combine Surface-Enhanced Vibrational Spectroscopies on a Single Substrate," Angew. Chem. 46,9040-9044 (2007).
[CrossRef]

2006

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, "Resonances of individual metal nanowires in the infrared," Appl. Phys. Lett. 89,253104 (2006).
[CrossRef]

N. Ocelic, A. Huber, and R. Hillenbrand, "Pseudoheterodyne detection for background-free near-field spectroscopy," App. Phys. Lett. 89,101124 (2006).
[CrossRef]

N. Anderson, P. Anger, A. Hartschuh, and L. Novotny, "Subsurface Raman imaging with nanoscale resolution," Nano Lett. 6,744-749 (2006).
[CrossRef] [PubMed]

G. Y. Panasyuk, V. A. Markel, P. S. Carney, and J. C. Schotland, "Nonlinear inverse scattering and threedimensional near-field optical imaging," Appl. Phys. Lett. 89,221116 (2006).
[CrossRef]

R. Esteban, R. Vogelgesang, and K. Kern, "Simulation of optical near and far fields of dielectric apertureless scanning probe," Nanotechnology 17,475-482 (2006).
[CrossRef]

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, "Infrared Spectroscopic Mapping of Single Nanoparticles and Viruses at Nanoscale Resolution," Nanoletters 6,1307-1310 (2006).
[CrossRef]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-field Microscopy Through a SiC Superlens," Science 313,1595-1595 (2006).
[CrossRef] [PubMed]

A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, "Infrared Imaging of Single Nanoparticles via Strong Field Enhancement in a Scanning Nanogap," Phys. Rev. Lett. 97,060801 (2006).
[CrossRef] [PubMed]

N. Anderson, A. Bouhelier, and L. Novotny, "Near-field photonics: tip-enhanced microscopy and spectroscopy on the nanoscale," J. Opt. A 8,S227-S233 (2006).
[CrossRef]

Z. H. Kim, and S. R. Leone, "High-resolution apertureless near-field optical imaging using gold nanosphere probes," J. Phys. Chem. B 110,19804-19809 (2006)
[CrossRef] [PubMed]

R. M. Roth, N. C. Panoiu, M. M. Adams, R. M. Osgood, C. C. Neacsu, and M. B. Raschke, "Resonant-plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips," Opt. Express 14,2921-2931 (2006).
[CrossRef] [PubMed]

2005

T. Taubner, F. Keilmann, and R. Hillenbrand, "Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy," Opt. Express 13,8893-8899 (2005).
[CrossRef] [PubMed]

M.B. Raschke, L. Molina, T. Elsaesser, D.H. Kim,W. Knoll, and K. Hinrichs, "Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution," ChemPhysChem 6, 2197-2203 (2005).
[CrossRef] [PubMed]

S. G. Moiseev, and S. V. Sukhov, "Near-Field optical microscopy in the presence of an intermediate layer," Opt. Spectrosc. 98,308-313 (2005).
[CrossRef]

2004

T. Taubner, R. Hillenbrand, and F. Keilmann, "Nanoscale polymer identification by spectral signature in scattering infrared near-field microscopy," Appl. Phys. Lett. 85,5064-5066 (2004).
[CrossRef]

F. Keilmann, and R. Hillenbrand, "Near-field optical microscopy by elastic light scattering from a tip," Phil. Trans. Roy. Soc. A 362, 787-805 (2004).
[CrossRef]

T. Taubner, F. Keilmann, and R. Hillenbrand, "Nanomechanical resonance tuning and phase effects in optical near-field interaction," Nano Lett. 4,1669-1672 (2004).
[CrossRef]

R. Bachelot, G. Lerondel, S. Blaize, S. Aubert, A. Bruyant, P. Royer, "Probing photonic and optoelectronic structures by apertureless scanning near-field optical microscopy," Microsc. Res. Tech. 64,441-452 (2004).
[CrossRef] [PubMed]

2003

M. B. Raschke and C. Lienau, "Apertureless near-field optical microscopy: Tip-sample coupling in elastic light scattering," Appl. Phys. Lett. 83,5089-5091 (2003).
[CrossRef]

T. Taubner, R. Hillenbrand, and F. Keilmann, "Performance of visible and mid-infrared scattering-type near-field optical microscopes," J. Microsc. 210,311-314 (2003).
[CrossRef] [PubMed]

J. A. Porto, P. Johansson, S. P. Apell, and T. Lopez-Rios, "Resonance shift effects in apertureless scanning near-field optical microscopy," Phys. Rev. B. 67, 085409 (2003).
[CrossRef]

M.S. Anderson, "Enhanced infrared absorption with dielectric nanoparticles," Appl. Phys. Lett. 83,2964-2966 (2003).
[CrossRef]

2002

B.B. Akhremitchev, Y.J. Sun, L. Stebounova, and G.C. Walker, "Monolayer-sensitive infrared imaging of DNA stripes using apertureless near-field microscopy," Langmuir 18,5325-5328 (2002).
[CrossRef]

E.G. Bortchagovsky, and U. C. Fischer, "On the modulation of optical transmission spectra of thin dye layers by a supporting medium," J. Chem. Phys. 117,5384-5392 (2002).
[CrossRef]

R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon-enhanced light-matter interaction at the nanometer scale," Nature 418,159-162 (2002).
[CrossRef] [PubMed]

2001

B. B. Akhremitchev, and G. C. Walker, "Apertureless Scanning Near-Field Infrared Microscopy of Rough Polymeric Surface," Langmuir. 17,2774-2781 (2001).
[CrossRef]

2000

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, "Nanosphere lithography: Tunable Localised Surface Plasmon Resonance Spectra of Silver Nanoparticles," J. Phys. Chem. B 104,10549-10556 (2000).
[CrossRef]

R. Hillenbrand, and F. Keilmann, "Complex optical constants on a subwavelength scale," Phys. Rev. Lett. 85,3029-3032 (2000).
[CrossRef] [PubMed]

1999

A. V. Zayats, "Electromagnetic field enhancement in the context of apertureless near-field microscopy," Opt. Comm. 161,156-162 (1999).
[CrossRef]

B. Knoll, and F. Keilmann, "Near-field probing of vibrational absorption for chemical microscopy," Nature 399,134-137 (1999).
[CrossRef]

1995

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, "Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution," Science 269,1083-1085 (1995).
[CrossRef] [PubMed]

A. Lahrech, R. Bachelot, P. Gleyzes, and A. C. Boccara, "Infrared-reflection-mode near-field microscopy using an apertureless probe with a resolution of lambda / 600," Opt. Lett. 21,1315-1317 (1995).
[CrossRef]

1994

1984

G. W. Ford and W. H. Weber, "Electromagnetic interactions of molecules with metal surfaces," Phys. Rep. 113,195-287 (1984).
[CrossRef]

1961

U. Fano, "Effects of Configuration Interaction on Intensities and Phase Shifts," Phys. Rev. B 124,1866-1878 (1961).
[CrossRef]

1919

H. Weyl, "Ausbreitung elektromagnetischer Wellen uber einem ebenen Leiter," Ann. Phys. (Leipzig) 60,481-500 (1919).
[CrossRef]

Adv. Mater.

A. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, and R. Hillenbrand, "Simultaneous infrared material recognition and conductivity mapping by nanoscale near-field microscopy," Adv. Mater. 19,2209-2212 (2007).
[CrossRef]

Angew. Chem.

H. Wang, J. Kundu, and N. J. Halas, "Plasmonic Nanoshell Arrays Combine Surface-Enhanced Vibrational Spectroscopies on a Single Substrate," Angew. Chem. 46,9040-9044 (2007).
[CrossRef]

Ann. Phys. (Leipzig)

H. Weyl, "Ausbreitung elektromagnetischer Wellen uber einem ebenen Leiter," Ann. Phys. (Leipzig) 60,481-500 (1919).
[CrossRef]

App. Phys. Lett.

N. Ocelic, A. Huber, and R. Hillenbrand, "Pseudoheterodyne detection for background-free near-field spectroscopy," App. Phys. Lett. 89,101124 (2006).
[CrossRef]

Appl. Phys. Lett.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, "Resonances of individual metal nanowires in the infrared," Appl. Phys. Lett. 89,253104 (2006).
[CrossRef]

M. B. Raschke and C. Lienau, "Apertureless near-field optical microscopy: Tip-sample coupling in elastic light scattering," Appl. Phys. Lett. 83,5089-5091 (2003).
[CrossRef]

G. Y. Panasyuk, V. A. Markel, P. S. Carney, and J. C. Schotland, "Nonlinear inverse scattering and threedimensional near-field optical imaging," Appl. Phys. Lett. 89,221116 (2006).
[CrossRef]

T. Taubner, R. Hillenbrand, and F. Keilmann, "Nanoscale polymer identification by spectral signature in scattering infrared near-field microscopy," Appl. Phys. Lett. 85,5064-5066 (2004).
[CrossRef]

M.S. Anderson, "Enhanced infrared absorption with dielectric nanoparticles," Appl. Phys. Lett. 83,2964-2966 (2003).
[CrossRef]

ChemPhysChem

M.B. Raschke, L. Molina, T. Elsaesser, D.H. Kim,W. Knoll, and K. Hinrichs, "Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution," ChemPhysChem 6, 2197-2203 (2005).
[CrossRef] [PubMed]

J. Chem. Phys.

E.G. Bortchagovsky, and U. C. Fischer, "On the modulation of optical transmission spectra of thin dye layers by a supporting medium," J. Chem. Phys. 117,5384-5392 (2002).
[CrossRef]

K.R. Rodriguez, H. Tian, J.M. Heer, S. Teeters-Kennedy, and J.V. Coe, "Interaction of an infrared surface plasmon with an excited molecular vibration," J. Chem. Phys. 126,151101 (2007).
[CrossRef] [PubMed]

J. Microsc.

T. Taubner, R. Hillenbrand, and F. Keilmann, "Performance of visible and mid-infrared scattering-type near-field optical microscopes," J. Microsc. 210,311-314 (2003).
[CrossRef] [PubMed]

J. Opt. A

N. Anderson, A. Bouhelier, and L. Novotny, "Near-field photonics: tip-enhanced microscopy and spectroscopy on the nanoscale," J. Opt. A 8,S227-S233 (2006).
[CrossRef]

J. Phys. Chem. B

Z. H. Kim, and S. R. Leone, "High-resolution apertureless near-field optical imaging using gold nanosphere probes," J. Phys. Chem. B 110,19804-19809 (2006)
[CrossRef] [PubMed]

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, "Nanosphere lithography: Tunable Localised Surface Plasmon Resonance Spectra of Silver Nanoparticles," J. Phys. Chem. B 104,10549-10556 (2000).
[CrossRef]

J. Phys. Chem. C

I. Kopf, J. S. Samson, G. Wollny, C. Grunwald, E. Brundermann, and M. Havenith, "Chemical imaging of microstructured self-assembled monolayers with nanometer resolution," J. Phys. Chem. C 111,8166-8171 (2007).
[CrossRef]

Langmuir

V. Romanov, and G. C. Walker, "Infrared near-field detection of a narrow resonance due to molecular vibrations in a nanoparticle," Langmuir 23,2829-2837 (2007).
[CrossRef] [PubMed]

B.B. Akhremitchev, Y.J. Sun, L. Stebounova, and G.C. Walker, "Monolayer-sensitive infrared imaging of DNA stripes using apertureless near-field microscopy," Langmuir 18,5325-5328 (2002).
[CrossRef]

Langmuir.

B. B. Akhremitchev, and G. C. Walker, "Apertureless Scanning Near-Field Infrared Microscopy of Rough Polymeric Surface," Langmuir. 17,2774-2781 (2001).
[CrossRef]

Microsc. Res. Tech.

R. Bachelot, G. Lerondel, S. Blaize, S. Aubert, A. Bruyant, P. Royer, "Probing photonic and optoelectronic structures by apertureless scanning near-field optical microscopy," Microsc. Res. Tech. 64,441-452 (2004).
[CrossRef] [PubMed]

Nano Lett.

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, "Material-specific optical recognition of sub-10 nm particles by substrate-enhanced scattering-type near-field microscopy," Nano Lett. 7,3177-3181 (2007).
[CrossRef] [PubMed]

N. Anderson, P. Anger, A. Hartschuh, and L. Novotny, "Subsurface Raman imaging with nanoscale resolution," Nano Lett. 6,744-749 (2006).
[CrossRef] [PubMed]

T. Taubner, F. Keilmann, and R. Hillenbrand, "Nanomechanical resonance tuning and phase effects in optical near-field interaction," Nano Lett. 4,1669-1672 (2004).
[CrossRef]

Nanoletters

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, "Infrared Spectroscopic Mapping of Single Nanoparticles and Viruses at Nanoscale Resolution," Nanoletters 6,1307-1310 (2006).
[CrossRef]

Nanotechnology

R. Esteban, R. Vogelgesang, and K. Kern, "Simulation of optical near and far fields of dielectric apertureless scanning probe," Nanotechnology 17,475-482 (2006).
[CrossRef]

Nature

R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon-enhanced light-matter interaction at the nanometer scale," Nature 418,159-162 (2002).
[CrossRef] [PubMed]

B. Knoll, and F. Keilmann, "Near-field probing of vibrational absorption for chemical microscopy," Nature 399,134-137 (1999).
[CrossRef]

Opt. Comm.

A. V. Zayats, "Electromagnetic field enhancement in the context of apertureless near-field microscopy," Opt. Comm. 161,156-162 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Spectrosc.

S. G. Moiseev, and S. V. Sukhov, "Near-Field optical microscopy in the presence of an intermediate layer," Opt. Spectrosc. 98,308-313 (2005).
[CrossRef]

Phil. Trans. Roy. Soc. A

F. Keilmann, and R. Hillenbrand, "Near-field optical microscopy by elastic light scattering from a tip," Phil. Trans. Roy. Soc. A 362, 787-805 (2004).
[CrossRef]

Phys. Rep.

G. W. Ford and W. H. Weber, "Electromagnetic interactions of molecules with metal surfaces," Phys. Rep. 113,195-287 (1984).
[CrossRef]

Phys. Rev. B

U. Fano, "Effects of Configuration Interaction on Intensities and Phase Shifts," Phys. Rev. B 124,1866-1878 (1961).
[CrossRef]

R. Esteban, R. Vogelgesang, and K. Kern, "Tip-substrate interaction in optical near-field microscopy," Phys. Rev. B 75,195410 (2007).
[CrossRef]

Phys. Rev. B.

J. A. Porto, P. Johansson, S. P. Apell, and T. Lopez-Rios, "Resonance shift effects in apertureless scanning near-field optical microscopy," Phys. Rev. B. 67, 085409 (2003).
[CrossRef]

Phys. Rev. Lett.

A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, "Infrared Imaging of Single Nanoparticles via Strong Field Enhancement in a Scanning Nanogap," Phys. Rev. Lett. 97,060801 (2006).
[CrossRef] [PubMed]

R. Hillenbrand, and F. Keilmann, "Complex optical constants on a subwavelength scale," Phys. Rev. Lett. 85,3029-3032 (2000).
[CrossRef] [PubMed]

Rev. Mod. Phys.

F. J. García de Abajo, "Light scattering by particle and hole arrays," Rev. Mod. Phys. 79,1267-1290 (2007).
[CrossRef]

Science

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-field Microscopy Through a SiC Superlens," Science 313,1595-1595 (2006).
[CrossRef] [PubMed]

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, "Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution," Science 269,1083-1085 (1995).
[CrossRef] [PubMed]

Other

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, "Controlling the Fano interference in a plasmonic lattice," Phys. Rev. B 76, 201405(R) (2007).
[CrossRef]

U. C. Fischer, "Latex Projections Patterns, in Procedures in Scanning Probe Microscopy," Editors: R.J. Colton, et al., John Wiley & Sons. 10-11 (1998).

F. Neubrech, A. Pucci, T. W. Cornelius, and S. Karim, A. Garcia-Etxarri, and J. Aizpurua, "Giant vibrational signals from molecules by the action of a tailored infrared nanoantenna," in preparation.

E. D. Palik, "Handbook of optical constants of solids," Academic, New York, (1985).

M. Brehm, "Infrarot-Mikrospektroskopie mit einem Nahfeldmikroskop," PhD. Thesis 2006, TU Mnchen, Verlag Dr. Hut, ISBN 978-3-89963-482-2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematics of the scattering system. An induced dipole located on top of a multilayered system interacts with the incoming plane wave as well as with the layered substrate. Reflections rij and transmissions tij at each layer are labelled in the scheme. zo is the dipole-sample separation distance, d is the thickness of the first layer (material 2=sample), and z′ is the thickness of the second layer (material 3=substrate). involved in the interaction. Different media i are characterised by their local dielectric response εi .

Fig. 2.
Fig. 2.

(a) Real (Re[εPMMA ]) and imaginary (Im[εPMMA ]) parts of the PMMA dielectric function. Backscattering amplitude s 3 (b) and phase φ 3 (c) of a point dipole located on top of a 10 nm thick PMMA sample layer on different substrates. SiO2 substrate in blue, Si in red, and Au in black. Demodulation order is n=3. Amplitude is normalised to the value of a Si substrate in (b), and its phase value is used as a reference (red dashed line) in (c).

Fig. 3.
Fig. 3.

Backscattering amplitude s 3 (a) and phase φ 3 (b) of a point dipole located above a PMMA sample layer of several different thicknesses deposited on top of a gold substrate. PMMA thicknesses are 2 nm (black), 5 nm (red), 10 nm (green), 40 nm (blue), and 100 nm (brown). 3 rd order demodulation is calculated, and the scattering amplitude is normalised to the scattering of a gold semiinfinite sample in (a). The phase for this reference case is plotted as a dashed line in (b).

Fig. 4.
Fig. 4.

(a) Contrast of a PMMA layer on a gold (red solid) and glass (blue solid) substrates as a function of the layer thickness, normalised to the contrast of an infinite PMMA substrate. Dashed lines represent the same calculation with the reflection of the incoming and outgoing radiation subtracted. The inset shows a scheme with the definition of spectroscopic contrast. (b) Ratio of contrasts Δ Au glass as a function of the PMMA layer thickness. Solid line is the full calculation, and dotted lines denotes that the reflection of the incoming and outgoing radiation are subtracted.

Fig. 5.
Fig. 5.

s-SNOM amplitude spectra of a 2 nm PMMA layer on top of a substrate characterised by different values of the real part of its dielectric function, Re{εsubs }. For values close to εsubs =-10+0.5i the PMMA spectra shows a typical derivative like line shape. Near εsubs =-1.66+0.5i, signature interaction between tip and substrate becomes resonant and the PMMA signature changes to a single dip. 3 rd order demodulation is shown and the spectra are normalised to the signal of a substrate with ε=-∞.

Fig. 6.
Fig. 6.

Backscattering amplitude s 3 (a) and phase φ 3 (b) of a point dipole located on top of a PMMA sample layer of different thickness deposited on a substrate producing a “quasi-resonant” tip-substrate interaction (εsubs =-1.66+0.5i). Thicknesses of the PMMA sample layer are 2 nm (black), 5 nm (red), 10 nm (green), 40 nm (blue), and 100 nm (brown). 3 rd order demodulation is calculated, and the scattering amplitude is normalised to the scattering of a semiinfinite gold sample in (a). Strong line shape change is observed for different sample layer thicknesses.

Fig. 7.
Fig. 7.

Topography (a), schematic cross-section (b) and normalized infrared s-SNOM amplitude images (c-d) of a sample consisting of Au island on Si, partly covered with a thin PMMA film. Experimental s-SNOM spectra (e) are obtained by extracting infrared amplitude values s 3 averaging over the areas (A) PMMA on Si, (B) PMMA on a Au island and (C) PMMA on another Au island, and normalizing them to the averaged amplitude value s 3 on Si (area marked with dark dashed line in (d)). The solid lines in the spectra (e) are a smoothed connection between the data points and serve as a guide to the eye. The corresponding theoretical spectra are shown in (f). Both scattering amplitude as well as contrasts are enhanced on Au compared to the Si substrate.

Fig. 8.
Fig. 8.

Schematics of different situations that can host substrate-enhanced near field infrared scattering efficiently when a resonant structure is located nearby: (a) subsurface resonant substrate, (b) resonant tip, (c) Substrate and tip resonant, (d) a resonant particle embedded in a layer with signature, (e) a resonant particle coated by a layer with a signature, and (f) resonant particles buried by a sample layer under study.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

k = ω c   k z i = k 2 ε i Q 2 Re { k z } > 0
k i = k ε i k = ( Q , k z sign ( z ) ) Im { k z } > 0
p = α E 0 + α G p
p = α E 0 1 α G .
E 0 = E d 0 + E r 0 ,
E 0 = E d 0 + Re i 2 k z ( 1 ) z 0 E d 0 = ( 1 + Re i 2 k z ( 1 ) z 0 ) E d 0 ,
E r dip = d 2 Q ( 2 π ) 2 e i QR ( 2 πi ) 1 k z ( 1 ) [ R s ε ̂ s α s ( 1 ) + R p ε ̂ p α p ( 1 ) ] e i 2 k z ( 1 ) z o ,
ε ̂ s = 1 Q ( Q y , Q x , 0 ) ,
ε ̂ p i ± = 1 k i Q ( ± k z Q x , ± k z Q y , Q 2 ) ,
α s = k 2 Q ( p x Q y + p y Q x ) ,
α p i ± = k 2 k i Q [ ± k z ( Q x p x + Q y p y ) Q 2 p z ] .
E = E d + E r = d 2 Q ( 2 π ) 2 2 πi k z e i QR g ,
g = g d + g r ,
g d = [ α p + ε ̂ p + + α s ε ̂ s ] e i k z ( z z o )
g r = [ R p α p ε ̂ p + + R s α s ε ̂ s ] e i k z ( z + z o ) ] ,
E = e ikr r g ( θ ) ,
d P d Ω = g 2 ,
d P d Ω = g 2 = p 2 ε 2 k 4 ( 1 + R p e i 2 k z ( 1 ) z o ) 2 sin 2 θ out .
r ij s = k z i k z j k z i + k z j
r ij p = ε j k z i ε i k z j ε j k z i + ε i k z j .
t ij s = 2 k z i k z i ε j + k z j ε i ,
t ij p = 2 k z i ε i ε j k z i ε j + k z j ε i ,
R 12 p = r 12 p + t 12 p t 21 p e i 2 k z ( 2 ) d [ r 23 p + t 23 p r 34 p t 32 p e i 2 k z ( 3 ) z 1 r 32 p r 34 p e i 2 k z ( 3 ) z ] 1 r 21 p r 23 p e i 2 k z ( 2 ) d .

Metrics