Abstract

We investigate nonlinear mid-infrared detection via two-photon transitions involving two bound subbands and one continuum resonance in an n-type multiple quantum well. By varying the excitation energy, we have tuned the two-photon transition from resonant, yielding optimum resonant enhancement with a real intermediate state, to nearly-resonant, with a virtual but resonantly enhanced intermediate state. For autocorrelation purposes, the latter configuration improves time resolution whilst partially retaining a resonant enhancement of the two-photon transition strength.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H. Schneider and H. C. Liu, Quantum Well Infrared Photodetectors: Physics and Applications (Springer, 2006).
  2. C. Sirtori and R. Teissier, "Quantum Cascade Lasers: Overview of Basic Principles and State of the Art," in Intersubband Transitions in Quantum Structures, R. Paiella, ed. (McGraw-Hill, 2006), pp. 1-44.
  3. J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, and A. Y. Cho, "Quantum Interference in Intersubband Transitions," in Intersubband Transitions in Quantum Wells: Physics and Device Applications II, Semicond. Semimet. 62, H. C. Liu and F. Capasso, eds. (Academic Press, 2000), pp. 101-128.
    [CrossRef]
  4. C. Schönbein, H. Schneider, and M. Walther, "Coherent carrier propagation in the continuum of asymmetric quantum well structures," Phys. Rev. B 60, R13993-R13996 (1999).
    [CrossRef]
  5. G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, "Laser-Induced Quantum Coherence in a Semiconductor Quantum Well," Phys.Rev. Lett. 84, 1019-1023 (2000).
    [CrossRef] [PubMed]
  6. M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, "Gain without inversion in semiconductor nanostructures," Nature Mat. 5, 175-178 (2006).
    [CrossRef]
  7. C. Gmachl, O. Malis, and A. Belyanin, "Optical Nonlinearities in Intersubband transitions and Quantum Cascade Lasers," in Intersubband Transitions in Quantum Structures, R. Paiella, ed. (McGraw-Hill, 2006), pp. 181-235.
  8. H. Schneider, T. Maier, H. C. Liu, M. Walther, and P. Koidl, "Ultra-sensitive femtosecond two-photon detector with resonantly enhanced nonlinear absorption," Opt. Lett. 30, 287-289 (2005).
    [CrossRef] [PubMed]
  9. T. Maier, H. Schneider, H. C. Liu, M. Walther, and P. Koidl, "Two-photon QWIPs for quadratic detection of weak mid-infrared pulsed lasers," Infrared Phys. Technol. 47, 182-187 (2005).
    [CrossRef]
  10. H. Schneider, T. Maier, M. Walther, and H. C. Liu, "Two-photon photocurrent spectroscopy of electron intersubband relaxation and dephasing in quantum wells," Appl. Phys. Lett. 91, 191116 (2007).
    [CrossRef]
  11. T. Elsaesser, "Ultrafast Dynamics of Intersubband Excitations in Quantum Wells and Quantum Cascade Structures," in Intersubband Transitions in Quantum Structures, R. Paiella, ed. (McGraw-Hill, 2006), pp. 181-235.
  12. H. Schneider, C. Schnbein, P. Koidl, and G. Weimann, "Influence of optical interference in quantum well infrared photodetectors with 45o facet geometry," Appl. Phys. Lett. 74, 16 (1999).
    [CrossRef]
  13. T. Maier, H. Schneider, M. Walther, P. Koidl, and H. C. Liu, "Resonant two-photon photoemission in quantum well infrared photodetectors," Appl. Phys. Lett 84, 5162-5164 (2004).
    [CrossRef]
  14. S. Ehret, H. Schneider, "Generation of subpicosecond infrared pulses tunable between 5.2 μm and 18 μm at a repetition rate of 76 MHz," Appl. Phys. B 66, 27-30 (1998).
    [CrossRef]
  15. H. Schneider, O. Drachenko, S. Winnerl, M. Helm, and M. Walther, "Quadratic autocorrelation of free-electron laser radiation and photocurrent saturation in two-photon quantum-well infrared photodetectors," Appl. Phys. Lett. 89, 133508 (2006).
    [CrossRef]
  16. R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, H. C. Liu, "Self-Mode-Locking of Quantum Cascade Lasers with Ultrafast Optical Nonlinearities," Science 290, 1739-1742 (2000).
    [CrossRef] [PubMed]
  17. T. Hattori, Y. Kawashima, M. Daikoku, H. Inouye, and H. Nakatsuka, "Femtosecond Two-Photon Response Dynamics of Photomultiplier Tubes," Jpn. J. Appl. Phys. 39, 4793-4798 (2000).
    [CrossRef]

2007 (1)

H. Schneider, T. Maier, M. Walther, and H. C. Liu, "Two-photon photocurrent spectroscopy of electron intersubband relaxation and dephasing in quantum wells," Appl. Phys. Lett. 91, 191116 (2007).
[CrossRef]

2006 (2)

H. Schneider, O. Drachenko, S. Winnerl, M. Helm, and M. Walther, "Quadratic autocorrelation of free-electron laser radiation and photocurrent saturation in two-photon quantum-well infrared photodetectors," Appl. Phys. Lett. 89, 133508 (2006).
[CrossRef]

M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, "Gain without inversion in semiconductor nanostructures," Nature Mat. 5, 175-178 (2006).
[CrossRef]

2005 (2)

H. Schneider, T. Maier, H. C. Liu, M. Walther, and P. Koidl, "Ultra-sensitive femtosecond two-photon detector with resonantly enhanced nonlinear absorption," Opt. Lett. 30, 287-289 (2005).
[CrossRef] [PubMed]

T. Maier, H. Schneider, H. C. Liu, M. Walther, and P. Koidl, "Two-photon QWIPs for quadratic detection of weak mid-infrared pulsed lasers," Infrared Phys. Technol. 47, 182-187 (2005).
[CrossRef]

2004 (1)

T. Maier, H. Schneider, M. Walther, P. Koidl, and H. C. Liu, "Resonant two-photon photoemission in quantum well infrared photodetectors," Appl. Phys. Lett 84, 5162-5164 (2004).
[CrossRef]

2000 (3)

R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, H. C. Liu, "Self-Mode-Locking of Quantum Cascade Lasers with Ultrafast Optical Nonlinearities," Science 290, 1739-1742 (2000).
[CrossRef] [PubMed]

T. Hattori, Y. Kawashima, M. Daikoku, H. Inouye, and H. Nakatsuka, "Femtosecond Two-Photon Response Dynamics of Photomultiplier Tubes," Jpn. J. Appl. Phys. 39, 4793-4798 (2000).
[CrossRef]

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, "Laser-Induced Quantum Coherence in a Semiconductor Quantum Well," Phys.Rev. Lett. 84, 1019-1023 (2000).
[CrossRef] [PubMed]

1999 (2)

C. Schönbein, H. Schneider, and M. Walther, "Coherent carrier propagation in the continuum of asymmetric quantum well structures," Phys. Rev. B 60, R13993-R13996 (1999).
[CrossRef]

H. Schneider, C. Schnbein, P. Koidl, and G. Weimann, "Influence of optical interference in quantum well infrared photodetectors with 45o facet geometry," Appl. Phys. Lett. 74, 16 (1999).
[CrossRef]

1998 (1)

S. Ehret, H. Schneider, "Generation of subpicosecond infrared pulses tunable between 5.2 μm and 18 μm at a repetition rate of 76 MHz," Appl. Phys. B 66, 27-30 (1998).
[CrossRef]

Appl. Phys. B (1)

S. Ehret, H. Schneider, "Generation of subpicosecond infrared pulses tunable between 5.2 μm and 18 μm at a repetition rate of 76 MHz," Appl. Phys. B 66, 27-30 (1998).
[CrossRef]

Appl. Phys. Lett (1)

T. Maier, H. Schneider, M. Walther, P. Koidl, and H. C. Liu, "Resonant two-photon photoemission in quantum well infrared photodetectors," Appl. Phys. Lett 84, 5162-5164 (2004).
[CrossRef]

Appl. Phys. Lett. (3)

H. Schneider, O. Drachenko, S. Winnerl, M. Helm, and M. Walther, "Quadratic autocorrelation of free-electron laser radiation and photocurrent saturation in two-photon quantum-well infrared photodetectors," Appl. Phys. Lett. 89, 133508 (2006).
[CrossRef]

H. Schneider, C. Schnbein, P. Koidl, and G. Weimann, "Influence of optical interference in quantum well infrared photodetectors with 45o facet geometry," Appl. Phys. Lett. 74, 16 (1999).
[CrossRef]

H. Schneider, T. Maier, M. Walther, and H. C. Liu, "Two-photon photocurrent spectroscopy of electron intersubband relaxation and dephasing in quantum wells," Appl. Phys. Lett. 91, 191116 (2007).
[CrossRef]

Infrared Phys. Technol. (1)

T. Maier, H. Schneider, H. C. Liu, M. Walther, and P. Koidl, "Two-photon QWIPs for quadratic detection of weak mid-infrared pulsed lasers," Infrared Phys. Technol. 47, 182-187 (2005).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Hattori, Y. Kawashima, M. Daikoku, H. Inouye, and H. Nakatsuka, "Femtosecond Two-Photon Response Dynamics of Photomultiplier Tubes," Jpn. J. Appl. Phys. 39, 4793-4798 (2000).
[CrossRef]

Nature Mat. (1)

M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, "Gain without inversion in semiconductor nanostructures," Nature Mat. 5, 175-178 (2006).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

C. Schönbein, H. Schneider, and M. Walther, "Coherent carrier propagation in the continuum of asymmetric quantum well structures," Phys. Rev. B 60, R13993-R13996 (1999).
[CrossRef]

Phys.Rev. Lett. (1)

G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, "Laser-Induced Quantum Coherence in a Semiconductor Quantum Well," Phys.Rev. Lett. 84, 1019-1023 (2000).
[CrossRef] [PubMed]

Science (1)

R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, H. C. Liu, "Self-Mode-Locking of Quantum Cascade Lasers with Ultrafast Optical Nonlinearities," Science 290, 1739-1742 (2000).
[CrossRef] [PubMed]

Other (5)

H. Schneider and H. C. Liu, Quantum Well Infrared Photodetectors: Physics and Applications (Springer, 2006).

C. Sirtori and R. Teissier, "Quantum Cascade Lasers: Overview of Basic Principles and State of the Art," in Intersubband Transitions in Quantum Structures, R. Paiella, ed. (McGraw-Hill, 2006), pp. 1-44.

J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, and A. Y. Cho, "Quantum Interference in Intersubband Transitions," in Intersubband Transitions in Quantum Wells: Physics and Device Applications II, Semicond. Semimet. 62, H. C. Liu and F. Capasso, eds. (Academic Press, 2000), pp. 101-128.
[CrossRef]

C. Gmachl, O. Malis, and A. Belyanin, "Optical Nonlinearities in Intersubband transitions and Quantum Cascade Lasers," in Intersubband Transitions in Quantum Structures, R. Paiella, ed. (McGraw-Hill, 2006), pp. 181-235.

T. Elsaesser, "Ultrafast Dynamics of Intersubband Excitations in Quantum Wells and Quantum Cascade Structures," in Intersubband Transitions in Quantum Structures, R. Paiella, ed. (McGraw-Hill, 2006), pp. 181-235.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Normalized photocurrent spectrum at an elevated temperature of 160 K (solid line) and normalized absorption in the vicinity of the |1〉→|2〉 transition at 77 K (dashed). Photon energies used for resonant and detuned two-photon excitation are indicated by full and dashed double arrows, respectively. The inset indicates the subband structure of the QWs. (b) In-plane dispersion of the QW and linear contributions to the photocurrent (vertical arrows), namely |1〉→|3〉 as well as thermally activated |2〉→|3〉 and |1〉→|2〉.

Fig. 2.
Fig. 2.

Photocurrent vs. delay time for excitation resonant with the intermediate state (a) and detuned excitation (b), envelopes (c), and Fourier transforms (d) of the signals in (a) and (b). The calculated behavior for ideal autocorrelation is also shown. The insets of (a) and (b) indicate the respective potential diagrams, level configurations, and optical transitions.

Fig. 3.
Fig. 3.

(a) Simulated signal as function of the delay time assuming gaussian pulses of 165 fs duration. The parameters are T 1=530 fs and T 2=120 fs. (b) Interferometric second-order autocorrelation (corresponding to a purely virtual intermediate state).

Metrics