Abstract

The fabrication of microchannels and self-assembled nanostructures in the volume of sapphire was performed by femtosecond laser irradiation followed by chemical etching with aqueous solution of HF acid. Depending on the focusing conditions self-organized nanostructures or elliptical microchannels are produced. While the dimensions in two directions are on a micro- respectively nanoscale, feature lengths of up to 1 mm are achieved. This comes out to aspect ratios of more than 1000. This fabrication technique is potentially usable for photonic crystal based integrated optical elements or microfluidic devices for applications in life science, biology or chemistry.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten waveguides in various glasses with ul-trashort pulse laser," Appl. Phys. Lett. 71,3329-3331 (1997).
    [CrossRef]
  2. M. Will, S. Nolte, B. Chichkov and A. Tünnermann "Optical properties of waveguides fabricated in fused silica by fs-laser pulses," Appl. Opt. 41, No.21, 4360-4364, (2002).
    [CrossRef] [PubMed]
  3. D. Wortmann, M. Ramme, and J. Gottmann, "Refractive index modification using fs-laser double pulses," Opt. Express 15, 10149-10153 (2007).
    [CrossRef] [PubMed]
  4. C. Cerullo, R. Osellame, S. Tacche, M. Marangoni, D. Polli, R. Ramponi, P. Laporta and S. DeSilvestri, "Femtosecond micromachining of symmetric waveguides at 1.5µm by astigmatic beam focusing," Opt. Lett. 27, 1938-1940 (2002).
    [CrossRef]
  5. D. Wortmann and J. Gottmann, "Fs-laser structuring of ridge waveguides," accepted by Appl. Phys. A.
  6. Y. Bellouard, A. Said, and P. Bado, "Integrating optics and micro-mechanics in a single substrate:a step toward monolithic integration in fused silica," Opt. Express 13, 6635-6644 (2005).
    [CrossRef] [PubMed]
  7. S. Matsuo, Y. Shichijo, T. Tomita, and S. Hashimoto, "Laser fabrication of Ship-in-a-bottle Microstructures in Sapphire," JLMN 2, 114-116 (2007).
    [CrossRef]
  8. K. Sugioka, Y. Cheng, and K. Midorikawa, "Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture," Appl. Phys. A 81, 1-10 (2005).
    [CrossRef]
  9. C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, "Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching," Appl. Phys. A 84, 47-61 (2006).
    [CrossRef]
  10. S. Juodkazis, H. Misawa, E. Vanagas, and M. Li, "Simulation of light interaction with nano-particle of metal," JLMN 1, (2006).
  11. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, "High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations," J. Appl. Phys. 98, 013517 (2005).
    [CrossRef]
  12. P. Kazansky, W. Yang, E. Bricci, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, "Quill writing with ultrashort light pulses in transparent materials," Appl. Phys. Lett. 90, 151129 (2007).
    [CrossRef]
  13. Y. Bellouard, A. Said, and P. Bado, "Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching," Opt. Express 12, 2120-2129 (2004).
    [CrossRef] [PubMed]
  14. S. Juodkazis, K. Nishimura, H. Misawa, and J. Nishi, "Control over the crystalline state of the sapphire," Adv. Mater. 18, 1361 (2006).
    [CrossRef]
  15. M. Mazuli, S. Juodkazis, T. Ebisui, S. Matsuo, and H. Misawa, "Structural characterization of shock-affected sapphire," Appl. Phys. A,  86, 197-200 (2007).
    [CrossRef]
  16. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, "Polarization selective etching in femtosecond laser assisted microfluidic channel fabrication in fused silica," Opt. Lett. 30, 1867-1869 (2005).
    [CrossRef] [PubMed]
  17. W. Yang, E. Bricci, P. Kazansky, J. Bovatsek, and A. Arai, "Self-assembled periodic sub-wavelength structures by femtosecond laser direct writing," Opt. Express 14, 10117-10124 (2006).
    [CrossRef] [PubMed]
  18. V. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum "Optically produced arrays of planar nanostructures inside fused silica," Phys. Rev. Lett. 96, 057404 (2006).
    [CrossRef] [PubMed]
  19. C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, "Pulse duration dependence of femtosecond-laser fabricated nanogratings in fused silica," Appl. Phys. Lett. 8714104 (2005).
    [CrossRef]

2007

S. Matsuo, Y. Shichijo, T. Tomita, and S. Hashimoto, "Laser fabrication of Ship-in-a-bottle Microstructures in Sapphire," JLMN 2, 114-116 (2007).
[CrossRef]

M. Mazuli, S. Juodkazis, T. Ebisui, S. Matsuo, and H. Misawa, "Structural characterization of shock-affected sapphire," Appl. Phys. A,  86, 197-200 (2007).
[CrossRef]

P. Kazansky, W. Yang, E. Bricci, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, "Quill writing with ultrashort light pulses in transparent materials," Appl. Phys. Lett. 90, 151129 (2007).
[CrossRef]

D. Wortmann, M. Ramme, and J. Gottmann, "Refractive index modification using fs-laser double pulses," Opt. Express 15, 10149-10153 (2007).
[CrossRef] [PubMed]

2006

W. Yang, E. Bricci, P. Kazansky, J. Bovatsek, and A. Arai, "Self-assembled periodic sub-wavelength structures by femtosecond laser direct writing," Opt. Express 14, 10117-10124 (2006).
[CrossRef] [PubMed]

S. Juodkazis, K. Nishimura, H. Misawa, and J. Nishi, "Control over the crystalline state of the sapphire," Adv. Mater. 18, 1361 (2006).
[CrossRef]

V. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum "Optically produced arrays of planar nanostructures inside fused silica," Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, "Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching," Appl. Phys. A 84, 47-61 (2006).
[CrossRef]

S. Juodkazis, H. Misawa, E. Vanagas, and M. Li, "Simulation of light interaction with nano-particle of metal," JLMN 1, (2006).

2005

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, "High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations," J. Appl. Phys. 98, 013517 (2005).
[CrossRef]

K. Sugioka, Y. Cheng, and K. Midorikawa, "Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture," Appl. Phys. A 81, 1-10 (2005).
[CrossRef]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, "Pulse duration dependence of femtosecond-laser fabricated nanogratings in fused silica," Appl. Phys. Lett. 8714104 (2005).
[CrossRef]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, "Polarization selective etching in femtosecond laser assisted microfluidic channel fabrication in fused silica," Opt. Lett. 30, 1867-1869 (2005).
[CrossRef] [PubMed]

Y. Bellouard, A. Said, and P. Bado, "Integrating optics and micro-mechanics in a single substrate:a step toward monolithic integration in fused silica," Opt. Express 13, 6635-6644 (2005).
[CrossRef] [PubMed]

2004

2002

1997

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten waveguides in various glasses with ul-trashort pulse laser," Appl. Phys. Lett. 71,3329-3331 (1997).
[CrossRef]

Adv. Mater.

S. Juodkazis, K. Nishimura, H. Misawa, and J. Nishi, "Control over the crystalline state of the sapphire," Adv. Mater. 18, 1361 (2006).
[CrossRef]

Appl. Opt.

Appl. Phys. A

M. Mazuli, S. Juodkazis, T. Ebisui, S. Matsuo, and H. Misawa, "Structural characterization of shock-affected sapphire," Appl. Phys. A,  86, 197-200 (2007).
[CrossRef]

K. Sugioka, Y. Cheng, and K. Midorikawa, "Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture," Appl. Phys. A 81, 1-10 (2005).
[CrossRef]

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, "Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching," Appl. Phys. A 84, 47-61 (2006).
[CrossRef]

Appl. Phys. Lett.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten waveguides in various glasses with ul-trashort pulse laser," Appl. Phys. Lett. 71,3329-3331 (1997).
[CrossRef]

P. Kazansky, W. Yang, E. Bricci, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, "Quill writing with ultrashort light pulses in transparent materials," Appl. Phys. Lett. 90, 151129 (2007).
[CrossRef]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, "Pulse duration dependence of femtosecond-laser fabricated nanogratings in fused silica," Appl. Phys. Lett. 8714104 (2005).
[CrossRef]

J. Appl. Phys.

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, "High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations," J. Appl. Phys. 98, 013517 (2005).
[CrossRef]

JLMN

S. Matsuo, Y. Shichijo, T. Tomita, and S. Hashimoto, "Laser fabrication of Ship-in-a-bottle Microstructures in Sapphire," JLMN 2, 114-116 (2007).
[CrossRef]

S. Juodkazis, H. Misawa, E. Vanagas, and M. Li, "Simulation of light interaction with nano-particle of metal," JLMN 1, (2006).

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

V. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum "Optically produced arrays of planar nanostructures inside fused silica," Phys. Rev. Lett. 96, 057404 (2006).
[CrossRef] [PubMed]

Other

D. Wortmann and J. Gottmann, "Fs-laser structuring of ridge waveguides," accepted by Appl. Phys. A.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

through light microscopy images of the modified channel after irradiation (top) and after etching (bottom)

Fig. 2.
Fig. 2.

etch depth dz versus line energy for irradiation with f=0.5 and 1 MHz (NA=0.55)

Fig. 3.
Fig. 3.

SEM images of the entrance of the modified and etched channel directly after etching (left) and cross section of hollow nanoplanes in 500µm depth of the same track. Laser beam propagated from top to bottom, three parallel scans with an offset of 3 µm, focused with NA=0.55, f=500kHz, P=450mW

Fig. 4.
Fig. 4.

SEM images of cross sections in 500µm depth, three parallel lines with NA=0.55, f=500kHz, P=300mW (a), P=180mW (b+c)

Fig. 5.
Fig. 5.

SEM images of cross sections 500µm beneath the entrance of the etched microchannels, f=500kHz, NA=0.8, EP=0.5µJ (left), 1µJ (right), laser beam propagation from right to left

Metrics