Abstract

We present for the first time experimental evidence that the quantitative accuracy of bioluminescence tomography (BLT) can be significantly improved by incorporating prior spatial distribution of optical properties of heterogeneous media obtained from diffuse optical tomography (DOT). A series of experiments were conducted using a CCD-based scanning system where millimeter-size bioluminescent targets were embedded in a 3×3×5cm optically heterogeneous scattering medium. The results show that the BLT images with the recovered optical property distribution in place are considerably better reconstructed compared to that without such prior information, in terms of the location, size and source strength of the targets.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. Thorne and C. Contag, "Using in vivo bioluminescence imaging to shed light on cancer biology," Proc. of the IEEE 93, 750-762 (2005).
    [CrossRef]
  2. J. Park and S. Gambhir, "Multimodality radionuclide, fluorescence, and bioluminescence small-animal imaging," Proc. of the IEEE 93, 771-783 (2005).
    [CrossRef]
  3. X. Gu, Q. Zhang, L. Larcom, and H. Jiang, "Three dimensional bioluminescence tomography with model-based reconstruction," Opt. Express 12, 3996-4000 (2004).
    [CrossRef] [PubMed]
  4. G. Wang, Y. Li and M. Jiang, "Uniqueness theorems in bioluminescence tomography," Med. Phys. 31, 2289-2299 (2004).
    [CrossRef] [PubMed]
  5. W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, "Practical reconstruction method for bioluminescence tomography," Opt. Express 13, 6756-6771 (2005).
    [CrossRef] [PubMed]
  6. A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
    [CrossRef] [PubMed]
  7. G. Alexandrakis, F. R. Rannou and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005).
    [CrossRef] [PubMed]
  8. H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue,.K. D. Paulsen, and M. S. Patterson, "Spectrally resolved bioluminescence optical tomography," Opt. Lett. 31, 365-367 (2006).
    [CrossRef] [PubMed]
  9. G. Wang, W. Cong, K. Durairaj, X. Qian, H. Shen, P. Sinn, E. Hoffman, G. McLennan, and M. Henry, "In vivo mouse studies with bioluminescence tomography," Opt. Express 14, 7801-7809 (2006).
    [CrossRef] [PubMed]
  10. G. Alexandrakis, F. R. Rannou and A. F. Chatziioannou, "Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical-PET (OPET) system," Phys. Med. Biol. 51, 2045-2053 (2006).
    [CrossRef] [PubMed]
  11. H. Jiang, Y. Xu, and N. Iftimia, "Experimental three-dimensional optical image reconstruction of heterogeneous turbid media from continuous-wave data," Opt. Express 7, 204-209 (2000).
    [CrossRef] [PubMed]
  12. X. Gu, Y. Xu, and H. Jiang, "Mesh-based enhancement schemes in diffuse optical tomography," Med. Phys. 30, 861-869 (2003).
    [CrossRef] [PubMed]

2006 (3)

2005 (5)

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, "Practical reconstruction method for bioluminescence tomography," Opt. Express 13, 6756-6771 (2005).
[CrossRef] [PubMed]

S. Thorne and C. Contag, "Using in vivo bioluminescence imaging to shed light on cancer biology," Proc. of the IEEE 93, 750-762 (2005).
[CrossRef]

J. Park and S. Gambhir, "Multimodality radionuclide, fluorescence, and bioluminescence small-animal imaging," Proc. of the IEEE 93, 771-783 (2005).
[CrossRef]

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef] [PubMed]

2004 (2)

2003 (1)

X. Gu, Y. Xu, and H. Jiang, "Mesh-based enhancement schemes in diffuse optical tomography," Med. Phys. 30, 861-869 (2003).
[CrossRef] [PubMed]

2000 (1)

Med. Phys. (2)

G. Wang, Y. Li and M. Jiang, "Uniqueness theorems in bioluminescence tomography," Med. Phys. 31, 2289-2299 (2004).
[CrossRef] [PubMed]

X. Gu, Y. Xu, and H. Jiang, "Mesh-based enhancement schemes in diffuse optical tomography," Med. Phys. 30, 861-869 (2003).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Phys. Med. Biol. (3)

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou and A. F. Chatziioannou, "Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical-PET (OPET) system," Phys. Med. Biol. 51, 2045-2053 (2006).
[CrossRef] [PubMed]

Proc. of the IEEE (2)

S. Thorne and C. Contag, "Using in vivo bioluminescence imaging to shed light on cancer biology," Proc. of the IEEE 93, 750-762 (2005).
[CrossRef]

J. Park and S. Gambhir, "Multimodality radionuclide, fluorescence, and bioluminescence small-animal imaging," Proc. of the IEEE 93, 771-783 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Test geometry: (a) 3D view and (b) top view. Optical properties used were: μa (absorption coefficient)=0.26mm-1 and μ′s (reduced scattering coefficient)=2.2mm-1 for “lung”; μa=0.07mm-1 and μ′s=1.1mm-1 for “heart”; μa=0.47mm-1 and μ′s=2.5mm-1 for “liver”; μa=0.03mm-1 and μ′s=1.0mm-1 for background. The centers of target 1, 2 and 3 (T1, T2, and T3) were, respectively, at (0, -3, 15), (-5, -1, 12) and (5, -1, 12).

Fig. 2.
Fig. 2.

Reconstructed 3D absorption (a) and scattering (b) images at selected transverse planes. The color bar indicates the absorption or reduced scattering coefficient in inverse mm.

Fig. 3.
Fig. 3.

Reconstructed 3D BLT images with homogenous optical assumption (a, b) and with DOT reconstruction (c, d) for a single target (T1) having a source strength of 30 nW/mm3. (a) and (c) are a selected transverse slice, while (b) and (d) are the 3D display. The color scale indicates the recovered source strength value in nW/mm3. The white dashed circle on (a) and (c) gives the exact location of the target (0, -3) at x-y plane.

Fig. 4.
Fig. 4.

Reconstructed 3D BLT images with homogenous optical assumption (a, b) and with DOT reconstruction (c, d) for a single target (T2) having a source strength of 61 nW/mm3. (a) and (c) are a selected transverse slice, while (b) and (d) are the 3D display. The color scale indicates the recovered source strength value in nW/mm3. The white dashed circle on (a) and (c) gives the exact location of the target (-5, -1) at x-y plane.

Fig. 5.
Fig. 5.

Reconstructed 3D BLT images with homogenous optical assumption (a, b) and with DOT reconstruction (c, d) for two single targets with source strength of 60nW/mm3. (a) and (c) are a selected transverse slice, while (b) and (d) are the 3D display. The color scale indicates the recovered source strength value in nW/mm3. The white dashed circle on (a) and (c) gives the exact location of target T2 (-5, -1) and target T3 (5, -1) at x-y plane.

Metrics