Abstract

The Lorenz-Mie theory is revisited to explicitly include materials whose permeability is different from unity. The expansion coefficients of the scattered field are given for light scattering by both homogeneous and coated spheres. It is shown that the backscatter is exactly zero if the impedance of the spherical particles is equal to the intrinsic impedance of the surrounding medium. If spherical particles are sufficiently large, the zero backscatter can be explained as impedance matching using the asymptotic expression for the radar backscattering cross section. In the case of a coated sphere, the shell can be regarded as a cloak if the product of the thickness and the imaginary part of the refractive index of the outer shell is large.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780-1782 (2006).
    [CrossRef] [PubMed]
  2. U. Leonhardt, "Optical Conformal Mapping," Science 312, 1777-1780 (2006).
    [CrossRef] [PubMed]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977- 980 (2006).
    [CrossRef] [PubMed]
  4. A. J. Ward and J. B. Pendry,"Refraction and geometry in maxwells equations," J. Mod. Opt. 43, 773-793 (1996).
    [CrossRef]
  5. D. Schurig, J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express 14, 9794-9804 (2006).
    [CrossRef] [PubMed]
  6. S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E 74, 036621-1-5 (2006).
  7. F. Zolla, S. Guenneau, A. Nicolet, and J. B. Pendry, "Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect," Opt. Lett. 32, 1069-1071 (2007).
    [CrossRef] [PubMed]
  8. H. Chen, B. I. Wu, B. Zhang, and J. A. Kong, "Electromagnetic Wave Interactions with a Metamaterial Cloak," Phys. Rev. Lett. 99, 063903-1-4 (2007).
    [CrossRef] [PubMed]
  9. B. Zhang, H. Chen, B. Wu, Y. Luo, L. Ran, and J. A. Kong, "Response of a cylindrical invisibility cloak to electromagnetic waves," Phys. Rev. B 76, 121101-1-4 (R) (2007)
    [CrossRef]
  10. A. Alu and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. E 72, 016623-1-9 (2005).
    [CrossRef]
  11. G. W. Milton and N.-A. P. Nicorovici, "On the cloaking effects associated with anomalous localized resonance," Proc. R. Soc. London, Ser. A 462, 3027-3059 (2006).
    [CrossRef]
  12. G. Mie, "Beigrade zur optik truber medien, speziell kolloidaler metallosungen," Ann. Phys. (Leipzig) 25, 377- 455 (1908).
    [CrossRef]
  13. J. Maxwell Garnett, "Colours in metal glasses and in metallic films," Philos. Trans. R. Soc. London 203, 385 (1904).
    [CrossRef]
  14. J.R. Liu, M. Itoh, and K.-I Machida, "Frequency dispersion of complex permeability and permittivity on ironbased nanocomposites derived from rare earth-iron intermetallic compounds," J. Alloys Compd. 408-412, 1396- 1399 (2006).
    [CrossRef]
  15. H.C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  16. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  17. J. D. Jackson, Classical Electrodynamics, 3rd Edition (Wiley-VCH, 1998),
  18. W. J. Wiscombe, "Mie scattering calculation," NCAR Tech. Note TN-140+STR (National Center for Atmospheric Research, Boulder, Colo., 1979).
  19. W.J. Wiscombe, "Improved Mie scattering algorithms," Appl. Opt. 19, 1505-1509 (1980).
    [CrossRef] [PubMed]
  20. O. B. Toon and T. P. Ackerman, "Algorithms for the calculation of scattering by starified spheres," Appl. Opt. 20, 3657-3660 (1981).
    [CrossRef] [PubMed]
  21. P. -W. Zhai, Y. -K. Lee, G. W. Kattawar, and P. Yang, "Implementing the Near- to Far-Field Transformation in the Finite-Difference Time-Domain Method," Appl. Opt. 43, 3738-3746 (2004)
    [CrossRef] [PubMed]

2007

2006

D. Schurig, J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express 14, 9794-9804 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, "Optical Conformal Mapping," Science 312, 1777-1780 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977- 980 (2006).
[CrossRef] [PubMed]

G. W. Milton and N.-A. P. Nicorovici, "On the cloaking effects associated with anomalous localized resonance," Proc. R. Soc. London, Ser. A 462, 3027-3059 (2006).
[CrossRef]

J.R. Liu, M. Itoh, and K.-I Machida, "Frequency dispersion of complex permeability and permittivity on ironbased nanocomposites derived from rare earth-iron intermetallic compounds," J. Alloys Compd. 408-412, 1396- 1399 (2006).
[CrossRef]

2004

1996

A. J. Ward and J. B. Pendry,"Refraction and geometry in maxwells equations," J. Mod. Opt. 43, 773-793 (1996).
[CrossRef]

1981

1980

1908

G. Mie, "Beigrade zur optik truber medien, speziell kolloidaler metallosungen," Ann. Phys. (Leipzig) 25, 377- 455 (1908).
[CrossRef]

1904

J. Maxwell Garnett, "Colours in metal glasses and in metallic films," Philos. Trans. R. Soc. London 203, 385 (1904).
[CrossRef]

Ann. Phys. (Leipzig)

G. Mie, "Beigrade zur optik truber medien, speziell kolloidaler metallosungen," Ann. Phys. (Leipzig) 25, 377- 455 (1908).
[CrossRef]

Appl. Opt.

J. Alloys Compd.

J.R. Liu, M. Itoh, and K.-I Machida, "Frequency dispersion of complex permeability and permittivity on ironbased nanocomposites derived from rare earth-iron intermetallic compounds," J. Alloys Compd. 408-412, 1396- 1399 (2006).
[CrossRef]

J. Mod. Opt.

A. J. Ward and J. B. Pendry,"Refraction and geometry in maxwells equations," J. Mod. Opt. 43, 773-793 (1996).
[CrossRef]

Opt. Express

Opt. Lett.

Philos. Trans. R. Soc. London

J. Maxwell Garnett, "Colours in metal glasses and in metallic films," Philos. Trans. R. Soc. London 203, 385 (1904).
[CrossRef]

Proc. R. Soc. London, Ser. A

G. W. Milton and N.-A. P. Nicorovici, "On the cloaking effects associated with anomalous localized resonance," Proc. R. Soc. London, Ser. A 462, 3027-3059 (2006).
[CrossRef]

Science

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, "Optical Conformal Mapping," Science 312, 1777-1780 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977- 980 (2006).
[CrossRef] [PubMed]

Other

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E 74, 036621-1-5 (2006).

H. Chen, B. I. Wu, B. Zhang, and J. A. Kong, "Electromagnetic Wave Interactions with a Metamaterial Cloak," Phys. Rev. Lett. 99, 063903-1-4 (2007).
[CrossRef] [PubMed]

B. Zhang, H. Chen, B. Wu, Y. Luo, L. Ran, and J. A. Kong, "Response of a cylindrical invisibility cloak to electromagnetic waves," Phys. Rev. B 76, 121101-1-4 (R) (2007)
[CrossRef]

A. Alu and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. E 72, 016623-1-9 (2005).
[CrossRef]

H.C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

J. D. Jackson, Classical Electrodynamics, 3rd Edition (Wiley-VCH, 1998),

W. J. Wiscombe, "Mie scattering calculation," NCAR Tech. Note TN-140+STR (National Center for Atmospheric Research, Boulder, Colo., 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

The phase function as a function of the scattering angle for homogeneous spherical particles. η=1 and the size parameter x=10 are used. The refractive indices plotted are m=1.1,1.3,1.7,1.1+0.1i,1.3+0.1i,1.7+0.1i

Fig. 2.
Fig. 2.

The phase function as a function of the scattering angle for homogeneous spherical particles. The size parameter is x=10. The refractive indices is m=1.3. η=0.9999,0.999,0.99,0.91 are plotted.

Fig. 3.
Fig. 3.

The phase function as a function of the scattering angle for coated spherical particles. The size of the inner sphere is x=5. and m1=1.5, η 1=2/3. Two refractive indices for the outer sphere are chosen: m2=2+0.5i and m2=2+i. η 2=1. For each of the refractive indices, a proper value of y is used to produce τ=1 and τ=4 according to τ=(y-x)Im(m2).

Tables (3)

Tables Icon

Table 1. Extinction and scattering efficiencies for the cases in Fig. 1

Tables Icon

Table 2. Extinction/scattering efficiencies for cases in Fig. 2

Tables Icon

Table 3. Extinction and scattering efficiencies for cases in Fig. 3. Also shown are the ratios of the extinction and scattering cross sections of the coated particles and those of the “Not coated” case.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

ε = = ε r ( r ) r ̂ r ̂ + ε t ( θ ̂ θ ̂ + ϕ ̂ ϕ ̂ ) ,
μ = = μ r ( r ) r ̂ r ̂ + μ t ( θ ̂ θ ̂ + ϕ ̂ ϕ ̂ ) ,
η i = μ i ε i , i = 1 , 0 ,
x = ka , m = ε 1 μ 1 ε 0 μ 0 ,
η = η 1 η 0 = μ 1 ε 1 μ 0 ε 0 .
a n = [ D n ( m x ) η + n x ] ψ n ( x ) ψ n 1 ( x ) [ D n ( m x ) η + n x ] ξ n ( x ) ξ n 1 ( x ) ,
b n = [ D n ( m x ) η + n x ] ψ n ( x ) ψ n 1 ( x ) [ D n ( m x ) η + n x ] ξ n ( x ) ξ n 1 ( x ) ,
S 1 = S 2 = n 2 n + 1 n ( n + 1 ) a n ( π n + τ n ) ,
lim x Q b = R ( 0 o ) ,
S 11 = S 2 2 + S 1 2 2 , S 12 = S 2 2 S 1 2 2 , S 33 = S 2 * S 1 + S 2 S 1 * 2 , S 34 = i ( S 1 S 2 * S 2 S 1 * ) 2 .
x = ka , m 1 = ε 1 μ 1 ε 3 μ 3 , η 1 = μ 1 ε 1 μ 3 ε 3 ,
y = kb , m 2 = ε 2 μ 2 ε 3 μ 3 , η 2 = μ 2 ε 2 μ 3 ε 3 ,
a n = [ η 2 D ˜ n + n y ] ψ n ( y ) ψ n 1 ( y ) [ η 2 D ˜ n + n y ] ξ n ( y ) ξ n 1 ( y ) ,
b n = [ G ˜ n η 2 + n y ] ψ n ( y ) ψ n 1 ( y ) [ G ˜ n η 2 + n y ] ξ n ( y ) ξ n 1 ( y ) ,
D ˜ n = D n ( m 2 y ) A n χ n ( m 2 y ) ψ n ( m 2 y ) 1 A n χ n ( m 2 y ) ψ n ( m 2 y ) ,
G ˜ n = D n ( m 2 y ) B n χ n ( m 2 y ) ψ n ( m 2 y ) 1 B n χ n ( m 2 y ) ψ n ( m 2 y ) ,
A n = ψ n ( m 2 x ) η 1 D n ( m 1 x ) η 2 D n ( m 2 x ) η 1 D n ( m 1 x ) χ n ( m 2 x ) η 2 χ n ( m 2 x ) ,
B n = ψ n ( m 2 x ) η 1 D n ( m 2 x ) η 2 D n ( m 1 x ) η 1 χ n ( m 2 x ) η 2 D n ( m 1 x ) χ n ( m 2 x ) .
η 2 = 1 , τ = k ( b a ) Im ( m 2 ) = ( y x ) Im ( m 2 ) 1 ,
C ext , sca C ext , sca Nc = Q ext , sca · y 2 C ext , sca Nc · x 2 ,

Metrics