Abstract

A tunable wavelength filter is demonstrated by imposing a strain on a polymeric Bragg reflection waveguide fabricated on a flexible substrate. The highly elastic property of flexible polymer device enables much wider tuning than the silica fiber. To produce a uniform grating pattern on a flexible plastic substrate, a post lift-off process along with an absorbing layer is incorporated. The flexible Bragg reflector shows narrow bandwidth, which is convincing the uniformity of the grating structure fabricated on plastic film. By stretching the flexible polymer device, the Bragg reflection wavelength is tuned continuously up to 45 nm for the maximum strain of 31,690 με, which is determined by the elastic expansion limit of waveguide polymer. From the linear wavelength shift proportional to the strain, the photoelastic coefficient of the ZPU polymer is found.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. G. Scott Glaesemann, JamesA. Smith, Donald A. Clark, and Renie Johnson, "Measuring thermal and mechanical stresses on optical fiber in a DC module using Fiber Bragg Gratings," J. Lightwave Technol. 23, 3461-3468 (2005).
    [CrossRef]
  2. M.-C. Oh, K.-J. Kim, J.-H. Lee, H.-X. Chen, and K.-N. Koh, "Polymeric waveguide biosensors with calixarene monolayer for detecting potassium ion concentration," Appl. Phys. Lett. 89, 251104 (2006).
    [CrossRef]
  3. M. Aziz, J. Pfeiffer, M. Wohlfarth, C. Luber, S. Wu, and P. Meissner, "A new and simple concept of tunable two-chip microcavities for filter applications in WDM systems," IEEE Photon. Technol. Lett. 12, 1522-1524 (2000).
    [CrossRef]
  4. P. Rabiei and W. H. Steier, "Tunable polymer double micro-ring filters," IEEE Photon. Technol. Lett. 15, 1255-1257 (2003).
    [CrossRef]
  5. C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, " Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package," IEEE Photon. Technol. Lett. 15, 557-559 (2003).
    [CrossRef]
  6. M.-C. Oh, H.-J. Lee, M.-H. Lee, J.-H. Ahn, S.-G. Han, and H.-G. Kim, "Tunable wavelength filters with Bragg gratings in polymer waveguides," Appl. Phys. Lett. 73, 2543-2545 (1998).
    [CrossRef]
  7. H. Zou, K. W. Beeson, and L. W. Shacklette, "Tunable Planar Polymer Bragg Gratings having exceptionally low polarization sensitivity," J. Lightwave Technol. 21, 1083-1088 (2003).
    [CrossRef]
  8. A. Kocabas and A. Aydinli, "Polymeric waveguide Bragg grating filter using soft lithography," Opt. Express 14, 10228-10232 (2006).
    [CrossRef] [PubMed]
  9. W.-C. Chuang, C.-K. Chao, and C.-T. Ho, "Fabrication of high-resolution periodical structure on polymer waveguides using a replication process," Opt. Express 15, 8649-8659 (2007).
    [CrossRef] [PubMed]
  10. G. Jeong, J.-H. Lee, MahnY. Park, C. Y. Kim, S.-H. Cho, W. Lee, and B. W. Kim, "Over 26-nm wavelength tunable external cavity laser based on polymer waveguide platforms for WDM access networks," IEEE Photon. Technol. Lett. 18,2102-2104 (2006).
    [CrossRef]
  11. Y.-O. Noh, C.-H. Lee, J.-M. Kim, W.-Y. Hwang, Y.-H. Won, H.-J. Lee, S.-G. H. and M.-C. Oh, "Polymer waveguide variable optical attenuator and its reliability," Optics Commun. 242, 533-540 (2004).
    [CrossRef]
  12. S.-H. Nam, J.-W. Kang, and J.-J Kim, "Temperature-insensitive flexible polymer wavelength filter fabricated on polymer substrates," Appl. Phys. Lett. 87, 233504 (2005).
    [CrossRef]
  13. B. Sepulveda, J. Sanchez del Rio, M. Moreno, F. J. Blanco, K. Mayora, C. Dominguez, and L. M. Lechuga, "Optical biosensor microsystems based on the integration of highly sensitive Mach-Zehnder interferometer devices," J. Opt. A: Pure Appl. Opt. 8, 561-566 (2006).
    [CrossRef]
  14. M.-C. Oh, H. Zhang, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, B. Tsap, and H. R. Fetterman, "Recent advances in electro-optic polymer modulators incorporating phenyltetraene bridged chromophore," IEEE J. Sel. Top. Quantum Electron. 7, 826-835 (2001).
    [CrossRef]
  15. M.-C. Oh, M.-H. Lee, J.-H. Ahn, H.-J. Lee, and S. G. Han, "Polymeric wavelength filters with polymer gratings," Appl. Phys. Lett. 72, 1559-1561 (1998).
    [CrossRef]
  16. H.-C. Song, M.-C. Oh, S.-W. Ahn, and W. H. Steier, "Flexible low voltage electro-optic polymer modulators," Appl. Phys. Lett. 82, 4432-4434 (2003).
    [CrossRef]
  17. ZPU polymer is available from ChemOptics Co., Yusong, Daejeon, 305-380, South Korea.
  18. Y. Zhu, P. Shum, C. Lu, M. B. Lacquet, P. L. Swart, and A. A. Chtcherbakov, "Temperature insensitive measurements of static displacements using a fiber Bragg grating," Opt. Express 11, 1918-1924 (2003).
    [CrossRef] [PubMed]

2007

2006

G. Jeong, J.-H. Lee, MahnY. Park, C. Y. Kim, S.-H. Cho, W. Lee, and B. W. Kim, "Over 26-nm wavelength tunable external cavity laser based on polymer waveguide platforms for WDM access networks," IEEE Photon. Technol. Lett. 18,2102-2104 (2006).
[CrossRef]

M.-C. Oh, K.-J. Kim, J.-H. Lee, H.-X. Chen, and K.-N. Koh, "Polymeric waveguide biosensors with calixarene monolayer for detecting potassium ion concentration," Appl. Phys. Lett. 89, 251104 (2006).
[CrossRef]

A. Kocabas and A. Aydinli, "Polymeric waveguide Bragg grating filter using soft lithography," Opt. Express 14, 10228-10232 (2006).
[CrossRef] [PubMed]

B. Sepulveda, J. Sanchez del Rio, M. Moreno, F. J. Blanco, K. Mayora, C. Dominguez, and L. M. Lechuga, "Optical biosensor microsystems based on the integration of highly sensitive Mach-Zehnder interferometer devices," J. Opt. A: Pure Appl. Opt. 8, 561-566 (2006).
[CrossRef]

2005

S.-H. Nam, J.-W. Kang, and J.-J Kim, "Temperature-insensitive flexible polymer wavelength filter fabricated on polymer substrates," Appl. Phys. Lett. 87, 233504 (2005).
[CrossRef]

G. Scott Glaesemann, JamesA. Smith, Donald A. Clark, and Renie Johnson, "Measuring thermal and mechanical stresses on optical fiber in a DC module using Fiber Bragg Gratings," J. Lightwave Technol. 23, 3461-3468 (2005).
[CrossRef]

2004

Y.-O. Noh, C.-H. Lee, J.-M. Kim, W.-Y. Hwang, Y.-H. Won, H.-J. Lee, S.-G. H. and M.-C. Oh, "Polymer waveguide variable optical attenuator and its reliability," Optics Commun. 242, 533-540 (2004).
[CrossRef]

2003

H. Zou, K. W. Beeson, and L. W. Shacklette, "Tunable Planar Polymer Bragg Gratings having exceptionally low polarization sensitivity," J. Lightwave Technol. 21, 1083-1088 (2003).
[CrossRef]

P. Rabiei and W. H. Steier, "Tunable polymer double micro-ring filters," IEEE Photon. Technol. Lett. 15, 1255-1257 (2003).
[CrossRef]

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, " Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package," IEEE Photon. Technol. Lett. 15, 557-559 (2003).
[CrossRef]

H.-C. Song, M.-C. Oh, S.-W. Ahn, and W. H. Steier, "Flexible low voltage electro-optic polymer modulators," Appl. Phys. Lett. 82, 4432-4434 (2003).
[CrossRef]

Y. Zhu, P. Shum, C. Lu, M. B. Lacquet, P. L. Swart, and A. A. Chtcherbakov, "Temperature insensitive measurements of static displacements using a fiber Bragg grating," Opt. Express 11, 1918-1924 (2003).
[CrossRef] [PubMed]

2001

M.-C. Oh, H. Zhang, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, B. Tsap, and H. R. Fetterman, "Recent advances in electro-optic polymer modulators incorporating phenyltetraene bridged chromophore," IEEE J. Sel. Top. Quantum Electron. 7, 826-835 (2001).
[CrossRef]

2000

M. Aziz, J. Pfeiffer, M. Wohlfarth, C. Luber, S. Wu, and P. Meissner, "A new and simple concept of tunable two-chip microcavities for filter applications in WDM systems," IEEE Photon. Technol. Lett. 12, 1522-1524 (2000).
[CrossRef]

1998

M.-C. Oh, H.-J. Lee, M.-H. Lee, J.-H. Ahn, S.-G. Han, and H.-G. Kim, "Tunable wavelength filters with Bragg gratings in polymer waveguides," Appl. Phys. Lett. 73, 2543-2545 (1998).
[CrossRef]

M.-C. Oh, M.-H. Lee, J.-H. Ahn, H.-J. Lee, and S. G. Han, "Polymeric wavelength filters with polymer gratings," Appl. Phys. Lett. 72, 1559-1561 (1998).
[CrossRef]

Appl. Phys. Lett.

M.-C. Oh, K.-J. Kim, J.-H. Lee, H.-X. Chen, and K.-N. Koh, "Polymeric waveguide biosensors with calixarene monolayer for detecting potassium ion concentration," Appl. Phys. Lett. 89, 251104 (2006).
[CrossRef]

M.-C. Oh, H.-J. Lee, M.-H. Lee, J.-H. Ahn, S.-G. Han, and H.-G. Kim, "Tunable wavelength filters with Bragg gratings in polymer waveguides," Appl. Phys. Lett. 73, 2543-2545 (1998).
[CrossRef]

S.-H. Nam, J.-W. Kang, and J.-J Kim, "Temperature-insensitive flexible polymer wavelength filter fabricated on polymer substrates," Appl. Phys. Lett. 87, 233504 (2005).
[CrossRef]

M.-C. Oh, M.-H. Lee, J.-H. Ahn, H.-J. Lee, and S. G. Han, "Polymeric wavelength filters with polymer gratings," Appl. Phys. Lett. 72, 1559-1561 (1998).
[CrossRef]

H.-C. Song, M.-C. Oh, S.-W. Ahn, and W. H. Steier, "Flexible low voltage electro-optic polymer modulators," Appl. Phys. Lett. 82, 4432-4434 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M.-C. Oh, H. Zhang, A. Szep, W. H. Steier, C. Zhang, L. R. Dalton, H. Erlig, Y. Chang, B. Tsap, and H. R. Fetterman, "Recent advances in electro-optic polymer modulators incorporating phenyltetraene bridged chromophore," IEEE J. Sel. Top. Quantum Electron. 7, 826-835 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

G. Jeong, J.-H. Lee, MahnY. Park, C. Y. Kim, S.-H. Cho, W. Lee, and B. W. Kim, "Over 26-nm wavelength tunable external cavity laser based on polymer waveguide platforms for WDM access networks," IEEE Photon. Technol. Lett. 18,2102-2104 (2006).
[CrossRef]

M. Aziz, J. Pfeiffer, M. Wohlfarth, C. Luber, S. Wu, and P. Meissner, "A new and simple concept of tunable two-chip microcavities for filter applications in WDM systems," IEEE Photon. Technol. Lett. 12, 1522-1524 (2000).
[CrossRef]

P. Rabiei and W. H. Steier, "Tunable polymer double micro-ring filters," IEEE Photon. Technol. Lett. 15, 1255-1257 (2003).
[CrossRef]

C. S. Goh, M. R. Mokhtar, S. A. Butler, S. Y. Set, K. Kikuchi, and M. Ibsen, " Wavelength tuning of fiber Bragg gratings over 90 nm using a simple tuning package," IEEE Photon. Technol. Lett. 15, 557-559 (2003).
[CrossRef]

J. Lightwave Technol.

J. Opt. A: Pure Appl. Opt.

B. Sepulveda, J. Sanchez del Rio, M. Moreno, F. J. Blanco, K. Mayora, C. Dominguez, and L. M. Lechuga, "Optical biosensor microsystems based on the integration of highly sensitive Mach-Zehnder interferometer devices," J. Opt. A: Pure Appl. Opt. 8, 561-566 (2006).
[CrossRef]

Opt. Express

Optics Commun.

Y.-O. Noh, C.-H. Lee, J.-M. Kim, W.-Y. Hwang, Y.-H. Won, H.-J. Lee, S.-G. H. and M.-C. Oh, "Polymer waveguide variable optical attenuator and its reliability," Optics Commun. 242, 533-540 (2004).
[CrossRef]

Other

ZPU polymer is available from ChemOptics Co., Yusong, Daejeon, 305-380, South Korea.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic structure of the tunable wavelength filter operated by applying mechanical stress to impose a strain on a flexible polymer waveguide with Bragg reflector.

Fig. 2.
Fig. 2.

Schematic procedures for fabricating the Bragg reflection waveguide on a flexible substrate by using a post lift-off process.

Fig. 3.
Fig. 3.

Comparison of the uniformity of grating patterns fabricated on top of a thick NOA61 polymer layer: (a) fabricated by a standard procedure, (b) fabricated by incorporating black matrix to remove the undesirable interference.

Fig. 4.
Fig. 4.

Transmission and reflection spectrum of the Bragg reflection waveguide device fabricated on a flexible substrate.

Fig. 5.
Fig. 5.

A photograph of the flexible substrate device attached on a linear micro stage for measuring the wavelength tuning characteristics induced by a tensile strain.

Fig. 6.
Fig. 6.

Wavelength tuning characteristics of the Bragg reflector: (a) Transmission spectra measured for each step of micro-stage movement (b) Bragg reflection wavelength as a function of the micro-meter displacement and the imposed strain.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ λ B λ B = ( 1 P ε ) Δ ε

Metrics