Abstract

We study the propagation of light along a chain of 20-nm-spaced gold particles lying onto a silica substrate in which a metallic film can be incorporated. We first discuss, for a pure dielectric substrate, the specificities of the chain modes as compared to larger separation distances where far-field coupling dominates. We then show how the introduction of a buried metallic film allows a substantial increase in the propagation lengths. Finally, we discuss the crosstalk between two adjacent chains, with and without the buried metallic layer, for applications to ultra-compact interconnects.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, "Plasmonics: Metal Nanostructures for Subwavelength Photonic Devices," IEEE J. Sel. Topics Quantum Electron. 12, 1214-1220 (2006).
    [CrossRef]
  2. P. Ghenuche, I. G. Cormack, G. Badenes, P. Loza-Alvarez, and R. Quidant, "Cavity resonances in finite plasmonic chains," App. Phys. Lett. 90, 041109 (2007).
    [CrossRef]
  3. M. Salerno, J. R. Krenn, A. Hohenau, H. Ditlbacher, G. Schider, A. Leitner, and F. R. Aussenegg, "The optical nearfield of gold nanoparticle chains," Opt. Commun. 248, 543-549 (2005).
    [CrossRef]
  4. S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B 65, 193408 (2002).
    [CrossRef]
  5. H S. Chu, W. B. Ewe, W. S. Koh, and E. P. Li, "Remarkable influence of the number of nanowires on plasmonic behaviors of the coupled metallic nanowire chain," App. Phys. Lett. 92, 103103 (2008).
    [CrossRef]
  6. K. H. Fung and C. T. Chan, "A computational study of the optical response of strongly coupled metal nanoparticle chains," Opt. Comm. 281, 855-864 (2008).
    [CrossRef]
  7. Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, "Plasmon Resonance of Finite One-Dimensional Au Nanoparticle Chains," Nano Lett. 4, 1067-1071 (2004).
    [CrossRef]
  8. K. B. Crozier, E. Togan, E. Simsek, and T. Yang, "Experimental measurement of the dispersion relations of the surface plasmon modes of metal nanoparticle chains," Opt. Express 15, 17482-17493 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-17482
    [CrossRef] [PubMed]
  9. K. R. Li, M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227402 (2003).
    [CrossRef] [PubMed]
  10. P. Ghenuche, R. Quidant, and G. Badenes, "Cumulative plasmon field enhancement in finite metal particle chains," Opt. Lett. 30, 1882-1884 (2005).
    [CrossRef] [PubMed]
  11. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998).
    [CrossRef]
  12. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nature Mater. 2, 229-232 (2003).
    [CrossRef]
  13. C. Girard and R. Quidant, "Near-field optical transmittance of metal particle chain waveguides," Opt. Express 12, 6141-6146 (2004).
    [CrossRef] [PubMed]
  14. C. Girard, "Near fields in nanostructures," Rep. Prog. Phys. 68, 1883-1933 (2005).
    [CrossRef]
  15. S. Linden, J. Kuhl, and H. Giessen, "Controlling the interaction between light and gold nanoparticles: Selective suppression of extinction," Phys. Rev. Lett. 86, 4688-4691 (2001).
    [CrossRef] [PubMed]
  16. R. Quidant, C. Girard, J.C. Weeber, and A. Dereux, "Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains," Phys.Rev. B 69, 085407 (2004).
    [CrossRef]
  17. G. L’evˆeque, and O. J. F. Martin, "Optical interactions in a plasmonic particle coupled to a metallic film," Opt. Express 14, 9971 (2006).
    [CrossRef] [PubMed]
  18. R. V. Stuart and G. K. Wehner, "Sputtering thresholds and displacement energies," Phys. Rev. Lett. 4, 409-410 (1960).
    [CrossRef]
  19. J. Cesario, M. U. Gonzalez, S. Cheylan,W. L. Barnes, S. Enoch, and R. Quidant, "Coupling localized and extended plasmons to improve the light extraction through metal films," Opt. Express 15, 10533-10539 (2007).
    [CrossRef] [PubMed]
  20. O. J. F. Martin and N. B. Piller, "Electromagnetic scattering in polarizable backgrounds," Phys. Rev. E 58, 3909- 3915 (1998).
    [CrossRef]
  21. M. Paulus and O. J. F. Martin, "Light propagation and scattering in stratified media: a Green’s tensor approach", J. Opt. Soc. Am. A 18, 854-861 (2001).
    [CrossRef]
  22. P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370 (1972).
    [CrossRef]

2008 (2)

H S. Chu, W. B. Ewe, W. S. Koh, and E. P. Li, "Remarkable influence of the number of nanowires on plasmonic behaviors of the coupled metallic nanowire chain," App. Phys. Lett. 92, 103103 (2008).
[CrossRef]

K. H. Fung and C. T. Chan, "A computational study of the optical response of strongly coupled metal nanoparticle chains," Opt. Comm. 281, 855-864 (2008).
[CrossRef]

2007 (3)

2006 (2)

G. L’evˆeque, and O. J. F. Martin, "Optical interactions in a plasmonic particle coupled to a metallic film," Opt. Express 14, 9971 (2006).
[CrossRef] [PubMed]

S. A. Maier, "Plasmonics: Metal Nanostructures for Subwavelength Photonic Devices," IEEE J. Sel. Topics Quantum Electron. 12, 1214-1220 (2006).
[CrossRef]

2005 (3)

M. Salerno, J. R. Krenn, A. Hohenau, H. Ditlbacher, G. Schider, A. Leitner, and F. R. Aussenegg, "The optical nearfield of gold nanoparticle chains," Opt. Commun. 248, 543-549 (2005).
[CrossRef]

C. Girard, "Near fields in nanostructures," Rep. Prog. Phys. 68, 1883-1933 (2005).
[CrossRef]

P. Ghenuche, R. Quidant, and G. Badenes, "Cumulative plasmon field enhancement in finite metal particle chains," Opt. Lett. 30, 1882-1884 (2005).
[CrossRef] [PubMed]

2004 (3)

Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, "Plasmon Resonance of Finite One-Dimensional Au Nanoparticle Chains," Nano Lett. 4, 1067-1071 (2004).
[CrossRef]

C. Girard and R. Quidant, "Near-field optical transmittance of metal particle chain waveguides," Opt. Express 12, 6141-6146 (2004).
[CrossRef] [PubMed]

R. Quidant, C. Girard, J.C. Weeber, and A. Dereux, "Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains," Phys.Rev. B 69, 085407 (2004).
[CrossRef]

2003 (2)

K. R. Li, M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nature Mater. 2, 229-232 (2003).
[CrossRef]

2002 (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B 65, 193408 (2002).
[CrossRef]

2001 (2)

S. Linden, J. Kuhl, and H. Giessen, "Controlling the interaction between light and gold nanoparticles: Selective suppression of extinction," Phys. Rev. Lett. 86, 4688-4691 (2001).
[CrossRef] [PubMed]

M. Paulus and O. J. F. Martin, "Light propagation and scattering in stratified media: a Green’s tensor approach", J. Opt. Soc. Am. A 18, 854-861 (2001).
[CrossRef]

1998 (2)

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998).
[CrossRef]

O. J. F. Martin and N. B. Piller, "Electromagnetic scattering in polarizable backgrounds," Phys. Rev. E 58, 3909- 3915 (1998).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370 (1972).
[CrossRef]

1960 (1)

R. V. Stuart and G. K. Wehner, "Sputtering thresholds and displacement energies," Phys. Rev. Lett. 4, 409-410 (1960).
[CrossRef]

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nature Mater. 2, 229-232 (2003).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B 65, 193408 (2002).
[CrossRef]

Aussenegg, F. R.

M. Salerno, J. R. Krenn, A. Hohenau, H. Ditlbacher, G. Schider, A. Leitner, and F. R. Aussenegg, "The optical nearfield of gold nanoparticle chains," Opt. Commun. 248, 543-549 (2005).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998).
[CrossRef]

Badenes, G.

P. Ghenuche, I. G. Cormack, G. Badenes, P. Loza-Alvarez, and R. Quidant, "Cavity resonances in finite plasmonic chains," App. Phys. Lett. 90, 041109 (2007).
[CrossRef]

P. Ghenuche, R. Quidant, and G. Badenes, "Cumulative plasmon field enhancement in finite metal particle chains," Opt. Lett. 30, 1882-1884 (2005).
[CrossRef] [PubMed]

Barnes, W. L.

Bergman, D. J.

K. R. Li, M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Brongersma, M. L.

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B 65, 193408 (2002).
[CrossRef]

Cesario, J.

Chan, C. T.

K. H. Fung and C. T. Chan, "A computational study of the optical response of strongly coupled metal nanoparticle chains," Opt. Comm. 281, 855-864 (2008).
[CrossRef]

Cheylan, S.

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Chu, H. S.

H S. Chu, W. B. Ewe, W. S. Koh, and E. P. Li, "Remarkable influence of the number of nanowires on plasmonic behaviors of the coupled metallic nanowire chain," App. Phys. Lett. 92, 103103 (2008).
[CrossRef]

Cormack, I. G.

P. Ghenuche, I. G. Cormack, G. Badenes, P. Loza-Alvarez, and R. Quidant, "Cavity resonances in finite plasmonic chains," App. Phys. Lett. 90, 041109 (2007).
[CrossRef]

Crozier, K. B.

Dereux, A.

R. Quidant, C. Girard, J.C. Weeber, and A. Dereux, "Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains," Phys.Rev. B 69, 085407 (2004).
[CrossRef]

Ditlbacher, H.

M. Salerno, J. R. Krenn, A. Hohenau, H. Ditlbacher, G. Schider, A. Leitner, and F. R. Aussenegg, "The optical nearfield of gold nanoparticle chains," Opt. Commun. 248, 543-549 (2005).
[CrossRef]

Durant, S.

Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, "Plasmon Resonance of Finite One-Dimensional Au Nanoparticle Chains," Nano Lett. 4, 1067-1071 (2004).
[CrossRef]

Enoch, S.

Ewe, W. B.

H S. Chu, W. B. Ewe, W. S. Koh, and E. P. Li, "Remarkable influence of the number of nanowires on plasmonic behaviors of the coupled metallic nanowire chain," App. Phys. Lett. 92, 103103 (2008).
[CrossRef]

Fung, K. H.

K. H. Fung and C. T. Chan, "A computational study of the optical response of strongly coupled metal nanoparticle chains," Opt. Comm. 281, 855-864 (2008).
[CrossRef]

Ghenuche, P.

P. Ghenuche, I. G. Cormack, G. Badenes, P. Loza-Alvarez, and R. Quidant, "Cavity resonances in finite plasmonic chains," App. Phys. Lett. 90, 041109 (2007).
[CrossRef]

P. Ghenuche, R. Quidant, and G. Badenes, "Cumulative plasmon field enhancement in finite metal particle chains," Opt. Lett. 30, 1882-1884 (2005).
[CrossRef] [PubMed]

Giessen, H.

S. Linden, J. Kuhl, and H. Giessen, "Controlling the interaction between light and gold nanoparticles: Selective suppression of extinction," Phys. Rev. Lett. 86, 4688-4691 (2001).
[CrossRef] [PubMed]

Girard, C.

C. Girard, "Near fields in nanostructures," Rep. Prog. Phys. 68, 1883-1933 (2005).
[CrossRef]

R. Quidant, C. Girard, J.C. Weeber, and A. Dereux, "Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains," Phys.Rev. B 69, 085407 (2004).
[CrossRef]

C. Girard and R. Quidant, "Near-field optical transmittance of metal particle chain waveguides," Opt. Express 12, 6141-6146 (2004).
[CrossRef] [PubMed]

Gonzalez, M. U.

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nature Mater. 2, 229-232 (2003).
[CrossRef]

Hohenau, A.

M. Salerno, J. R. Krenn, A. Hohenau, H. Ditlbacher, G. Schider, A. Leitner, and F. R. Aussenegg, "The optical nearfield of gold nanoparticle chains," Opt. Commun. 248, 543-549 (2005).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nature Mater. 2, 229-232 (2003).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B 65, 193408 (2002).
[CrossRef]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nature Mater. 2, 229-232 (2003).
[CrossRef]

Koh, W. S.

H S. Chu, W. B. Ewe, W. S. Koh, and E. P. Li, "Remarkable influence of the number of nanowires on plasmonic behaviors of the coupled metallic nanowire chain," App. Phys. Lett. 92, 103103 (2008).
[CrossRef]

Krenn, J. R.

M. Salerno, J. R. Krenn, A. Hohenau, H. Ditlbacher, G. Schider, A. Leitner, and F. R. Aussenegg, "The optical nearfield of gold nanoparticle chains," Opt. Commun. 248, 543-549 (2005).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998).
[CrossRef]

Kuhl, J.

S. Linden, J. Kuhl, and H. Giessen, "Controlling the interaction between light and gold nanoparticles: Selective suppression of extinction," Phys. Rev. Lett. 86, 4688-4691 (2001).
[CrossRef] [PubMed]

Leitner, A.

M. Salerno, J. R. Krenn, A. Hohenau, H. Ditlbacher, G. Schider, A. Leitner, and F. R. Aussenegg, "The optical nearfield of gold nanoparticle chains," Opt. Commun. 248, 543-549 (2005).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998).
[CrossRef]

Li, E. P.

H S. Chu, W. B. Ewe, W. S. Koh, and E. P. Li, "Remarkable influence of the number of nanowires on plasmonic behaviors of the coupled metallic nanowire chain," App. Phys. Lett. 92, 103103 (2008).
[CrossRef]

Li, K. R.

K. R. Li, M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Linden, S.

S. Linden, J. Kuhl, and H. Giessen, "Controlling the interaction between light and gold nanoparticles: Selective suppression of extinction," Phys. Rev. Lett. 86, 4688-4691 (2001).
[CrossRef] [PubMed]

Loza-Alvarez, P.

P. Ghenuche, I. G. Cormack, G. Badenes, P. Loza-Alvarez, and R. Quidant, "Cavity resonances in finite plasmonic chains," App. Phys. Lett. 90, 041109 (2007).
[CrossRef]

Maier, S. A.

S. A. Maier, "Plasmonics: Metal Nanostructures for Subwavelength Photonic Devices," IEEE J. Sel. Topics Quantum Electron. 12, 1214-1220 (2006).
[CrossRef]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nature Mater. 2, 229-232 (2003).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B 65, 193408 (2002).
[CrossRef]

Martin, O. J. F.

M. Paulus and O. J. F. Martin, "Light propagation and scattering in stratified media: a Green’s tensor approach", J. Opt. Soc. Am. A 18, 854-861 (2001).
[CrossRef]

O. J. F. Martin and N. B. Piller, "Electromagnetic scattering in polarizable backgrounds," Phys. Rev. E 58, 3909- 3915 (1998).
[CrossRef]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nature Mater. 2, 229-232 (2003).
[CrossRef]

Paulus, M.

Piller, N. B.

O. J. F. Martin and N. B. Piller, "Electromagnetic scattering in polarizable backgrounds," Phys. Rev. E 58, 3909- 3915 (1998).
[CrossRef]

Quidant, R.

Quinten, M.

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nature Mater. 2, 229-232 (2003).
[CrossRef]

Salerno, M.

M. Salerno, J. R. Krenn, A. Hohenau, H. Ditlbacher, G. Schider, A. Leitner, and F. R. Aussenegg, "The optical nearfield of gold nanoparticle chains," Opt. Commun. 248, 543-549 (2005).
[CrossRef]

Schider, G.

M. Salerno, J. R. Krenn, A. Hohenau, H. Ditlbacher, G. Schider, A. Leitner, and F. R. Aussenegg, "The optical nearfield of gold nanoparticle chains," Opt. Commun. 248, 543-549 (2005).
[CrossRef]

Simsek, E.

Stockman, M. I.

K. R. Li, M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Stuart, R. V.

R. V. Stuart and G. K. Wehner, "Sputtering thresholds and displacement energies," Phys. Rev. Lett. 4, 409-410 (1960).
[CrossRef]

Su, K. H.

Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, "Plasmon Resonance of Finite One-Dimensional Au Nanoparticle Chains," Nano Lett. 4, 1067-1071 (2004).
[CrossRef]

Togan, E.

Weeber, J.C.

R. Quidant, C. Girard, J.C. Weeber, and A. Dereux, "Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains," Phys.Rev. B 69, 085407 (2004).
[CrossRef]

Wehner, G. K.

R. V. Stuart and G. K. Wehner, "Sputtering thresholds and displacement energies," Phys. Rev. Lett. 4, 409-410 (1960).
[CrossRef]

Wei, Q. H.

Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, "Plasmon Resonance of Finite One-Dimensional Au Nanoparticle Chains," Nano Lett. 4, 1067-1071 (2004).
[CrossRef]

Yang, T.

Zhang, X.

Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, "Plasmon Resonance of Finite One-Dimensional Au Nanoparticle Chains," Nano Lett. 4, 1067-1071 (2004).
[CrossRef]

App. Phys. Lett. (2)

P. Ghenuche, I. G. Cormack, G. Badenes, P. Loza-Alvarez, and R. Quidant, "Cavity resonances in finite plasmonic chains," App. Phys. Lett. 90, 041109 (2007).
[CrossRef]

H S. Chu, W. B. Ewe, W. S. Koh, and E. P. Li, "Remarkable influence of the number of nanowires on plasmonic behaviors of the coupled metallic nanowire chain," App. Phys. Lett. 92, 103103 (2008).
[CrossRef]

IEEE J. Sel. Topics Quantum Electron. (1)

S. A. Maier, "Plasmonics: Metal Nanostructures for Subwavelength Photonic Devices," IEEE J. Sel. Topics Quantum Electron. 12, 1214-1220 (2006).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nano Lett. (1)

Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, "Plasmon Resonance of Finite One-Dimensional Au Nanoparticle Chains," Nano Lett. 4, 1067-1071 (2004).
[CrossRef]

Nature Mater. (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nature Mater. 2, 229-232 (2003).
[CrossRef]

Opt. Comm. (1)

K. H. Fung and C. T. Chan, "A computational study of the optical response of strongly coupled metal nanoparticle chains," Opt. Comm. 281, 855-864 (2008).
[CrossRef]

Opt. Commun. (1)

M. Salerno, J. R. Krenn, A. Hohenau, H. Ditlbacher, G. Schider, A. Leitner, and F. R. Aussenegg, "The optical nearfield of gold nanoparticle chains," Opt. Commun. 248, 543-549 (2005).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. B (2)

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B 65, 193408 (2002).
[CrossRef]

P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Phys. Rev. E (1)

O. J. F. Martin and N. B. Piller, "Electromagnetic scattering in polarizable backgrounds," Phys. Rev. E 58, 3909- 3915 (1998).
[CrossRef]

Phys. Rev. Lett. (3)

R. V. Stuart and G. K. Wehner, "Sputtering thresholds and displacement energies," Phys. Rev. Lett. 4, 409-410 (1960).
[CrossRef]

S. Linden, J. Kuhl, and H. Giessen, "Controlling the interaction between light and gold nanoparticles: Selective suppression of extinction," Phys. Rev. Lett. 86, 4688-4691 (2001).
[CrossRef] [PubMed]

K. R. Li, M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227402 (2003).
[CrossRef] [PubMed]

Phys.Rev. B (1)

R. Quidant, C. Girard, J.C. Weeber, and A. Dereux, "Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains," Phys.Rev. B 69, 085407 (2004).
[CrossRef]

Rep. Prog. Phys. (1)

C. Girard, "Near fields in nanostructures," Rep. Prog. Phys. 68, 1883-1933 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

A chain of gold particles deposited above a multilayered structure made of dielectric and gold. The system is illuminated by a dipole located 100 nm from the side of the first particle. The transmission of the chain is computed by evaluating the amplitude of the electric field at a point r0 located 100 nm from the side of the last particle. The particles are 100×100×20 nm3, and the period of the chain is 120 nm or 200 nm. The substrate is either a semi-infinite-silica space, or a 40-nm-thick layer of gold or silver separated from the chain by 100 nm of silica.

Fig. 2.
Fig. 2.

Amplitude of the electric field at a point r 0 located 10 nm above the surface and 100 nm away from the side of the last particle, as a function of the wavelength, and for an increasing number of particles ; (a) and (b), the spacing between two particles is 20 nanometers ; (c) and (d), the spacing is 100 nm ; (a) and (c) the excitation dipole is parallel to the direction of the chain (x axis) ; (b) and (d) the excitation dipole is perpendicular to the chain, and parallel to the interface (along the y axis).

Fig. 3.
Fig. 3.

Mechanical analogy of the longitudinal mode of the gold particles chain with a chain of small masses relied by springs. Left: single mass ; Right: displacement of the masses in the mode analog to the central peak in the transmission spectra of Fig. 2(a): one mass out of two is fixed, the two adjacent masses move in opposite direction.

Fig. 4.
Fig. 4.

Left: amplitude of the electric field inside a chain of 7 particles on a silica substrate, out of resonance (a), and for the three main resonances (b,c,d). Right: polarization of the electric field for the three same resonances. Blue arrows point to the left, whereas red arrows point to the right.

Fig. 5.
Fig. 5.

Same as Fig. 2, but the chain is separated from a 40-nm-thick metallic film by a 100-nm-thick layer of silica and the distance between two particles is 20 nm ; (a) and (b): gold film ; (c) and (d): silver film ; (a) and (c) the excitation dipole is parallel to the direction of the chain (x axis, only few characteristic curves have been displayed, see Fig. 2 for legend) ; (b) and (d) the excitation dipole is perpendicular to the chain, and parallel to the interface (along the y axis) ; (e) and (f): amplitude and polarization map of the electric field for the two main transverses modes of a chain of 4 particles (gold film).

Fig. 6.
Fig. 6.

Maximum of transmission as a function of the distance from the dipole source to the excitation dipole, for the different substrate types computed in the article.

Fig. 7.
Fig. 7.

Transmission spectra of the chain at the exit of the first chain (solid lines) or the second chain (dashed lines), for a space between the chains equal to 50 nm, 100 nm, and 200 nm.

Metrics