Abstract

We propose a novel approach to optical generation of super-resolution atomic state density distribution based on interaction between Λ-type atoms and temporally-cascaded driving fields. The scheme effectively inscribes multiplication of optical intensity profiles on atomic state density distribution, which can produce arbitrary patterns beyond the diffraction limit. The degree of resolution enhancement can be increased, not depending on the intrinsic nonlinearity of the photographic medium or the number of simultaneously interacting fields unlike the previous schemes. Procedures for drawing arbitrary two-dimensional patterns and effects of atomic state decoherence are described.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Ito and S. Okazaki, "Pushing the limits of lithography," Nature 406, 1027-1031 (2000).
    [CrossRef] [PubMed]
  2. H. Ooki, M. Komatsu, and M. Shibuya, "A novel super-resolution technique for optical lithography - nonlinear multiple exposure method," Jpn. J. Appl. Phys. 33, L177-L179 (1994).
    [CrossRef]
  3. E. Yablonovitch and R. B. Vrijen, "Optical projection lithography at half the Rayleigh resolution limit by two-photon exposure," Opt. Eng. 38, 334-338 (1999).
    [CrossRef]
  4. D. V. Krobkin and E. Yablonovitch, "Twofold spatial resolution enhancement by two-photon exposure of photographic film," Opt. Eng. 41, 1729-1732 (2002).
    [CrossRef]
  5. A. Pe’er, B. Dayan, M. Vecelja, Y. Silberberg, and A. A. Friesem, "Quantum lithography by coherent control of classical light pulses," Opt. Express 12, 6600-6605 (2004).
    [CrossRef] [PubMed]
  6. S. J. Bentley and R. W. Boyd, "Nonlinear optical lithography with ultra-high sub-Rayleigh resolution," Opt. Express 12, 5735-5740 (2004).
    [CrossRef] [PubMed]
  7. H. J. Chang, H. Shin, M. N. O’Sullivan-Hale, and R. W. Boyd, "Implementation of sub-Rayleigh-resolution lithography using an N-photon absorber," J. Mod. Opt. 53, 2271-2277 (2006).
    [CrossRef]
  8. G. Khoury, H. S. Eisenberg, E. J. S. Fonseca, and D. Bouwmeester, "Nonlinear interferometry via Fock-state projection," Phys. Rev. Lett. 96, 203601 (2006).
    [CrossRef] [PubMed]
  9. K. Wang and D.-Z. Cao, "Subwavelength coincidence interference with classical thermal light," Phys. Rev. A 70, 041801(R) (2004).
    [CrossRef]
  10. P. R. Hemmer, A. Muthukrishnan, M. O. Scully, and M. S. Zubairy, "Quantum lithography with classical light," Phys. Rev. Lett. 96, 163603 (2006).
    [CrossRef] [PubMed]
  11. Q. Sun, P. R. Hemmer, and M. S. Zubairy, "Quantum lithography with classical light: generation of arbitrary patterns," Phys. Rev. A 75, 065803 (2007).
    [CrossRef]
  12. H. Li, V. A. Sautenkov, M. M. Kash, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, M. S. Zubairy, and M. O. Scully, "Optical imaging beyond the diffraction limit via dark states," Phys. Rev. A 78, 013803 (2008).
    [CrossRef]
  13. M. Kiffner, J. Evers, and M. S. Zubairy, "Resonant interferometric lithography beyond the diffraction limit," Phys. Rev. Lett. 100, 073602 (2008).
    [CrossRef] [PubMed]
  14. A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, "Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit," Phys. Rev. Lett. 85, 2733 (2000).
    [CrossRef] [PubMed]
  15. G. S. Agarwal, R. W. Boyd, E. M. Nagasako, and S. J. Bentley, "Comment on ‘Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit’," Phys. Rev. Lett. 86, 1389 (2001).
    [CrossRef] [PubMed]
  16. M. D’Angelo, M. V. Chekhova, and Y. Shih, "Two-photon diffraction and quantum lithography," Phys. Rev. Lett. 87, 013602 (2001).
    [CrossRef] [PubMed]
  17. C. Thiel, T. Bastin, J. Martin, E. Solano, J. von Zanthier, and G. S. Agarwal, "Quantum imaging with incoherent photons," Phys. Rev. Lett. 99, 133603 (2007).
    [CrossRef] [PubMed]
  18. M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, "Super-resolving phase measurements with a multiphoton entangled state," Nature 429, 161-164 (2004).
    [CrossRef] [PubMed]
  19. P. Walther, J.-W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, and A. Zeilinger, "De Broglie wavelength of a non-local four-photon state," Nature 429, 158-161 (2004).
    [CrossRef] [PubMed]
  20. K. J. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. O’Brien, and A. G. White, "Time-reversal and super-resolving phase measurements," Phys. Rev. Lett. 98, 223601 (2007).
    [CrossRef] [PubMed]
  21. R. Gupta, J. J. McClelland, P. Marte, and R. J. Celotta, "Raman-induced avoided crossings in adiabatic optical potentials Observation of λ/8 spatial frequency in the distribution of atoms," Phys. Rev. Lett. 25, 4689-4692 (1996).
    [CrossRef]
  22. A. Turlapov, A. Tonyushkin, and T. Sleator, "Talbot-Lau effect for atomic de Broglie waves manipulated with light," Phys. Rev. A 71, 043612 (2005).
    [CrossRef]
  23. M. Tsang, "Fundamental quantum limit to the multiphoton absorption rate for monochromatic light," Phys. Rev. Lett. 101, 033602 (2008).
    [CrossRef] [PubMed]
  24. E. Arimondo, "Coherent population trapping in laser spectroscopy," in Progress in Optics XXXV, E. Wolf, ed., (Elsevier, Amsterdam, 1996), pp. 257-354.
    [CrossRef]
  25. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).
    [CrossRef]
  26. K. S. Johnson, J. H. Thywissen, N. H. Dekker, K. K. Berggren, A. P. Chu, R. Younkin, and M. Prentiss, "Localization of metastable atom beams with optical standing waves Nanolithography at the Heisenberg limit," Science 280, 1583-1586 (1998).
    [CrossRef] [PubMed]
  27. K. S. Johnson, K. K. Berggren, A. Black, C. T. Black, A. P. Chu, N. H. Dekker, D. C. Ralph, J. H. Thywissen, R. Younkin, M. Tinkham, M. Prentiss, and G. M. Whitesides, "Using neutral metastable argon atoms and contamination lithography to form nanostructures," Appl. Phys. Lett. 69, 2773-2775 (1996).
    [CrossRef]
  28. J. H. Thywissen and M. Prentiss, "Demonstration of frequency encoding in neutral atom lithography," New J. Phys. 7, 47 (2005).
    [CrossRef]
  29. K. K. Berggren, A. Bard, J. L. Wilbur, J. D. Gillaspy, A. G. Helg, J. J. McClelland, S. L. Rolston, W. D. Phillips, M. Prentiss, and G. M. Whitesides, "Microlithography by using neutral metastable atoms and self-assembled monolayers," Science 269, 1255-1257 (1995).
    [CrossRef] [PubMed]
  30. K.-M. C. Fu, C. Santori, C. Stanley, M. C. Holland, and Y. Yamamoto, "Coherent population trapping of electron spins in a high-purity n-type GaAs semiconductor," Phys. Rev. Lett. 95, 187405 (2005).
    [CrossRef] [PubMed]
  31. B. S. Ham, P. R. Hemmer, and M. S. Shahriar, "Efficient electromagnetically induced transparency in a rare-earth doped crystal," Opt. Commun. 144, 227-230 (1997).
    [CrossRef]
  32. A. Kasapi, G. Y. Yin, M. Jain, and S. E. Harris, "Measurement of Lorentzian linewidth by pulse propagation delay," Phys. Rev. A 53, 4547-4555 (1996).
    [CrossRef] [PubMed]
  33. S. J. Bentley, "Nonlinear interferometric lithography for arbitrary two-dimensional patterns," J. Micro/Nanolith.MEMS MOEMS 7, 013004 (2008).
    [CrossRef]
  34. A. P. Chu, K. K. Berggren, K. S. Johnson, and M. G. Prentiss, "A virtual slit for atom optics and nanolithography," Quantum Semiclassic. Opt. 8, 521-529 (1996).
    [CrossRef]
  35. J. Cho, "Addressing individual atoms in optical lattices with standing-wave driving fields," Phys. Rev. Lett. 99, 020502 (2007).
    [CrossRef] [PubMed]
  36. H. S. Kim, S. H. Yun, H. K. Kim, N. Park, and B. Y. Kim, "Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all-fiber acoustooptic tunable filters," IEEE Photon. Technol. Lett. 10, 790-792 (1998).
    [CrossRef]

2008

H. Li, V. A. Sautenkov, M. M. Kash, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, M. S. Zubairy, and M. O. Scully, "Optical imaging beyond the diffraction limit via dark states," Phys. Rev. A 78, 013803 (2008).
[CrossRef]

M. Kiffner, J. Evers, and M. S. Zubairy, "Resonant interferometric lithography beyond the diffraction limit," Phys. Rev. Lett. 100, 073602 (2008).
[CrossRef] [PubMed]

M. Tsang, "Fundamental quantum limit to the multiphoton absorption rate for monochromatic light," Phys. Rev. Lett. 101, 033602 (2008).
[CrossRef] [PubMed]

S. J. Bentley, "Nonlinear interferometric lithography for arbitrary two-dimensional patterns," J. Micro/Nanolith.MEMS MOEMS 7, 013004 (2008).
[CrossRef]

2007

J. Cho, "Addressing individual atoms in optical lattices with standing-wave driving fields," Phys. Rev. Lett. 99, 020502 (2007).
[CrossRef] [PubMed]

K. J. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. O’Brien, and A. G. White, "Time-reversal and super-resolving phase measurements," Phys. Rev. Lett. 98, 223601 (2007).
[CrossRef] [PubMed]

Q. Sun, P. R. Hemmer, and M. S. Zubairy, "Quantum lithography with classical light: generation of arbitrary patterns," Phys. Rev. A 75, 065803 (2007).
[CrossRef]

C. Thiel, T. Bastin, J. Martin, E. Solano, J. von Zanthier, and G. S. Agarwal, "Quantum imaging with incoherent photons," Phys. Rev. Lett. 99, 133603 (2007).
[CrossRef] [PubMed]

2006

H. J. Chang, H. Shin, M. N. O’Sullivan-Hale, and R. W. Boyd, "Implementation of sub-Rayleigh-resolution lithography using an N-photon absorber," J. Mod. Opt. 53, 2271-2277 (2006).
[CrossRef]

G. Khoury, H. S. Eisenberg, E. J. S. Fonseca, and D. Bouwmeester, "Nonlinear interferometry via Fock-state projection," Phys. Rev. Lett. 96, 203601 (2006).
[CrossRef] [PubMed]

P. R. Hemmer, A. Muthukrishnan, M. O. Scully, and M. S. Zubairy, "Quantum lithography with classical light," Phys. Rev. Lett. 96, 163603 (2006).
[CrossRef] [PubMed]

2005

A. Turlapov, A. Tonyushkin, and T. Sleator, "Talbot-Lau effect for atomic de Broglie waves manipulated with light," Phys. Rev. A 71, 043612 (2005).
[CrossRef]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).
[CrossRef]

J. H. Thywissen and M. Prentiss, "Demonstration of frequency encoding in neutral atom lithography," New J. Phys. 7, 47 (2005).
[CrossRef]

K.-M. C. Fu, C. Santori, C. Stanley, M. C. Holland, and Y. Yamamoto, "Coherent population trapping of electron spins in a high-purity n-type GaAs semiconductor," Phys. Rev. Lett. 95, 187405 (2005).
[CrossRef] [PubMed]

2004

S. J. Bentley and R. W. Boyd, "Nonlinear optical lithography with ultra-high sub-Rayleigh resolution," Opt. Express 12, 5735-5740 (2004).
[CrossRef] [PubMed]

A. Pe’er, B. Dayan, M. Vecelja, Y. Silberberg, and A. A. Friesem, "Quantum lithography by coherent control of classical light pulses," Opt. Express 12, 6600-6605 (2004).
[CrossRef] [PubMed]

M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, "Super-resolving phase measurements with a multiphoton entangled state," Nature 429, 161-164 (2004).
[CrossRef] [PubMed]

P. Walther, J.-W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, and A. Zeilinger, "De Broglie wavelength of a non-local four-photon state," Nature 429, 158-161 (2004).
[CrossRef] [PubMed]

2002

D. V. Krobkin and E. Yablonovitch, "Twofold spatial resolution enhancement by two-photon exposure of photographic film," Opt. Eng. 41, 1729-1732 (2002).
[CrossRef]

2001

G. S. Agarwal, R. W. Boyd, E. M. Nagasako, and S. J. Bentley, "Comment on ‘Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit’," Phys. Rev. Lett. 86, 1389 (2001).
[CrossRef] [PubMed]

M. D’Angelo, M. V. Chekhova, and Y. Shih, "Two-photon diffraction and quantum lithography," Phys. Rev. Lett. 87, 013602 (2001).
[CrossRef] [PubMed]

2000

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, "Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit," Phys. Rev. Lett. 85, 2733 (2000).
[CrossRef] [PubMed]

T. Ito and S. Okazaki, "Pushing the limits of lithography," Nature 406, 1027-1031 (2000).
[CrossRef] [PubMed]

1999

E. Yablonovitch and R. B. Vrijen, "Optical projection lithography at half the Rayleigh resolution limit by two-photon exposure," Opt. Eng. 38, 334-338 (1999).
[CrossRef]

1998

H. S. Kim, S. H. Yun, H. K. Kim, N. Park, and B. Y. Kim, "Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all-fiber acoustooptic tunable filters," IEEE Photon. Technol. Lett. 10, 790-792 (1998).
[CrossRef]

K. S. Johnson, J. H. Thywissen, N. H. Dekker, K. K. Berggren, A. P. Chu, R. Younkin, and M. Prentiss, "Localization of metastable atom beams with optical standing waves Nanolithography at the Heisenberg limit," Science 280, 1583-1586 (1998).
[CrossRef] [PubMed]

1997

B. S. Ham, P. R. Hemmer, and M. S. Shahriar, "Efficient electromagnetically induced transparency in a rare-earth doped crystal," Opt. Commun. 144, 227-230 (1997).
[CrossRef]

1996

A. Kasapi, G. Y. Yin, M. Jain, and S. E. Harris, "Measurement of Lorentzian linewidth by pulse propagation delay," Phys. Rev. A 53, 4547-4555 (1996).
[CrossRef] [PubMed]

A. P. Chu, K. K. Berggren, K. S. Johnson, and M. G. Prentiss, "A virtual slit for atom optics and nanolithography," Quantum Semiclassic. Opt. 8, 521-529 (1996).
[CrossRef]

K. S. Johnson, K. K. Berggren, A. Black, C. T. Black, A. P. Chu, N. H. Dekker, D. C. Ralph, J. H. Thywissen, R. Younkin, M. Tinkham, M. Prentiss, and G. M. Whitesides, "Using neutral metastable argon atoms and contamination lithography to form nanostructures," Appl. Phys. Lett. 69, 2773-2775 (1996).
[CrossRef]

R. Gupta, J. J. McClelland, P. Marte, and R. J. Celotta, "Raman-induced avoided crossings in adiabatic optical potentials Observation of λ/8 spatial frequency in the distribution of atoms," Phys. Rev. Lett. 25, 4689-4692 (1996).
[CrossRef]

1995

K. K. Berggren, A. Bard, J. L. Wilbur, J. D. Gillaspy, A. G. Helg, J. J. McClelland, S. L. Rolston, W. D. Phillips, M. Prentiss, and G. M. Whitesides, "Microlithography by using neutral metastable atoms and self-assembled monolayers," Science 269, 1255-1257 (1995).
[CrossRef] [PubMed]

1994

H. Ooki, M. Komatsu, and M. Shibuya, "A novel super-resolution technique for optical lithography - nonlinear multiple exposure method," Jpn. J. Appl. Phys. 33, L177-L179 (1994).
[CrossRef]

Abrams, D. S.

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, "Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit," Phys. Rev. Lett. 85, 2733 (2000).
[CrossRef] [PubMed]

Agarwal, G. S.

C. Thiel, T. Bastin, J. Martin, E. Solano, J. von Zanthier, and G. S. Agarwal, "Quantum imaging with incoherent photons," Phys. Rev. Lett. 99, 133603 (2007).
[CrossRef] [PubMed]

G. S. Agarwal, R. W. Boyd, E. M. Nagasako, and S. J. Bentley, "Comment on ‘Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit’," Phys. Rev. Lett. 86, 1389 (2001).
[CrossRef] [PubMed]

Aspelmeyer, M.

P. Walther, J.-W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, and A. Zeilinger, "De Broglie wavelength of a non-local four-photon state," Nature 429, 158-161 (2004).
[CrossRef] [PubMed]

Bard, A.

K. K. Berggren, A. Bard, J. L. Wilbur, J. D. Gillaspy, A. G. Helg, J. J. McClelland, S. L. Rolston, W. D. Phillips, M. Prentiss, and G. M. Whitesides, "Microlithography by using neutral metastable atoms and self-assembled monolayers," Science 269, 1255-1257 (1995).
[CrossRef] [PubMed]

Bastin, T.

C. Thiel, T. Bastin, J. Martin, E. Solano, J. von Zanthier, and G. S. Agarwal, "Quantum imaging with incoherent photons," Phys. Rev. Lett. 99, 133603 (2007).
[CrossRef] [PubMed]

Bentley, S. J.

S. J. Bentley, "Nonlinear interferometric lithography for arbitrary two-dimensional patterns," J. Micro/Nanolith.MEMS MOEMS 7, 013004 (2008).
[CrossRef]

S. J. Bentley and R. W. Boyd, "Nonlinear optical lithography with ultra-high sub-Rayleigh resolution," Opt. Express 12, 5735-5740 (2004).
[CrossRef] [PubMed]

G. S. Agarwal, R. W. Boyd, E. M. Nagasako, and S. J. Bentley, "Comment on ‘Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit’," Phys. Rev. Lett. 86, 1389 (2001).
[CrossRef] [PubMed]

Berggren, K. K.

K. S. Johnson, J. H. Thywissen, N. H. Dekker, K. K. Berggren, A. P. Chu, R. Younkin, and M. Prentiss, "Localization of metastable atom beams with optical standing waves Nanolithography at the Heisenberg limit," Science 280, 1583-1586 (1998).
[CrossRef] [PubMed]

K. S. Johnson, K. K. Berggren, A. Black, C. T. Black, A. P. Chu, N. H. Dekker, D. C. Ralph, J. H. Thywissen, R. Younkin, M. Tinkham, M. Prentiss, and G. M. Whitesides, "Using neutral metastable argon atoms and contamination lithography to form nanostructures," Appl. Phys. Lett. 69, 2773-2775 (1996).
[CrossRef]

A. P. Chu, K. K. Berggren, K. S. Johnson, and M. G. Prentiss, "A virtual slit for atom optics and nanolithography," Quantum Semiclassic. Opt. 8, 521-529 (1996).
[CrossRef]

K. K. Berggren, A. Bard, J. L. Wilbur, J. D. Gillaspy, A. G. Helg, J. J. McClelland, S. L. Rolston, W. D. Phillips, M. Prentiss, and G. M. Whitesides, "Microlithography by using neutral metastable atoms and self-assembled monolayers," Science 269, 1255-1257 (1995).
[CrossRef] [PubMed]

Black, A.

K. S. Johnson, K. K. Berggren, A. Black, C. T. Black, A. P. Chu, N. H. Dekker, D. C. Ralph, J. H. Thywissen, R. Younkin, M. Tinkham, M. Prentiss, and G. M. Whitesides, "Using neutral metastable argon atoms and contamination lithography to form nanostructures," Appl. Phys. Lett. 69, 2773-2775 (1996).
[CrossRef]

Black, C. T.

K. S. Johnson, K. K. Berggren, A. Black, C. T. Black, A. P. Chu, N. H. Dekker, D. C. Ralph, J. H. Thywissen, R. Younkin, M. Tinkham, M. Prentiss, and G. M. Whitesides, "Using neutral metastable argon atoms and contamination lithography to form nanostructures," Appl. Phys. Lett. 69, 2773-2775 (1996).
[CrossRef]

Boto, A. N.

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, "Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit," Phys. Rev. Lett. 85, 2733 (2000).
[CrossRef] [PubMed]

Bouwmeester, D.

G. Khoury, H. S. Eisenberg, E. J. S. Fonseca, and D. Bouwmeester, "Nonlinear interferometry via Fock-state projection," Phys. Rev. Lett. 96, 203601 (2006).
[CrossRef] [PubMed]

Boyd, R. W.

H. J. Chang, H. Shin, M. N. O’Sullivan-Hale, and R. W. Boyd, "Implementation of sub-Rayleigh-resolution lithography using an N-photon absorber," J. Mod. Opt. 53, 2271-2277 (2006).
[CrossRef]

S. J. Bentley and R. W. Boyd, "Nonlinear optical lithography with ultra-high sub-Rayleigh resolution," Opt. Express 12, 5735-5740 (2004).
[CrossRef] [PubMed]

G. S. Agarwal, R. W. Boyd, E. M. Nagasako, and S. J. Bentley, "Comment on ‘Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit’," Phys. Rev. Lett. 86, 1389 (2001).
[CrossRef] [PubMed]

Braunstein, S. L.

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, "Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit," Phys. Rev. Lett. 85, 2733 (2000).
[CrossRef] [PubMed]

Celotta, R. J.

R. Gupta, J. J. McClelland, P. Marte, and R. J. Celotta, "Raman-induced avoided crossings in adiabatic optical potentials Observation of λ/8 spatial frequency in the distribution of atoms," Phys. Rev. Lett. 25, 4689-4692 (1996).
[CrossRef]

Chang, H. J.

H. J. Chang, H. Shin, M. N. O’Sullivan-Hale, and R. W. Boyd, "Implementation of sub-Rayleigh-resolution lithography using an N-photon absorber," J. Mod. Opt. 53, 2271-2277 (2006).
[CrossRef]

Chekhova, M. V.

M. D’Angelo, M. V. Chekhova, and Y. Shih, "Two-photon diffraction and quantum lithography," Phys. Rev. Lett. 87, 013602 (2001).
[CrossRef] [PubMed]

Cho, J.

J. Cho, "Addressing individual atoms in optical lattices with standing-wave driving fields," Phys. Rev. Lett. 99, 020502 (2007).
[CrossRef] [PubMed]

Chu, A. P.

K. S. Johnson, J. H. Thywissen, N. H. Dekker, K. K. Berggren, A. P. Chu, R. Younkin, and M. Prentiss, "Localization of metastable atom beams with optical standing waves Nanolithography at the Heisenberg limit," Science 280, 1583-1586 (1998).
[CrossRef] [PubMed]

A. P. Chu, K. K. Berggren, K. S. Johnson, and M. G. Prentiss, "A virtual slit for atom optics and nanolithography," Quantum Semiclassic. Opt. 8, 521-529 (1996).
[CrossRef]

K. S. Johnson, K. K. Berggren, A. Black, C. T. Black, A. P. Chu, N. H. Dekker, D. C. Ralph, J. H. Thywissen, R. Younkin, M. Tinkham, M. Prentiss, and G. M. Whitesides, "Using neutral metastable argon atoms and contamination lithography to form nanostructures," Appl. Phys. Lett. 69, 2773-2775 (1996).
[CrossRef]

D’Angelo, M.

M. D’Angelo, M. V. Chekhova, and Y. Shih, "Two-photon diffraction and quantum lithography," Phys. Rev. Lett. 87, 013602 (2001).
[CrossRef] [PubMed]

Dayan, B.

Dekker, N. H.

K. S. Johnson, J. H. Thywissen, N. H. Dekker, K. K. Berggren, A. P. Chu, R. Younkin, and M. Prentiss, "Localization of metastable atom beams with optical standing waves Nanolithography at the Heisenberg limit," Science 280, 1583-1586 (1998).
[CrossRef] [PubMed]

K. S. Johnson, K. K. Berggren, A. Black, C. T. Black, A. P. Chu, N. H. Dekker, D. C. Ralph, J. H. Thywissen, R. Younkin, M. Tinkham, M. Prentiss, and G. M. Whitesides, "Using neutral metastable argon atoms and contamination lithography to form nanostructures," Appl. Phys. Lett. 69, 2773-2775 (1996).
[CrossRef]

Dowling, J. P.

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, "Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit," Phys. Rev. Lett. 85, 2733 (2000).
[CrossRef] [PubMed]

Eisenberg, H. S.

G. Khoury, H. S. Eisenberg, E. J. S. Fonseca, and D. Bouwmeester, "Nonlinear interferometry via Fock-state projection," Phys. Rev. Lett. 96, 203601 (2006).
[CrossRef] [PubMed]

Evers, J.

M. Kiffner, J. Evers, and M. S. Zubairy, "Resonant interferometric lithography beyond the diffraction limit," Phys. Rev. Lett. 100, 073602 (2008).
[CrossRef] [PubMed]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).
[CrossRef]

Fonseca, E. J. S.

G. Khoury, H. S. Eisenberg, E. J. S. Fonseca, and D. Bouwmeester, "Nonlinear interferometry via Fock-state projection," Phys. Rev. Lett. 96, 203601 (2006).
[CrossRef] [PubMed]

Friesem, A. A.

Fu, K.-M. C.

K.-M. C. Fu, C. Santori, C. Stanley, M. C. Holland, and Y. Yamamoto, "Coherent population trapping of electron spins in a high-purity n-type GaAs semiconductor," Phys. Rev. Lett. 95, 187405 (2005).
[CrossRef] [PubMed]

Gasparoni, S.

P. Walther, J.-W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, and A. Zeilinger, "De Broglie wavelength of a non-local four-photon state," Nature 429, 158-161 (2004).
[CrossRef] [PubMed]

Gilchrist, A.

K. J. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. O’Brien, and A. G. White, "Time-reversal and super-resolving phase measurements," Phys. Rev. Lett. 98, 223601 (2007).
[CrossRef] [PubMed]

Gillaspy, J. D.

K. K. Berggren, A. Bard, J. L. Wilbur, J. D. Gillaspy, A. G. Helg, J. J. McClelland, S. L. Rolston, W. D. Phillips, M. Prentiss, and G. M. Whitesides, "Microlithography by using neutral metastable atoms and self-assembled monolayers," Science 269, 1255-1257 (1995).
[CrossRef] [PubMed]

Gupta, R.

R. Gupta, J. J. McClelland, P. Marte, and R. J. Celotta, "Raman-induced avoided crossings in adiabatic optical potentials Observation of λ/8 spatial frequency in the distribution of atoms," Phys. Rev. Lett. 25, 4689-4692 (1996).
[CrossRef]

Ham, B. S.

B. S. Ham, P. R. Hemmer, and M. S. Shahriar, "Efficient electromagnetically induced transparency in a rare-earth doped crystal," Opt. Commun. 144, 227-230 (1997).
[CrossRef]

Harris, S. E.

A. Kasapi, G. Y. Yin, M. Jain, and S. E. Harris, "Measurement of Lorentzian linewidth by pulse propagation delay," Phys. Rev. A 53, 4547-4555 (1996).
[CrossRef] [PubMed]

Helg, A. G.

K. K. Berggren, A. Bard, J. L. Wilbur, J. D. Gillaspy, A. G. Helg, J. J. McClelland, S. L. Rolston, W. D. Phillips, M. Prentiss, and G. M. Whitesides, "Microlithography by using neutral metastable atoms and self-assembled monolayers," Science 269, 1255-1257 (1995).
[CrossRef] [PubMed]

Hemmer, P. R.

Q. Sun, P. R. Hemmer, and M. S. Zubairy, "Quantum lithography with classical light: generation of arbitrary patterns," Phys. Rev. A 75, 065803 (2007).
[CrossRef]

P. R. Hemmer, A. Muthukrishnan, M. O. Scully, and M. S. Zubairy, "Quantum lithography with classical light," Phys. Rev. Lett. 96, 163603 (2006).
[CrossRef] [PubMed]

B. S. Ham, P. R. Hemmer, and M. S. Shahriar, "Efficient electromagnetically induced transparency in a rare-earth doped crystal," Opt. Commun. 144, 227-230 (1997).
[CrossRef]

Holland, M. C.

K.-M. C. Fu, C. Santori, C. Stanley, M. C. Holland, and Y. Yamamoto, "Coherent population trapping of electron spins in a high-purity n-type GaAs semiconductor," Phys. Rev. Lett. 95, 187405 (2005).
[CrossRef] [PubMed]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).
[CrossRef]

Ito, T.

T. Ito and S. Okazaki, "Pushing the limits of lithography," Nature 406, 1027-1031 (2000).
[CrossRef] [PubMed]

Jain, M.

A. Kasapi, G. Y. Yin, M. Jain, and S. E. Harris, "Measurement of Lorentzian linewidth by pulse propagation delay," Phys. Rev. A 53, 4547-4555 (1996).
[CrossRef] [PubMed]

Johnson, K. S.

K. S. Johnson, J. H. Thywissen, N. H. Dekker, K. K. Berggren, A. P. Chu, R. Younkin, and M. Prentiss, "Localization of metastable atom beams with optical standing waves Nanolithography at the Heisenberg limit," Science 280, 1583-1586 (1998).
[CrossRef] [PubMed]

A. P. Chu, K. K. Berggren, K. S. Johnson, and M. G. Prentiss, "A virtual slit for atom optics and nanolithography," Quantum Semiclassic. Opt. 8, 521-529 (1996).
[CrossRef]

K. S. Johnson, K. K. Berggren, A. Black, C. T. Black, A. P. Chu, N. H. Dekker, D. C. Ralph, J. H. Thywissen, R. Younkin, M. Tinkham, M. Prentiss, and G. M. Whitesides, "Using neutral metastable argon atoms and contamination lithography to form nanostructures," Appl. Phys. Lett. 69, 2773-2775 (1996).
[CrossRef]

Kasapi, A.

A. Kasapi, G. Y. Yin, M. Jain, and S. E. Harris, "Measurement of Lorentzian linewidth by pulse propagation delay," Phys. Rev. A 53, 4547-4555 (1996).
[CrossRef] [PubMed]

Kash, M. M.

H. Li, V. A. Sautenkov, M. M. Kash, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, M. S. Zubairy, and M. O. Scully, "Optical imaging beyond the diffraction limit via dark states," Phys. Rev. A 78, 013803 (2008).
[CrossRef]

Khoury, G.

G. Khoury, H. S. Eisenberg, E. J. S. Fonseca, and D. Bouwmeester, "Nonlinear interferometry via Fock-state projection," Phys. Rev. Lett. 96, 203601 (2006).
[CrossRef] [PubMed]

Kiffner, M.

M. Kiffner, J. Evers, and M. S. Zubairy, "Resonant interferometric lithography beyond the diffraction limit," Phys. Rev. Lett. 100, 073602 (2008).
[CrossRef] [PubMed]

Kim, B. Y.

H. S. Kim, S. H. Yun, H. K. Kim, N. Park, and B. Y. Kim, "Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all-fiber acoustooptic tunable filters," IEEE Photon. Technol. Lett. 10, 790-792 (1998).
[CrossRef]

Kim, H. K.

H. S. Kim, S. H. Yun, H. K. Kim, N. Park, and B. Y. Kim, "Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all-fiber acoustooptic tunable filters," IEEE Photon. Technol. Lett. 10, 790-792 (1998).
[CrossRef]

Kim, H. S.

H. S. Kim, S. H. Yun, H. K. Kim, N. Park, and B. Y. Kim, "Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all-fiber acoustooptic tunable filters," IEEE Photon. Technol. Lett. 10, 790-792 (1998).
[CrossRef]

Kok, P.

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, "Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit," Phys. Rev. Lett. 85, 2733 (2000).
[CrossRef] [PubMed]

Komatsu, M.

H. Ooki, M. Komatsu, and M. Shibuya, "A novel super-resolution technique for optical lithography - nonlinear multiple exposure method," Jpn. J. Appl. Phys. 33, L177-L179 (1994).
[CrossRef]

Krobkin, D. V.

D. V. Krobkin and E. Yablonovitch, "Twofold spatial resolution enhancement by two-photon exposure of photographic film," Opt. Eng. 41, 1729-1732 (2002).
[CrossRef]

Li, H.

H. Li, V. A. Sautenkov, M. M. Kash, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, M. S. Zubairy, and M. O. Scully, "Optical imaging beyond the diffraction limit via dark states," Phys. Rev. A 78, 013803 (2008).
[CrossRef]

Lundeen, J. S.

M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, "Super-resolving phase measurements with a multiphoton entangled state," Nature 429, 161-164 (2004).
[CrossRef] [PubMed]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).
[CrossRef]

Marte, P.

R. Gupta, J. J. McClelland, P. Marte, and R. J. Celotta, "Raman-induced avoided crossings in adiabatic optical potentials Observation of λ/8 spatial frequency in the distribution of atoms," Phys. Rev. Lett. 25, 4689-4692 (1996).
[CrossRef]

Martin, J.

C. Thiel, T. Bastin, J. Martin, E. Solano, J. von Zanthier, and G. S. Agarwal, "Quantum imaging with incoherent photons," Phys. Rev. Lett. 99, 133603 (2007).
[CrossRef] [PubMed]

McClelland, J. J.

R. Gupta, J. J. McClelland, P. Marte, and R. J. Celotta, "Raman-induced avoided crossings in adiabatic optical potentials Observation of λ/8 spatial frequency in the distribution of atoms," Phys. Rev. Lett. 25, 4689-4692 (1996).
[CrossRef]

K. K. Berggren, A. Bard, J. L. Wilbur, J. D. Gillaspy, A. G. Helg, J. J. McClelland, S. L. Rolston, W. D. Phillips, M. Prentiss, and G. M. Whitesides, "Microlithography by using neutral metastable atoms and self-assembled monolayers," Science 269, 1255-1257 (1995).
[CrossRef] [PubMed]

Mitchell, M. W.

M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, "Super-resolving phase measurements with a multiphoton entangled state," Nature 429, 161-164 (2004).
[CrossRef] [PubMed]

Muthukrishnan, A.

P. R. Hemmer, A. Muthukrishnan, M. O. Scully, and M. S. Zubairy, "Quantum lithography with classical light," Phys. Rev. Lett. 96, 163603 (2006).
[CrossRef] [PubMed]

Nagasako, E. M.

G. S. Agarwal, R. W. Boyd, E. M. Nagasako, and S. J. Bentley, "Comment on ‘Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit’," Phys. Rev. Lett. 86, 1389 (2001).
[CrossRef] [PubMed]

O’Brien, J. L.

K. J. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. O’Brien, and A. G. White, "Time-reversal and super-resolving phase measurements," Phys. Rev. Lett. 98, 223601 (2007).
[CrossRef] [PubMed]

O’Sullivan-Hale, M. N.

H. J. Chang, H. Shin, M. N. O’Sullivan-Hale, and R. W. Boyd, "Implementation of sub-Rayleigh-resolution lithography using an N-photon absorber," J. Mod. Opt. 53, 2271-2277 (2006).
[CrossRef]

Okazaki, S.

T. Ito and S. Okazaki, "Pushing the limits of lithography," Nature 406, 1027-1031 (2000).
[CrossRef] [PubMed]

Ooki, H.

H. Ooki, M. Komatsu, and M. Shibuya, "A novel super-resolution technique for optical lithography - nonlinear multiple exposure method," Jpn. J. Appl. Phys. 33, L177-L179 (1994).
[CrossRef]

Pan, J.-W.

P. Walther, J.-W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, and A. Zeilinger, "De Broglie wavelength of a non-local four-photon state," Nature 429, 158-161 (2004).
[CrossRef] [PubMed]

Park, N.

H. S. Kim, S. H. Yun, H. K. Kim, N. Park, and B. Y. Kim, "Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all-fiber acoustooptic tunable filters," IEEE Photon. Technol. Lett. 10, 790-792 (1998).
[CrossRef]

Pe’er, A.

Phillips, W. D.

K. K. Berggren, A. Bard, J. L. Wilbur, J. D. Gillaspy, A. G. Helg, J. J. McClelland, S. L. Rolston, W. D. Phillips, M. Prentiss, and G. M. Whitesides, "Microlithography by using neutral metastable atoms and self-assembled monolayers," Science 269, 1255-1257 (1995).
[CrossRef] [PubMed]

Pregnell, K. L.

K. J. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. O’Brien, and A. G. White, "Time-reversal and super-resolving phase measurements," Phys. Rev. Lett. 98, 223601 (2007).
[CrossRef] [PubMed]

Prentiss, M.

J. H. Thywissen and M. Prentiss, "Demonstration of frequency encoding in neutral atom lithography," New J. Phys. 7, 47 (2005).
[CrossRef]

K. S. Johnson, J. H. Thywissen, N. H. Dekker, K. K. Berggren, A. P. Chu, R. Younkin, and M. Prentiss, "Localization of metastable atom beams with optical standing waves Nanolithography at the Heisenberg limit," Science 280, 1583-1586 (1998).
[CrossRef] [PubMed]

K. S. Johnson, K. K. Berggren, A. Black, C. T. Black, A. P. Chu, N. H. Dekker, D. C. Ralph, J. H. Thywissen, R. Younkin, M. Tinkham, M. Prentiss, and G. M. Whitesides, "Using neutral metastable argon atoms and contamination lithography to form nanostructures," Appl. Phys. Lett. 69, 2773-2775 (1996).
[CrossRef]

K. K. Berggren, A. Bard, J. L. Wilbur, J. D. Gillaspy, A. G. Helg, J. J. McClelland, S. L. Rolston, W. D. Phillips, M. Prentiss, and G. M. Whitesides, "Microlithography by using neutral metastable atoms and self-assembled monolayers," Science 269, 1255-1257 (1995).
[CrossRef] [PubMed]

Prentiss, M. G.

A. P. Chu, K. K. Berggren, K. S. Johnson, and M. G. Prentiss, "A virtual slit for atom optics and nanolithography," Quantum Semiclassic. Opt. 8, 521-529 (1996).
[CrossRef]

Prevedel, R.

K. J. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. O’Brien, and A. G. White, "Time-reversal and super-resolving phase measurements," Phys. Rev. Lett. 98, 223601 (2007).
[CrossRef] [PubMed]

Pryde, G. J.

K. J. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. O’Brien, and A. G. White, "Time-reversal and super-resolving phase measurements," Phys. Rev. Lett. 98, 223601 (2007).
[CrossRef] [PubMed]

Ralph, D. C.

K. S. Johnson, K. K. Berggren, A. Black, C. T. Black, A. P. Chu, N. H. Dekker, D. C. Ralph, J. H. Thywissen, R. Younkin, M. Tinkham, M. Prentiss, and G. M. Whitesides, "Using neutral metastable argon atoms and contamination lithography to form nanostructures," Appl. Phys. Lett. 69, 2773-2775 (1996).
[CrossRef]

Resch, K. J.

K. J. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. O’Brien, and A. G. White, "Time-reversal and super-resolving phase measurements," Phys. Rev. Lett. 98, 223601 (2007).
[CrossRef] [PubMed]

Rolston, S. L.

K. K. Berggren, A. Bard, J. L. Wilbur, J. D. Gillaspy, A. G. Helg, J. J. McClelland, S. L. Rolston, W. D. Phillips, M. Prentiss, and G. M. Whitesides, "Microlithography by using neutral metastable atoms and self-assembled monolayers," Science 269, 1255-1257 (1995).
[CrossRef] [PubMed]

Rostovtsev, Y. V.

H. Li, V. A. Sautenkov, M. M. Kash, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, M. S. Zubairy, and M. O. Scully, "Optical imaging beyond the diffraction limit via dark states," Phys. Rev. A 78, 013803 (2008).
[CrossRef]

Santori, C.

K.-M. C. Fu, C. Santori, C. Stanley, M. C. Holland, and Y. Yamamoto, "Coherent population trapping of electron spins in a high-purity n-type GaAs semiconductor," Phys. Rev. Lett. 95, 187405 (2005).
[CrossRef] [PubMed]

Sautenkov, V. A.

H. Li, V. A. Sautenkov, M. M. Kash, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, M. S. Zubairy, and M. O. Scully, "Optical imaging beyond the diffraction limit via dark states," Phys. Rev. A 78, 013803 (2008).
[CrossRef]

Scully, M. O.

H. Li, V. A. Sautenkov, M. M. Kash, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, M. S. Zubairy, and M. O. Scully, "Optical imaging beyond the diffraction limit via dark states," Phys. Rev. A 78, 013803 (2008).
[CrossRef]

P. R. Hemmer, A. Muthukrishnan, M. O. Scully, and M. S. Zubairy, "Quantum lithography with classical light," Phys. Rev. Lett. 96, 163603 (2006).
[CrossRef] [PubMed]

Shahriar, M. S.

B. S. Ham, P. R. Hemmer, and M. S. Shahriar, "Efficient electromagnetically induced transparency in a rare-earth doped crystal," Opt. Commun. 144, 227-230 (1997).
[CrossRef]

Shibuya, M.

H. Ooki, M. Komatsu, and M. Shibuya, "A novel super-resolution technique for optical lithography - nonlinear multiple exposure method," Jpn. J. Appl. Phys. 33, L177-L179 (1994).
[CrossRef]

Shih, Y.

M. D’Angelo, M. V. Chekhova, and Y. Shih, "Two-photon diffraction and quantum lithography," Phys. Rev. Lett. 87, 013602 (2001).
[CrossRef] [PubMed]

Shin, H.

H. J. Chang, H. Shin, M. N. O’Sullivan-Hale, and R. W. Boyd, "Implementation of sub-Rayleigh-resolution lithography using an N-photon absorber," J. Mod. Opt. 53, 2271-2277 (2006).
[CrossRef]

Silberberg, Y.

Sleator, T.

A. Turlapov, A. Tonyushkin, and T. Sleator, "Talbot-Lau effect for atomic de Broglie waves manipulated with light," Phys. Rev. A 71, 043612 (2005).
[CrossRef]

Sokolov, A. V.

H. Li, V. A. Sautenkov, M. M. Kash, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, M. S. Zubairy, and M. O. Scully, "Optical imaging beyond the diffraction limit via dark states," Phys. Rev. A 78, 013803 (2008).
[CrossRef]

Solano, E.

C. Thiel, T. Bastin, J. Martin, E. Solano, J. von Zanthier, and G. S. Agarwal, "Quantum imaging with incoherent photons," Phys. Rev. Lett. 99, 133603 (2007).
[CrossRef] [PubMed]

Stanley, C.

K.-M. C. Fu, C. Santori, C. Stanley, M. C. Holland, and Y. Yamamoto, "Coherent population trapping of electron spins in a high-purity n-type GaAs semiconductor," Phys. Rev. Lett. 95, 187405 (2005).
[CrossRef] [PubMed]

Steinberg, A. M.

M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, "Super-resolving phase measurements with a multiphoton entangled state," Nature 429, 161-164 (2004).
[CrossRef] [PubMed]

Sun, Q.

Q. Sun, P. R. Hemmer, and M. S. Zubairy, "Quantum lithography with classical light: generation of arbitrary patterns," Phys. Rev. A 75, 065803 (2007).
[CrossRef]

Thiel, C.

C. Thiel, T. Bastin, J. Martin, E. Solano, J. von Zanthier, and G. S. Agarwal, "Quantum imaging with incoherent photons," Phys. Rev. Lett. 99, 133603 (2007).
[CrossRef] [PubMed]

Thywissen, J. H.

J. H. Thywissen and M. Prentiss, "Demonstration of frequency encoding in neutral atom lithography," New J. Phys. 7, 47 (2005).
[CrossRef]

K. S. Johnson, J. H. Thywissen, N. H. Dekker, K. K. Berggren, A. P. Chu, R. Younkin, and M. Prentiss, "Localization of metastable atom beams with optical standing waves Nanolithography at the Heisenberg limit," Science 280, 1583-1586 (1998).
[CrossRef] [PubMed]

K. S. Johnson, K. K. Berggren, A. Black, C. T. Black, A. P. Chu, N. H. Dekker, D. C. Ralph, J. H. Thywissen, R. Younkin, M. Tinkham, M. Prentiss, and G. M. Whitesides, "Using neutral metastable argon atoms and contamination lithography to form nanostructures," Appl. Phys. Lett. 69, 2773-2775 (1996).
[CrossRef]

Tinkham, M.

K. S. Johnson, K. K. Berggren, A. Black, C. T. Black, A. P. Chu, N. H. Dekker, D. C. Ralph, J. H. Thywissen, R. Younkin, M. Tinkham, M. Prentiss, and G. M. Whitesides, "Using neutral metastable argon atoms and contamination lithography to form nanostructures," Appl. Phys. Lett. 69, 2773-2775 (1996).
[CrossRef]

Tonyushkin, A.

A. Turlapov, A. Tonyushkin, and T. Sleator, "Talbot-Lau effect for atomic de Broglie waves manipulated with light," Phys. Rev. A 71, 043612 (2005).
[CrossRef]

Tsang, M.

M. Tsang, "Fundamental quantum limit to the multiphoton absorption rate for monochromatic light," Phys. Rev. Lett. 101, 033602 (2008).
[CrossRef] [PubMed]

Turlapov, A.

A. Turlapov, A. Tonyushkin, and T. Sleator, "Talbot-Lau effect for atomic de Broglie waves manipulated with light," Phys. Rev. A 71, 043612 (2005).
[CrossRef]

Ursin, R.

P. Walther, J.-W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, and A. Zeilinger, "De Broglie wavelength of a non-local four-photon state," Nature 429, 158-161 (2004).
[CrossRef] [PubMed]

Vecelja, M.

von Zanthier, J.

C. Thiel, T. Bastin, J. Martin, E. Solano, J. von Zanthier, and G. S. Agarwal, "Quantum imaging with incoherent photons," Phys. Rev. Lett. 99, 133603 (2007).
[CrossRef] [PubMed]

Vrijen, R. B.

E. Yablonovitch and R. B. Vrijen, "Optical projection lithography at half the Rayleigh resolution limit by two-photon exposure," Opt. Eng. 38, 334-338 (1999).
[CrossRef]

Walther, P.

P. Walther, J.-W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, and A. Zeilinger, "De Broglie wavelength of a non-local four-photon state," Nature 429, 158-161 (2004).
[CrossRef] [PubMed]

Welch, G. R.

H. Li, V. A. Sautenkov, M. M. Kash, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, M. S. Zubairy, and M. O. Scully, "Optical imaging beyond the diffraction limit via dark states," Phys. Rev. A 78, 013803 (2008).
[CrossRef]

White, A. G.

K. J. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. O’Brien, and A. G. White, "Time-reversal and super-resolving phase measurements," Phys. Rev. Lett. 98, 223601 (2007).
[CrossRef] [PubMed]

Whitesides, G. M.

K. S. Johnson, K. K. Berggren, A. Black, C. T. Black, A. P. Chu, N. H. Dekker, D. C. Ralph, J. H. Thywissen, R. Younkin, M. Tinkham, M. Prentiss, and G. M. Whitesides, "Using neutral metastable argon atoms and contamination lithography to form nanostructures," Appl. Phys. Lett. 69, 2773-2775 (1996).
[CrossRef]

K. K. Berggren, A. Bard, J. L. Wilbur, J. D. Gillaspy, A. G. Helg, J. J. McClelland, S. L. Rolston, W. D. Phillips, M. Prentiss, and G. M. Whitesides, "Microlithography by using neutral metastable atoms and self-assembled monolayers," Science 269, 1255-1257 (1995).
[CrossRef] [PubMed]

Wilbur, J. L.

K. K. Berggren, A. Bard, J. L. Wilbur, J. D. Gillaspy, A. G. Helg, J. J. McClelland, S. L. Rolston, W. D. Phillips, M. Prentiss, and G. M. Whitesides, "Microlithography by using neutral metastable atoms and self-assembled monolayers," Science 269, 1255-1257 (1995).
[CrossRef] [PubMed]

Williams, C. P.

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, "Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit," Phys. Rev. Lett. 85, 2733 (2000).
[CrossRef] [PubMed]

Yablonovitch, E.

D. V. Krobkin and E. Yablonovitch, "Twofold spatial resolution enhancement by two-photon exposure of photographic film," Opt. Eng. 41, 1729-1732 (2002).
[CrossRef]

E. Yablonovitch and R. B. Vrijen, "Optical projection lithography at half the Rayleigh resolution limit by two-photon exposure," Opt. Eng. 38, 334-338 (1999).
[CrossRef]

Yamamoto, Y.

K.-M. C. Fu, C. Santori, C. Stanley, M. C. Holland, and Y. Yamamoto, "Coherent population trapping of electron spins in a high-purity n-type GaAs semiconductor," Phys. Rev. Lett. 95, 187405 (2005).
[CrossRef] [PubMed]

Yin, G. Y.

A. Kasapi, G. Y. Yin, M. Jain, and S. E. Harris, "Measurement of Lorentzian linewidth by pulse propagation delay," Phys. Rev. A 53, 4547-4555 (1996).
[CrossRef] [PubMed]

Younkin, R.

K. S. Johnson, J. H. Thywissen, N. H. Dekker, K. K. Berggren, A. P. Chu, R. Younkin, and M. Prentiss, "Localization of metastable atom beams with optical standing waves Nanolithography at the Heisenberg limit," Science 280, 1583-1586 (1998).
[CrossRef] [PubMed]

K. S. Johnson, K. K. Berggren, A. Black, C. T. Black, A. P. Chu, N. H. Dekker, D. C. Ralph, J. H. Thywissen, R. Younkin, M. Tinkham, M. Prentiss, and G. M. Whitesides, "Using neutral metastable argon atoms and contamination lithography to form nanostructures," Appl. Phys. Lett. 69, 2773-2775 (1996).
[CrossRef]

Yun, S. H.

H. S. Kim, S. H. Yun, H. K. Kim, N. Park, and B. Y. Kim, "Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all-fiber acoustooptic tunable filters," IEEE Photon. Technol. Lett. 10, 790-792 (1998).
[CrossRef]

Zeilinger, A.

P. Walther, J.-W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, and A. Zeilinger, "De Broglie wavelength of a non-local four-photon state," Nature 429, 158-161 (2004).
[CrossRef] [PubMed]

Zubairy, M. S.

M. Kiffner, J. Evers, and M. S. Zubairy, "Resonant interferometric lithography beyond the diffraction limit," Phys. Rev. Lett. 100, 073602 (2008).
[CrossRef] [PubMed]

H. Li, V. A. Sautenkov, M. M. Kash, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, M. S. Zubairy, and M. O. Scully, "Optical imaging beyond the diffraction limit via dark states," Phys. Rev. A 78, 013803 (2008).
[CrossRef]

Q. Sun, P. R. Hemmer, and M. S. Zubairy, "Quantum lithography with classical light: generation of arbitrary patterns," Phys. Rev. A 75, 065803 (2007).
[CrossRef]

P. R. Hemmer, A. Muthukrishnan, M. O. Scully, and M. S. Zubairy, "Quantum lithography with classical light," Phys. Rev. Lett. 96, 163603 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett.

K. S. Johnson, K. K. Berggren, A. Black, C. T. Black, A. P. Chu, N. H. Dekker, D. C. Ralph, J. H. Thywissen, R. Younkin, M. Tinkham, M. Prentiss, and G. M. Whitesides, "Using neutral metastable argon atoms and contamination lithography to form nanostructures," Appl. Phys. Lett. 69, 2773-2775 (1996).
[CrossRef]

IEEE Photon. Technol. Lett.

H. S. Kim, S. H. Yun, H. K. Kim, N. Park, and B. Y. Kim, "Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all-fiber acoustooptic tunable filters," IEEE Photon. Technol. Lett. 10, 790-792 (1998).
[CrossRef]

J. Mod. Opt.

H. J. Chang, H. Shin, M. N. O’Sullivan-Hale, and R. W. Boyd, "Implementation of sub-Rayleigh-resolution lithography using an N-photon absorber," J. Mod. Opt. 53, 2271-2277 (2006).
[CrossRef]

Jpn. J. Appl. Phys.

H. Ooki, M. Komatsu, and M. Shibuya, "A novel super-resolution technique for optical lithography - nonlinear multiple exposure method," Jpn. J. Appl. Phys. 33, L177-L179 (1994).
[CrossRef]

MEMS MOEMS

S. J. Bentley, "Nonlinear interferometric lithography for arbitrary two-dimensional patterns," J. Micro/Nanolith.MEMS MOEMS 7, 013004 (2008).
[CrossRef]

Nature

T. Ito and S. Okazaki, "Pushing the limits of lithography," Nature 406, 1027-1031 (2000).
[CrossRef] [PubMed]

M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, "Super-resolving phase measurements with a multiphoton entangled state," Nature 429, 161-164 (2004).
[CrossRef] [PubMed]

P. Walther, J.-W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, and A. Zeilinger, "De Broglie wavelength of a non-local four-photon state," Nature 429, 158-161 (2004).
[CrossRef] [PubMed]

New J. Phys.

J. H. Thywissen and M. Prentiss, "Demonstration of frequency encoding in neutral atom lithography," New J. Phys. 7, 47 (2005).
[CrossRef]

Opt. Commun.

B. S. Ham, P. R. Hemmer, and M. S. Shahriar, "Efficient electromagnetically induced transparency in a rare-earth doped crystal," Opt. Commun. 144, 227-230 (1997).
[CrossRef]

Opt. Eng.

E. Yablonovitch and R. B. Vrijen, "Optical projection lithography at half the Rayleigh resolution limit by two-photon exposure," Opt. Eng. 38, 334-338 (1999).
[CrossRef]

D. V. Krobkin and E. Yablonovitch, "Twofold spatial resolution enhancement by two-photon exposure of photographic film," Opt. Eng. 41, 1729-1732 (2002).
[CrossRef]

Opt. Express

Phys. Rev. A

A. Kasapi, G. Y. Yin, M. Jain, and S. E. Harris, "Measurement of Lorentzian linewidth by pulse propagation delay," Phys. Rev. A 53, 4547-4555 (1996).
[CrossRef] [PubMed]

A. Turlapov, A. Tonyushkin, and T. Sleator, "Talbot-Lau effect for atomic de Broglie waves manipulated with light," Phys. Rev. A 71, 043612 (2005).
[CrossRef]

Q. Sun, P. R. Hemmer, and M. S. Zubairy, "Quantum lithography with classical light: generation of arbitrary patterns," Phys. Rev. A 75, 065803 (2007).
[CrossRef]

H. Li, V. A. Sautenkov, M. M. Kash, A. V. Sokolov, G. R. Welch, Y. V. Rostovtsev, M. S. Zubairy, and M. O. Scully, "Optical imaging beyond the diffraction limit via dark states," Phys. Rev. A 78, 013803 (2008).
[CrossRef]

Phys. Rev. Lett.

M. Kiffner, J. Evers, and M. S. Zubairy, "Resonant interferometric lithography beyond the diffraction limit," Phys. Rev. Lett. 100, 073602 (2008).
[CrossRef] [PubMed]

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, "Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit," Phys. Rev. Lett. 85, 2733 (2000).
[CrossRef] [PubMed]

G. S. Agarwal, R. W. Boyd, E. M. Nagasako, and S. J. Bentley, "Comment on ‘Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit’," Phys. Rev. Lett. 86, 1389 (2001).
[CrossRef] [PubMed]

M. D’Angelo, M. V. Chekhova, and Y. Shih, "Two-photon diffraction and quantum lithography," Phys. Rev. Lett. 87, 013602 (2001).
[CrossRef] [PubMed]

C. Thiel, T. Bastin, J. Martin, E. Solano, J. von Zanthier, and G. S. Agarwal, "Quantum imaging with incoherent photons," Phys. Rev. Lett. 99, 133603 (2007).
[CrossRef] [PubMed]

K. J. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. O’Brien, and A. G. White, "Time-reversal and super-resolving phase measurements," Phys. Rev. Lett. 98, 223601 (2007).
[CrossRef] [PubMed]

R. Gupta, J. J. McClelland, P. Marte, and R. J. Celotta, "Raman-induced avoided crossings in adiabatic optical potentials Observation of λ/8 spatial frequency in the distribution of atoms," Phys. Rev. Lett. 25, 4689-4692 (1996).
[CrossRef]

M. Tsang, "Fundamental quantum limit to the multiphoton absorption rate for monochromatic light," Phys. Rev. Lett. 101, 033602 (2008).
[CrossRef] [PubMed]

G. Khoury, H. S. Eisenberg, E. J. S. Fonseca, and D. Bouwmeester, "Nonlinear interferometry via Fock-state projection," Phys. Rev. Lett. 96, 203601 (2006).
[CrossRef] [PubMed]

P. R. Hemmer, A. Muthukrishnan, M. O. Scully, and M. S. Zubairy, "Quantum lithography with classical light," Phys. Rev. Lett. 96, 163603 (2006).
[CrossRef] [PubMed]

K.-M. C. Fu, C. Santori, C. Stanley, M. C. Holland, and Y. Yamamoto, "Coherent population trapping of electron spins in a high-purity n-type GaAs semiconductor," Phys. Rev. Lett. 95, 187405 (2005).
[CrossRef] [PubMed]

J. Cho, "Addressing individual atoms in optical lattices with standing-wave driving fields," Phys. Rev. Lett. 99, 020502 (2007).
[CrossRef] [PubMed]

Quantum Semiclassic. Opt.

A. P. Chu, K. K. Berggren, K. S. Johnson, and M. G. Prentiss, "A virtual slit for atom optics and nanolithography," Quantum Semiclassic. Opt. 8, 521-529 (1996).
[CrossRef]

Rev. Mod. Phys.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).
[CrossRef]

Science

K. S. Johnson, J. H. Thywissen, N. H. Dekker, K. K. Berggren, A. P. Chu, R. Younkin, and M. Prentiss, "Localization of metastable atom beams with optical standing waves Nanolithography at the Heisenberg limit," Science 280, 1583-1586 (1998).
[CrossRef] [PubMed]

K. K. Berggren, A. Bard, J. L. Wilbur, J. D. Gillaspy, A. G. Helg, J. J. McClelland, S. L. Rolston, W. D. Phillips, M. Prentiss, and G. M. Whitesides, "Microlithography by using neutral metastable atoms and self-assembled monolayers," Science 269, 1255-1257 (1995).
[CrossRef] [PubMed]

Other

K. Wang and D.-Z. Cao, "Subwavelength coincidence interference with classical thermal light," Phys. Rev. A 70, 041801(R) (2004).
[CrossRef]

E. Arimondo, "Coherent population trapping in laser spectroscopy," in Progress in Optics XXXV, E. Wolf, ed., (Elsevier, Amsterdam, 1996), pp. 257-354.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic of super-resolution lithography setup. Each of the signal 1 and signal 2 fields generates a standing wave that has an identical fringe amplitude and phase shifted by π/2 with each other. (b) Atomic level structure of the substrate. Sν, Rν , and Q are the Rabi frequencies of the corresponding transitions that are driven by the signal 1, signal 2, and ancilla fields, respectively. (c) Sequence of the phase shift applied to the signal 1 and 2 fields for generating interferometric fringes with a period of π/k0 ·1/N. In step A, only the signal fields are exposed to the substrate, and in step B, only the ancilla field is turned on.

Fig. 2.
Fig. 2.

State density profile generated by the proposed lithography process with N=10. (a) Final profile (solid line) approximating the target pattern (dashed line) composed of (b) ten individual state density factors. For comparison, the 20-element truncated Fourier series with frequency components of -10·(k 0/π), -9·(k 0/π), …, 9·(k 0/π) is drawn with a dotted line.

Fig. 3.
Fig. 3.

State density of |g 1〉 after a unit exposure step; (a) with varied decoherence rate γ d (|S|2+|R|22, Γ12=Γ/2), (b) with varied decay rate ratio Γ21 (|S|2+|R|2=(0.1Γ)2, Γ12=Γ, γ d =Γ).

Fig. 4.
Fig. 4.

Final state density of |g 1〉 after multiple exposures with standing waves; (a) line and space, (b) elbow, (c) island patterns. The insets are target patterns. (a) was drawn according to equation (2) with a 1D configuration, and (b) and (c) were drawn with a 2D configuration in which standing wave vectors were aligned along 0, π/6, …, 5π/6 with respect to the x-axis and six exposure steps were performed with each angle setup.

Fig. 5.
Fig. 5.

Sub-diffraction-limited patterns drawn with the point-by-point method; (a) line and space, (b) elbow, (c) island patterns. (a) was drawn with ten one-dimensional notches of equation (2), and (b) and (c) were drawn with 484 two-dimensional notches. The FWHM of each notch was one tenth of an ordinary standing wave.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

D A = ( S g 1 R g 2 ) S 2 + R 2 ,
g 1 ψ final 2 = ν = 1 N [ ( 1 cos ( 2 k 0 z + 2 π ( ν 1 ) N ) ) ] 2 = 1 2 N ( 1 cos ( 2 N k 0 z ) 2 ) ,
g 1 ψ final 2 = ν = 1 N [ 1 + r ν e 2 ik 0 z + r ν * e 2 ik 0 z 1 + 2 r ν ] = ν = 1 N 1 ( 1 + 2 r ν ) μ = 0 N ( f μ e 2 i μ k 0 z + c . c . ) ,
2 f 0 = 1 + Σ r ν 1 r ν 2 * + Σ r ν 1 r ν 2 r ν 3 * r ν 4 * + ,
f 1 = Σ r ν 1 + Σ r ν 1 r ν 2 r ν 3 * + Σ r ν 1 r ν 2 r ν 3 r ν 4 * r ν 5 * + ,
f N = r 1 r 2 r N ,
g 1 ψ final 2 = S 0 2 sin 2 ( k 0 z + ϕ 2 ) R 0 2 + S 0 2 sin 2 ( k 0 z + ϕ 2 ) .

Metrics