Abstract

This paper reports on the results of research into passively mode-locked fiber laser with a record-setting optical length of the resonant cavity amounting to 3.8 km. Significant elongation of the laser resonator led to more than two orders of magnitude increase in the output pulse energy at the same pump radiation power. At ultra-low (for mode-locked lasers) pulse repetition rate (77 kHz) and pulse duration of 3 ns the energy per pulse reached 3.9 µJ. At this moment this is the highest pulse energy on record generated directly from a mode-locked laser without Q-switching, cavity dumping techniques, or additional optical amplifiers.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Lin, H. R. Chen, H. H. Hsu, M. D. Wei, K. H. Lin, and W. F. Hsieh, "Stable Q-switched mode-locked Nd3+:LuVO4 laser by Cr4+:YAG crystal," Opt. Express,  16, 16538-16545 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-21-16538.
    [PubMed]
  2. J. K. Jabczyński, W. Zendzian, and J. Kwiatkowski, "Q-switched mode-locking with acousto-optic modulator in a diode pumped Nd:YVO4 laser," Opt. Express 14, 2184-2190 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-6-2184.
    [CrossRef] [PubMed]
  3. R. H. Johnson, E. H. C. Young, C. R. Burr, and R. M. Montgomery, "Mode-locked cavity-dumped laser," United States Patent 3995231, 30.11.1976.
  4. N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, "Roadmap to ultra-short record high-energy pulses out of laser oscillators," Phys. Lett. A 372, 3124-3128 (2008).
    [CrossRef]
  5. W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, "Dissipative soliton resonances in laser models with parameter management," J. Opt. Soc. Am. B 25, 1972-1977 (2008), http://www.opticsinfobase.org/abstract.cfm?uri=josab-25-12-1972.
    [CrossRef]
  6. V. Z. Kolev, M. J. Lederer, B. Luther-Davies, and A. V. Rode, "Passive mode locking of a Nd:YVO4 laser with an extra-long optical resonator," Opt. Lett. 28, 1275-1277 (2003), http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-28-14-1275.
    [CrossRef] [PubMed]
  7. K. H. Fong, S. Y. Kim, K. Kikuchi, H. Yaguchi, and S. Y. Set, "Generation of low-repetition rate high-energy picosecond pulses from a single-wall carbon nanotube mode-locked fiber laser," presented at the Optical Amplifiers and their Applications Conference (OAA 2006), Whistler, British Columbia, Canada, OMD4, 25-30 June 2006.
  8. K. H. Fong, S. Y. Set, and K. Kikuchi, "High-energy ultrashort pulse generation from a fundamentally mode-locked fiber laser at 1.7 MHz," presented at the Optical Fiber Communication Conference (OFC 2007), Anaheim, CA, 2007, OTuF2, 25-29 March 2007.
  9. A. B. Grudinin, D. N. Payne, P. W. Turner, L. J.A. Nilsson, M. N. Zervas, M. Ibsen, and M. K. Durkin, "Multi-fibre arrangements for high power fibre lasers and amplifiers," United States Patent 6826335, 30.11.2004,.
  10. C. J. Chen, P. K. A. Wai, and C. R. Menyuk, "Soliton fiber ring laser," Opt. Lett. 17, 417-419 (1992), http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-17-6-417.
    [CrossRef] [PubMed]
  11. V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, "Selfstarting passively mode-locked fibre ring soliton laser exploiting non linear polarisation rotation," Electron. Lett. 28,2226-2228 (1992).
    [CrossRef]
  12. A. Chong, W. H. Renninger, and F. W. Wise, "Propeties of normal-dispersion femtosecond fiber lasers," J. Opt. Soc. Am. B,  25, 140-148 (2008), http://www.opticsinfobase.org/josab/abstract.cfm?uri=josab-25-2-140.
    [CrossRef]
  13. A. Chong, J. Buckley, W. H. Renninger, and F. W. Wise, "All-normal-dispersion femtosecond fiber laser," Opt. Express. 14, 10095-10100 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-21-10095.
    [CrossRef] [PubMed]
  14. A. Chong, W. H. Renninger, and F. W. Wise, "All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ," Opt. Lett. 32, 2408-2410 (2007), http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-32-16-2408.
    [CrossRef] [PubMed]

2008

2007

2006

2003

1992

C. J. Chen, P. K. A. Wai, and C. R. Menyuk, "Soliton fiber ring laser," Opt. Lett. 17, 417-419 (1992), http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-17-6-417.
[CrossRef] [PubMed]

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, "Selfstarting passively mode-locked fibre ring soliton laser exploiting non linear polarisation rotation," Electron. Lett. 28,2226-2228 (1992).
[CrossRef]

Akhmediev, N.

Ankiewicz, A.

Buckley, J.

A. Chong, J. Buckley, W. H. Renninger, and F. W. Wise, "All-normal-dispersion femtosecond fiber laser," Opt. Express. 14, 10095-10100 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-21-10095.
[CrossRef] [PubMed]

Chang, W.

Chen, C. J.

Chen, H. R.

Chong, A.

Grelu, Ph.

N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, "Roadmap to ultra-short record high-energy pulses out of laser oscillators," Phys. Lett. A 372, 3124-3128 (2008).
[CrossRef]

Hsieh, W. F.

Hsu, H. H.

Jabczynski, J. K.

Kolev, V. Z.

Kwiatkowski, J.

Lederer, M. J.

Lin, J. H.

Lin, K. H.

Luther-Davies, B.

Matsas, V. J.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, "Selfstarting passively mode-locked fibre ring soliton laser exploiting non linear polarisation rotation," Electron. Lett. 28,2226-2228 (1992).
[CrossRef]

Menyuk, C. R.

Newson, T. P.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, "Selfstarting passively mode-locked fibre ring soliton laser exploiting non linear polarisation rotation," Electron. Lett. 28,2226-2228 (1992).
[CrossRef]

Payne, D. N.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, "Selfstarting passively mode-locked fibre ring soliton laser exploiting non linear polarisation rotation," Electron. Lett. 28,2226-2228 (1992).
[CrossRef]

Renninger, W. H.

Richardson, D. J.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, "Selfstarting passively mode-locked fibre ring soliton laser exploiting non linear polarisation rotation," Electron. Lett. 28,2226-2228 (1992).
[CrossRef]

Rode, A. V.

Soto-Crespo, J. M.

Wai, P. K. A.

Wei, M. D.

Wise, F. W.

Zendzian, W.

Electron. Lett.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, "Selfstarting passively mode-locked fibre ring soliton laser exploiting non linear polarisation rotation," Electron. Lett. 28,2226-2228 (1992).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Express.

A. Chong, J. Buckley, W. H. Renninger, and F. W. Wise, "All-normal-dispersion femtosecond fiber laser," Opt. Express. 14, 10095-10100 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-21-10095.
[CrossRef] [PubMed]

Opt. Lett.

Phys. Lett. A

N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, "Roadmap to ultra-short record high-energy pulses out of laser oscillators," Phys. Lett. A 372, 3124-3128 (2008).
[CrossRef]

Other

K. H. Fong, S. Y. Kim, K. Kikuchi, H. Yaguchi, and S. Y. Set, "Generation of low-repetition rate high-energy picosecond pulses from a single-wall carbon nanotube mode-locked fiber laser," presented at the Optical Amplifiers and their Applications Conference (OAA 2006), Whistler, British Columbia, Canada, OMD4, 25-30 June 2006.

K. H. Fong, S. Y. Set, and K. Kikuchi, "High-energy ultrashort pulse generation from a fundamentally mode-locked fiber laser at 1.7 MHz," presented at the Optical Fiber Communication Conference (OFC 2007), Anaheim, CA, 2007, OTuF2, 25-29 March 2007.

A. B. Grudinin, D. N. Payne, P. W. Turner, L. J.A. Nilsson, M. N. Zervas, M. Ibsen, and M. K. Durkin, "Multi-fibre arrangements for high power fibre lasers and amplifiers," United States Patent 6826335, 30.11.2004,.

R. H. Johnson, E. H. C. Young, C. R. Burr, and R. M. Montgomery, "Mode-locked cavity-dumped laser," United States Patent 3995231, 30.11.1976.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of fiber laser: MO - microscope objective, PBS — polarizing beam splitter, M1-M3 — high-reflectivity mirrors, λ/4 — quarter-wave plate, λ/2 — half-wave plate.

Fig. 2.
Fig. 2.

(a) Background-free autocorrelation trace of chirped pulses from laser output, insertion: optical spectrum of the laser; (b) Interferometric autocorrelation trace of the dechirped laser pulses.

Fig. 3.
Fig. 3.

Schematic of extra-long mode-locked fiber laser: F2 — All-wave fiber, length of 2,6 km.

Fig. 4.
Fig. 4.

Temporal distribution of laser radiation intensity in different types of mode-locked operation: a — generation of single 3-ns pulses, b — generation of multiple nanosecond pulse trains, c — generation of single nanosecond pulses with noticeable microsecond-long pedestal. For all types of operation the pulse period (or period of pulse trains in case b) was ~ 13 µs.

Fig. 5.
Fig. 5.

Optical spectra of ultra-long mode-locked Yb-doped fiber laser: on the left: spectrum in the case of single 3-ns pulses generation, insertion: real-time oscilloscope trace of single pulse train; on the right: spectrum in the case of multiple nanosecond pulse trains generation.

Metrics