Abstract

Optically powered networks are demonstrated. Heterogeneous subscribers having widely varying needs with respect to power and bandwidth can be effectively controlled and optically supplied by a central office. The success of the scheme relies both on power-efficient innovative hardware and on a novel low-energy medium access control protocol. We demonstrate a sensor network with subscribers consuming less than 1 µW average power, and an optically powered high-speed video link transmitting data at a bitrate of 100 Mbit/s.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Th. Pfeiffer, J. Hehmann, H. Schmuck, W. Freude, J. Vandewege, and H. Yanagisawa, "Monitoring and protecting the optical layer in FTTH networks," in Proc. FTTH Conf. & Expo, Las Vegas (NV), USA, Oct. 3-6, 2005.
  2. B. C. DeLoach, R. C. Miller, and S. Kaufman, "Sound alerter powered over an optical fiber," Bell. Syst. Tech. J. 57, 3309−3316 (1978).
  3. R. C. Miller and R. B. Lawry, "Optically powered speech communication over a fiber lightguide," Bell. Syst. Tech. J. 58, 1735−1741 (1979).
  4. R. C. Miller, B. C. DeLoach, T. S. Stakelon, and R. B. Lawry, "Wideband, bidirectional lightguide communication with an optically powered audio channel," Bell Syst. Tech. J. 61, 1359-1365 (1982).
  5. H. Kirkham and A. R. Johnston, "Optically powered data link for power system applications," IEEE Trans. Power Delivery 4, 1997−2004 (1989).
    [CrossRef]
  6. T. C. Banwell, R. C. Estes, L. A. Reith, P. W. Shumate, Jr., and E. M. Vogel, "Powering the fiber loop optically — A cost analysis," J. Lightwave Technol. 11, 481−494 (1993).
    [CrossRef]
  7. S. J. Pember, C. M. France, and B. E. Jones, "A multiplexed network of optically powered, addressed and interrogated hybrid resonant sensors," Sens. Actuators A 47, 474−477 (1995).
    [CrossRef]
  8. M. Q. Feng, "Optically powered electrical accelerometer and its field testing," J. Eng. Mech. 124, 513−519 (1998).
    [CrossRef]
  9. R. Pena, C. Algora, I. R. Matías, and M. López-Amo, "Fiber-based 205-mW (27% efficiency) power-delivery system for an all-fiber network with optoelectronic sensor units," Appl. Opt. 38, 2463−2466 (1999).
    [CrossRef]
  10. H. Miyakawa, Y. Tanaka, and T. Kurokawa, "Design approaches to power-over-optical local-area-network systems," Appl. Opt. 43, 1379−1389 (2004).
    [CrossRef] [PubMed]
  11. G. Böttger, M. Dreschmann, C. Klamouris, M. Hübner, M. Röger, A. W. Bett, T. Kueng, J. Becker, W. Freude, and J. Leuthold, "An optically powered video camera link," IEEE Photon. Technol. Lett. 20, 39-41 (2008).
    [CrossRef]
  12. K. Liu, "Power budget considerations for optically activated conventional sensors and actuators," IEEE Trans. Instrum. Meas. 40, 25−27 (1991).
    [CrossRef]
  13. S. van Riesen, U. Schubert, and A. W. Bett, "GaAs photovoltaic cells for laser power beaming at high power densities," in Proc. 17th Eur. PV Solar Energy Conf., Munich, Germany, 2001, 18−21, Paper VA1/26.
  14. H. Miyakawa, Y. Tanaka, and T. Kurokawa, "Photovoltaic cell characteristics for high-intensity laser light," Sol. Energy Mater. Sol. Cells 86, 253-267 (2005).
    [CrossRef]
  15. J. G. Werthen, "Powering next generation networks by laserlight over fiber," in The Opt. Fiber Communication Conf. and Exposition and The National Fiber Optic Engineers Conf., Technical Digest (CD) (Optical Society of America, 2008), Paper OWO3, http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-OWO3.
  16. C. R. Giles, A. Dentai, C. A. Burrus, L. Kohutich, and J. Centanni, "Microwatt-power InGaAs photogenerator for lightwave networks," IEEE Photon. Technol. Lett. 9, 666−668 (1997).
    [CrossRef]
  17. A. G. Dentai, C. R. Giles, E. Burrows, C. A. Burrus, L. Stulz, J. Centanni, J. Hoffman, and B. Moyer, "A long-wavelength 10-V optical-to-electrical InGaAs photogenerator," IEEE Photon. Technol. Lett. 11, 114−116 (1999).
    [CrossRef]
  18. W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, "Energy-efficient communication protocol for wireless microsensor networks," in Proc. 33 rd Hawaii Int. Conf. System Sciences, Hawaii, Jan. 4-7, 2000, vol. 2, 1-10.
  19. W. Ye, J. Heidemann, and D. Estrin, "An energy-efficient MAC protocol for wireless sensor networks," in Proc. IEEE Infocom, New York, June 2002, 1567-1576.
  20. W. Ye, F. Silva, and J. Heidemann, "Ultra-low duty cycle MAC with scheduled channel polling," in Proc. 4th ACM SenSys Conf., Boulder (CO), Nov. 1-3, 2006, 321-334. In this Reference, the term "polling" refers to each subscriber sampling the channel to check for activity.
  21. In this paper, the term "polling" is used to indicate a CO listening to and/or interrogating subscribers.
  22. Our wavelength-optimized photovoltaic converter has a high conversion efficiency of up to 50 % depending on illumination power and load [´ 13]. For low optical input powers, a pin-photodiode with very small saturation current is optimum.
  23. Mixed signal microcontroller, Texas Instruments MSP430-family. At 3.6 V and in low-power mode LPM3-VLO ("sleep mode", internal inaccurate clock active) we measured a supply current of 0.5 µA, in LPM3-LFXT1 ("snooze mode", external accurate quartz clock active) it was 1 µA. Further modes are memory retention mode LPM4 (0.1 µA) and active mode (390 µA). An interrupt event can wake up the device from any of the low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program.
  24. Microcontroller UART tutorial: http://www.societyofrobots.com/microcontroller_uart.shtml.

2008 (1)

G. Böttger, M. Dreschmann, C. Klamouris, M. Hübner, M. Röger, A. W. Bett, T. Kueng, J. Becker, W. Freude, and J. Leuthold, "An optically powered video camera link," IEEE Photon. Technol. Lett. 20, 39-41 (2008).
[CrossRef]

2005 (1)

H. Miyakawa, Y. Tanaka, and T. Kurokawa, "Photovoltaic cell characteristics for high-intensity laser light," Sol. Energy Mater. Sol. Cells 86, 253-267 (2005).
[CrossRef]

2004 (1)

1999 (2)

A. G. Dentai, C. R. Giles, E. Burrows, C. A. Burrus, L. Stulz, J. Centanni, J. Hoffman, and B. Moyer, "A long-wavelength 10-V optical-to-electrical InGaAs photogenerator," IEEE Photon. Technol. Lett. 11, 114−116 (1999).
[CrossRef]

R. Pena, C. Algora, I. R. Matías, and M. López-Amo, "Fiber-based 205-mW (27% efficiency) power-delivery system for an all-fiber network with optoelectronic sensor units," Appl. Opt. 38, 2463−2466 (1999).
[CrossRef]

1998 (1)

M. Q. Feng, "Optically powered electrical accelerometer and its field testing," J. Eng. Mech. 124, 513−519 (1998).
[CrossRef]

1997 (1)

C. R. Giles, A. Dentai, C. A. Burrus, L. Kohutich, and J. Centanni, "Microwatt-power InGaAs photogenerator for lightwave networks," IEEE Photon. Technol. Lett. 9, 666−668 (1997).
[CrossRef]

1995 (1)

S. J. Pember, C. M. France, and B. E. Jones, "A multiplexed network of optically powered, addressed and interrogated hybrid resonant sensors," Sens. Actuators A 47, 474−477 (1995).
[CrossRef]

1993 (1)

T. C. Banwell, R. C. Estes, L. A. Reith, P. W. Shumate, Jr., and E. M. Vogel, "Powering the fiber loop optically — A cost analysis," J. Lightwave Technol. 11, 481−494 (1993).
[CrossRef]

1991 (1)

K. Liu, "Power budget considerations for optically activated conventional sensors and actuators," IEEE Trans. Instrum. Meas. 40, 25−27 (1991).
[CrossRef]

1989 (1)

H. Kirkham and A. R. Johnston, "Optically powered data link for power system applications," IEEE Trans. Power Delivery 4, 1997−2004 (1989).
[CrossRef]

1982 (1)

R. C. Miller, B. C. DeLoach, T. S. Stakelon, and R. B. Lawry, "Wideband, bidirectional lightguide communication with an optically powered audio channel," Bell Syst. Tech. J. 61, 1359-1365 (1982).

1979 (1)

R. C. Miller and R. B. Lawry, "Optically powered speech communication over a fiber lightguide," Bell. Syst. Tech. J. 58, 1735−1741 (1979).

1978 (1)

B. C. DeLoach, R. C. Miller, and S. Kaufman, "Sound alerter powered over an optical fiber," Bell. Syst. Tech. J. 57, 3309−3316 (1978).

Algora, C.

Banwell, T. C.

T. C. Banwell, R. C. Estes, L. A. Reith, P. W. Shumate, Jr., and E. M. Vogel, "Powering the fiber loop optically — A cost analysis," J. Lightwave Technol. 11, 481−494 (1993).
[CrossRef]

Becker, J.

G. Böttger, M. Dreschmann, C. Klamouris, M. Hübner, M. Röger, A. W. Bett, T. Kueng, J. Becker, W. Freude, and J. Leuthold, "An optically powered video camera link," IEEE Photon. Technol. Lett. 20, 39-41 (2008).
[CrossRef]

Bett, A. W.

G. Böttger, M. Dreschmann, C. Klamouris, M. Hübner, M. Röger, A. W. Bett, T. Kueng, J. Becker, W. Freude, and J. Leuthold, "An optically powered video camera link," IEEE Photon. Technol. Lett. 20, 39-41 (2008).
[CrossRef]

Böttger, G.

G. Böttger, M. Dreschmann, C. Klamouris, M. Hübner, M. Röger, A. W. Bett, T. Kueng, J. Becker, W. Freude, and J. Leuthold, "An optically powered video camera link," IEEE Photon. Technol. Lett. 20, 39-41 (2008).
[CrossRef]

Burrows, E.

A. G. Dentai, C. R. Giles, E. Burrows, C. A. Burrus, L. Stulz, J. Centanni, J. Hoffman, and B. Moyer, "A long-wavelength 10-V optical-to-electrical InGaAs photogenerator," IEEE Photon. Technol. Lett. 11, 114−116 (1999).
[CrossRef]

Burrus, C. A.

A. G. Dentai, C. R. Giles, E. Burrows, C. A. Burrus, L. Stulz, J. Centanni, J. Hoffman, and B. Moyer, "A long-wavelength 10-V optical-to-electrical InGaAs photogenerator," IEEE Photon. Technol. Lett. 11, 114−116 (1999).
[CrossRef]

C. R. Giles, A. Dentai, C. A. Burrus, L. Kohutich, and J. Centanni, "Microwatt-power InGaAs photogenerator for lightwave networks," IEEE Photon. Technol. Lett. 9, 666−668 (1997).
[CrossRef]

Centanni, J.

A. G. Dentai, C. R. Giles, E. Burrows, C. A. Burrus, L. Stulz, J. Centanni, J. Hoffman, and B. Moyer, "A long-wavelength 10-V optical-to-electrical InGaAs photogenerator," IEEE Photon. Technol. Lett. 11, 114−116 (1999).
[CrossRef]

C. R. Giles, A. Dentai, C. A. Burrus, L. Kohutich, and J. Centanni, "Microwatt-power InGaAs photogenerator for lightwave networks," IEEE Photon. Technol. Lett. 9, 666−668 (1997).
[CrossRef]

DeLoach, B. C.

R. C. Miller, B. C. DeLoach, T. S. Stakelon, and R. B. Lawry, "Wideband, bidirectional lightguide communication with an optically powered audio channel," Bell Syst. Tech. J. 61, 1359-1365 (1982).

B. C. DeLoach, R. C. Miller, and S. Kaufman, "Sound alerter powered over an optical fiber," Bell. Syst. Tech. J. 57, 3309−3316 (1978).

Dentai, A.

C. R. Giles, A. Dentai, C. A. Burrus, L. Kohutich, and J. Centanni, "Microwatt-power InGaAs photogenerator for lightwave networks," IEEE Photon. Technol. Lett. 9, 666−668 (1997).
[CrossRef]

Dentai, A. G.

A. G. Dentai, C. R. Giles, E. Burrows, C. A. Burrus, L. Stulz, J. Centanni, J. Hoffman, and B. Moyer, "A long-wavelength 10-V optical-to-electrical InGaAs photogenerator," IEEE Photon. Technol. Lett. 11, 114−116 (1999).
[CrossRef]

Dreschmann, M.

G. Böttger, M. Dreschmann, C. Klamouris, M. Hübner, M. Röger, A. W. Bett, T. Kueng, J. Becker, W. Freude, and J. Leuthold, "An optically powered video camera link," IEEE Photon. Technol. Lett. 20, 39-41 (2008).
[CrossRef]

Estes, R. C.

T. C. Banwell, R. C. Estes, L. A. Reith, P. W. Shumate, Jr., and E. M. Vogel, "Powering the fiber loop optically — A cost analysis," J. Lightwave Technol. 11, 481−494 (1993).
[CrossRef]

Feng, M. Q.

M. Q. Feng, "Optically powered electrical accelerometer and its field testing," J. Eng. Mech. 124, 513−519 (1998).
[CrossRef]

France, C. M.

S. J. Pember, C. M. France, and B. E. Jones, "A multiplexed network of optically powered, addressed and interrogated hybrid resonant sensors," Sens. Actuators A 47, 474−477 (1995).
[CrossRef]

Freude, W.

G. Böttger, M. Dreschmann, C. Klamouris, M. Hübner, M. Röger, A. W. Bett, T. Kueng, J. Becker, W. Freude, and J. Leuthold, "An optically powered video camera link," IEEE Photon. Technol. Lett. 20, 39-41 (2008).
[CrossRef]

Giles, C. R.

A. G. Dentai, C. R. Giles, E. Burrows, C. A. Burrus, L. Stulz, J. Centanni, J. Hoffman, and B. Moyer, "A long-wavelength 10-V optical-to-electrical InGaAs photogenerator," IEEE Photon. Technol. Lett. 11, 114−116 (1999).
[CrossRef]

C. R. Giles, A. Dentai, C. A. Burrus, L. Kohutich, and J. Centanni, "Microwatt-power InGaAs photogenerator for lightwave networks," IEEE Photon. Technol. Lett. 9, 666−668 (1997).
[CrossRef]

Hoffman, J.

A. G. Dentai, C. R. Giles, E. Burrows, C. A. Burrus, L. Stulz, J. Centanni, J. Hoffman, and B. Moyer, "A long-wavelength 10-V optical-to-electrical InGaAs photogenerator," IEEE Photon. Technol. Lett. 11, 114−116 (1999).
[CrossRef]

Hübner, M.

G. Böttger, M. Dreschmann, C. Klamouris, M. Hübner, M. Röger, A. W. Bett, T. Kueng, J. Becker, W. Freude, and J. Leuthold, "An optically powered video camera link," IEEE Photon. Technol. Lett. 20, 39-41 (2008).
[CrossRef]

Johnston, A. R.

H. Kirkham and A. R. Johnston, "Optically powered data link for power system applications," IEEE Trans. Power Delivery 4, 1997−2004 (1989).
[CrossRef]

Jones, B. E.

S. J. Pember, C. M. France, and B. E. Jones, "A multiplexed network of optically powered, addressed and interrogated hybrid resonant sensors," Sens. Actuators A 47, 474−477 (1995).
[CrossRef]

Kaufman, S.

B. C. DeLoach, R. C. Miller, and S. Kaufman, "Sound alerter powered over an optical fiber," Bell. Syst. Tech. J. 57, 3309−3316 (1978).

Kirkham, H.

H. Kirkham and A. R. Johnston, "Optically powered data link for power system applications," IEEE Trans. Power Delivery 4, 1997−2004 (1989).
[CrossRef]

Klamouris, C.

G. Böttger, M. Dreschmann, C. Klamouris, M. Hübner, M. Röger, A. W. Bett, T. Kueng, J. Becker, W. Freude, and J. Leuthold, "An optically powered video camera link," IEEE Photon. Technol. Lett. 20, 39-41 (2008).
[CrossRef]

Kohutich, L.

C. R. Giles, A. Dentai, C. A. Burrus, L. Kohutich, and J. Centanni, "Microwatt-power InGaAs photogenerator for lightwave networks," IEEE Photon. Technol. Lett. 9, 666−668 (1997).
[CrossRef]

Kueng, T.

G. Böttger, M. Dreschmann, C. Klamouris, M. Hübner, M. Röger, A. W. Bett, T. Kueng, J. Becker, W. Freude, and J. Leuthold, "An optically powered video camera link," IEEE Photon. Technol. Lett. 20, 39-41 (2008).
[CrossRef]

Kurokawa, T.

H. Miyakawa, Y. Tanaka, and T. Kurokawa, "Photovoltaic cell characteristics for high-intensity laser light," Sol. Energy Mater. Sol. Cells 86, 253-267 (2005).
[CrossRef]

H. Miyakawa, Y. Tanaka, and T. Kurokawa, "Design approaches to power-over-optical local-area-network systems," Appl. Opt. 43, 1379−1389 (2004).
[CrossRef] [PubMed]

Lawry, R. B.

R. C. Miller, B. C. DeLoach, T. S. Stakelon, and R. B. Lawry, "Wideband, bidirectional lightguide communication with an optically powered audio channel," Bell Syst. Tech. J. 61, 1359-1365 (1982).

R. C. Miller and R. B. Lawry, "Optically powered speech communication over a fiber lightguide," Bell. Syst. Tech. J. 58, 1735−1741 (1979).

Leuthold, J.

G. Böttger, M. Dreschmann, C. Klamouris, M. Hübner, M. Röger, A. W. Bett, T. Kueng, J. Becker, W. Freude, and J. Leuthold, "An optically powered video camera link," IEEE Photon. Technol. Lett. 20, 39-41 (2008).
[CrossRef]

Liu, K.

K. Liu, "Power budget considerations for optically activated conventional sensors and actuators," IEEE Trans. Instrum. Meas. 40, 25−27 (1991).
[CrossRef]

López-Amo, M.

Matías, I. R.

Miller, R. C.

R. C. Miller, B. C. DeLoach, T. S. Stakelon, and R. B. Lawry, "Wideband, bidirectional lightguide communication with an optically powered audio channel," Bell Syst. Tech. J. 61, 1359-1365 (1982).

R. C. Miller and R. B. Lawry, "Optically powered speech communication over a fiber lightguide," Bell. Syst. Tech. J. 58, 1735−1741 (1979).

B. C. DeLoach, R. C. Miller, and S. Kaufman, "Sound alerter powered over an optical fiber," Bell. Syst. Tech. J. 57, 3309−3316 (1978).

Miyakawa, H.

H. Miyakawa, Y. Tanaka, and T. Kurokawa, "Photovoltaic cell characteristics for high-intensity laser light," Sol. Energy Mater. Sol. Cells 86, 253-267 (2005).
[CrossRef]

H. Miyakawa, Y. Tanaka, and T. Kurokawa, "Design approaches to power-over-optical local-area-network systems," Appl. Opt. 43, 1379−1389 (2004).
[CrossRef] [PubMed]

Moyer, B.

A. G. Dentai, C. R. Giles, E. Burrows, C. A. Burrus, L. Stulz, J. Centanni, J. Hoffman, and B. Moyer, "A long-wavelength 10-V optical-to-electrical InGaAs photogenerator," IEEE Photon. Technol. Lett. 11, 114−116 (1999).
[CrossRef]

Pember, S. J.

S. J. Pember, C. M. France, and B. E. Jones, "A multiplexed network of optically powered, addressed and interrogated hybrid resonant sensors," Sens. Actuators A 47, 474−477 (1995).
[CrossRef]

Pena, R.

Reith, L. A.

T. C. Banwell, R. C. Estes, L. A. Reith, P. W. Shumate, Jr., and E. M. Vogel, "Powering the fiber loop optically — A cost analysis," J. Lightwave Technol. 11, 481−494 (1993).
[CrossRef]

Röger, M.

G. Böttger, M. Dreschmann, C. Klamouris, M. Hübner, M. Röger, A. W. Bett, T. Kueng, J. Becker, W. Freude, and J. Leuthold, "An optically powered video camera link," IEEE Photon. Technol. Lett. 20, 39-41 (2008).
[CrossRef]

Shumate, P. W.

T. C. Banwell, R. C. Estes, L. A. Reith, P. W. Shumate, Jr., and E. M. Vogel, "Powering the fiber loop optically — A cost analysis," J. Lightwave Technol. 11, 481−494 (1993).
[CrossRef]

Stakelon, T. S.

R. C. Miller, B. C. DeLoach, T. S. Stakelon, and R. B. Lawry, "Wideband, bidirectional lightguide communication with an optically powered audio channel," Bell Syst. Tech. J. 61, 1359-1365 (1982).

Stulz, L.

A. G. Dentai, C. R. Giles, E. Burrows, C. A. Burrus, L. Stulz, J. Centanni, J. Hoffman, and B. Moyer, "A long-wavelength 10-V optical-to-electrical InGaAs photogenerator," IEEE Photon. Technol. Lett. 11, 114−116 (1999).
[CrossRef]

Tanaka, Y.

H. Miyakawa, Y. Tanaka, and T. Kurokawa, "Photovoltaic cell characteristics for high-intensity laser light," Sol. Energy Mater. Sol. Cells 86, 253-267 (2005).
[CrossRef]

H. Miyakawa, Y. Tanaka, and T. Kurokawa, "Design approaches to power-over-optical local-area-network systems," Appl. Opt. 43, 1379−1389 (2004).
[CrossRef] [PubMed]

Vogel, E. M.

T. C. Banwell, R. C. Estes, L. A. Reith, P. W. Shumate, Jr., and E. M. Vogel, "Powering the fiber loop optically — A cost analysis," J. Lightwave Technol. 11, 481−494 (1993).
[CrossRef]

Appl. Opt. (2)

Bell Syst. Tech. J. (1)

R. C. Miller, B. C. DeLoach, T. S. Stakelon, and R. B. Lawry, "Wideband, bidirectional lightguide communication with an optically powered audio channel," Bell Syst. Tech. J. 61, 1359-1365 (1982).

Bell. Syst. Tech. J. (2)

B. C. DeLoach, R. C. Miller, and S. Kaufman, "Sound alerter powered over an optical fiber," Bell. Syst. Tech. J. 57, 3309−3316 (1978).

R. C. Miller and R. B. Lawry, "Optically powered speech communication over a fiber lightguide," Bell. Syst. Tech. J. 58, 1735−1741 (1979).

IEEE Photon. Technol. Lett. (3)

C. R. Giles, A. Dentai, C. A. Burrus, L. Kohutich, and J. Centanni, "Microwatt-power InGaAs photogenerator for lightwave networks," IEEE Photon. Technol. Lett. 9, 666−668 (1997).
[CrossRef]

A. G. Dentai, C. R. Giles, E. Burrows, C. A. Burrus, L. Stulz, J. Centanni, J. Hoffman, and B. Moyer, "A long-wavelength 10-V optical-to-electrical InGaAs photogenerator," IEEE Photon. Technol. Lett. 11, 114−116 (1999).
[CrossRef]

G. Böttger, M. Dreschmann, C. Klamouris, M. Hübner, M. Röger, A. W. Bett, T. Kueng, J. Becker, W. Freude, and J. Leuthold, "An optically powered video camera link," IEEE Photon. Technol. Lett. 20, 39-41 (2008).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

K. Liu, "Power budget considerations for optically activated conventional sensors and actuators," IEEE Trans. Instrum. Meas. 40, 25−27 (1991).
[CrossRef]

IEEE Trans. Power Delivery (1)

H. Kirkham and A. R. Johnston, "Optically powered data link for power system applications," IEEE Trans. Power Delivery 4, 1997−2004 (1989).
[CrossRef]

J. Eng. Mech. (1)

M. Q. Feng, "Optically powered electrical accelerometer and its field testing," J. Eng. Mech. 124, 513−519 (1998).
[CrossRef]

J. Lightwave Technol. (1)

T. C. Banwell, R. C. Estes, L. A. Reith, P. W. Shumate, Jr., and E. M. Vogel, "Powering the fiber loop optically — A cost analysis," J. Lightwave Technol. 11, 481−494 (1993).
[CrossRef]

Sens. Actuators A (1)

S. J. Pember, C. M. France, and B. E. Jones, "A multiplexed network of optically powered, addressed and interrogated hybrid resonant sensors," Sens. Actuators A 47, 474−477 (1995).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

H. Miyakawa, Y. Tanaka, and T. Kurokawa, "Photovoltaic cell characteristics for high-intensity laser light," Sol. Energy Mater. Sol. Cells 86, 253-267 (2005).
[CrossRef]

Other (10)

J. G. Werthen, "Powering next generation networks by laserlight over fiber," in The Opt. Fiber Communication Conf. and Exposition and The National Fiber Optic Engineers Conf., Technical Digest (CD) (Optical Society of America, 2008), Paper OWO3, http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-OWO3.

S. van Riesen, U. Schubert, and A. W. Bett, "GaAs photovoltaic cells for laser power beaming at high power densities," in Proc. 17th Eur. PV Solar Energy Conf., Munich, Germany, 2001, 18−21, Paper VA1/26.

Th. Pfeiffer, J. Hehmann, H. Schmuck, W. Freude, J. Vandewege, and H. Yanagisawa, "Monitoring and protecting the optical layer in FTTH networks," in Proc. FTTH Conf. & Expo, Las Vegas (NV), USA, Oct. 3-6, 2005.

W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, "Energy-efficient communication protocol for wireless microsensor networks," in Proc. 33 rd Hawaii Int. Conf. System Sciences, Hawaii, Jan. 4-7, 2000, vol. 2, 1-10.

W. Ye, J. Heidemann, and D. Estrin, "An energy-efficient MAC protocol for wireless sensor networks," in Proc. IEEE Infocom, New York, June 2002, 1567-1576.

W. Ye, F. Silva, and J. Heidemann, "Ultra-low duty cycle MAC with scheduled channel polling," in Proc. 4th ACM SenSys Conf., Boulder (CO), Nov. 1-3, 2006, 321-334. In this Reference, the term "polling" refers to each subscriber sampling the channel to check for activity.

In this paper, the term "polling" is used to indicate a CO listening to and/or interrogating subscribers.

Our wavelength-optimized photovoltaic converter has a high conversion efficiency of up to 50 % depending on illumination power and load [´ 13]. For low optical input powers, a pin-photodiode with very small saturation current is optimum.

Mixed signal microcontroller, Texas Instruments MSP430-family. At 3.6 V and in low-power mode LPM3-VLO ("sleep mode", internal inaccurate clock active) we measured a supply current of 0.5 µA, in LPM3-LFXT1 ("snooze mode", external accurate quartz clock active) it was 1 µA. Further modes are memory retention mode LPM4 (0.1 µA) and active mode (390 µA). An interrupt event can wake up the device from any of the low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program.

Microcontroller UART tutorial: http://www.societyofrobots.com/microcontroller_uart.shtml.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Photonic network with optically powered subscribers. Optical transmitters (Tx) in the line-powered central office (CO, base station) transmit a downstream data signal with an appropriate average power for remotely supplying data and optical energy to subscribers. Optical receivers (Rx) in the CO sense the upstream data. Remote subscribers (S1…S6) comprise — besides the data acquisition and communication units — a section with optical data receiver Rx, photonic-power receiver Rp (photogenerator supplying electrical energy) and optical data transmitter Tx. A single Tx/Rx section in the CO can supply electrical energy to a multitude of subscriber sub-units. In the case of a video surveillance system (S1), sub-units would house various cameras at different locations or looking into different directions. Subscribers with high electrical power demand like S1 can be point-to-point connected to dedicated Tx/Rx units of the CO. Subscribers with lower energy demand are connected to the CO in a tree-like fashion and share one Tx/Rx of the CO. Such subscribers are for example voice over IP clients (S2), still picture cameras (S3), motion sensors (S4), smoke detectors (S5), temperature and humidity sensors (S6).

Fig. 2.
Fig. 2.

Timing chart schematic for low-energy medium access control (LE-MAC) protocol; for details, see main text. Due to the treelike network architecture, the central office (CO) broadcasts its messages to each subscriber, which can communicate only with CO, but not peer-topeer. — Subscribers with high bandwidth demand (S1, S2) along with low duty cycle subscribers (S3, S4) are handled by CO via broadcast polling (control) signals ① or ②, top row. Broken arrows stand for unidirectional, solid double-arrows for bidirectional communication (Com) of subscriber and CO. Access requests (Rq) of subscribers are queued by CO during the polling signal’s listen interval Lstn in ①. Then CO decides which subscriber will be scheduled next and for what time interval. This is sent during the addressing interval Addr, after which communication can start (Com). — Low duty cycle subscribers spend most of the time in a minimum-energy Sleep mode that is interrupted by nearly periodically appearing wake-up intervals Wkup, which are initiated autonomously by the subscribers. Communication with CO is managed by broadcasting special polling (control) signals ②, top row right. During Wkup a rendezvous time stamp RV is sensed, a precise clock is set, and the subscribers return to a power-saving Snooze mode. At rendezvous time the subscribers awake, listen to be addressed, communicate with CO, and go again to Sleep mode.

Fig. 3.
Fig. 3.

Block diagram of the photonic-power receiver (Rp), the data receiver (Rx) and transmitter (Tx). The incoming light guided by an optical fiber is converted into an electric current by a photovoltaic cell (PV). An LC network separates the alternating current (AC) data from the direct current (DC) path. The DC charges a storage capacitor CS. The following DC/DC boost converter delivers a stable output voltage Vb to supply a microcontroller (µC) and two amplifier stages, which either demodulate the incoming data signal (Receive Data), or monitor the voltage VC at CS (Charge Monitor), respectively. When VC exceeds a given value, µC activates any of a multitude of sub-units. The data collected by each Unit are processed by µC, and the result is sent back by a transmitter (Tx) comprising a laser diode (LD), both of which will be powered up for this purpose.

Fig. 4.
Fig. 4.

Measured dynamical behavior of optical power supply for a switched resistive load connected to Vb in Fig. 3. Upper curve (black): Charging and partially de-charging the storage capacitor CS=0.5 F. Middle curve (green): Supply voltage with stable value Vb=3.3 V (green). Lower curve (red): Current Ib through switched resistive load at Vb. — The storage capacitor CS is charged by the current of a photovoltaic cell illuminated with an optical power of 22 mW. If the capacitor’s voltage exceeds VC=0.4 V, the DC/DC boost converter starts delivering a fixed supply voltage Vb. For testing this supply, a resistive load of 330 Ω was switched on (for VC >0.83 V) and off (if VC <0.7 V). If switched on, the resistor consumes 33 mW (10 mA) electrical power for an active period of 540 ms. Then the storage capacitor’s voltage falls below 0.7 V, and the load is switched off. This cycle repeats every 6.63 s. (The “T” symbols on the second left vertical grid line mark the trigger time and are of no consequence here.)

Fig. 5.
Fig. 5.

Network of ultralow duty cycle subscribers S3 … S6 connected to a central office CO.

Fig. 6.
Fig. 6.

Measured timing chart for low-energy medium access control (LE-MAC) protocol. Four randomly self-activating subscribers (S3—6) synchronize and communicate with the central office CO. Trace CO displays the data transmitter voltage of the CO. High S3…6 levels indicate energy-costly receive or transceive (RxTx) modes, low levels mark low-power Sleep or Snooze modes. Within a time interval T Sleep the CO polls the subscribers with rendezvous signals RV (width T RV) that repeat with a period T R=T Sleep/R where R is a fixed number. These RV signals transmit information about the next rendezvous time with CO. If a sleeping subscriber becomes awake during a rendezvous signal is broadcast by CO, the subscriber senses the rendezvous time, starts a precise clock and goes snoozing. At rendezvous time all subscribers awake, wait for being addressed and exchange data with CO. An ending signal issued by CO sends the subscribers back sleeping.

Fig. 7.
Fig. 7.

(left) Schematic of high-speed video link with data and power transmission over a multimode fiber. An electrical power supply (PS) in the base station drives the high power laser diode (HPLD) emitting at λ HPLD=810 nm. This light is guided through a multimode fiber (MMF) to the remote unit, where a photovoltaic converter (PVC) is illuminated. The electrical power generated by the PVC is used to generate to a stabilized supply voltage of Vb=2.5 V through a DC/DC boost converter. A video camera collects data which are serialized by a complex programmable logic device (CPLD) which is supervised by a microcontroller (µC). The Manchester coded data are transmitted back to the base station by a laser (Tx) at a wavelength λ Tx=1 310 nm. Both λ HPLD and λ Tx are separated by diplexers at the remote unit and at the base station. The base station’s receiver (Rx) delivers the raw data to a field programmable gate array (FPGA), which directs them after processing to a VGA graphics port. The video stream is a color signal with format YCbCr 4:2:2 (right) Optically powered video camera link in action. Left-hand figure reprinted from [11] © 2008cIEEE.

Tables (2)

Tables Icon

Table 1. Typical mean power consumption and duty cycle of different subscribers.

Tables Icon

Table 2. Subscriber operating modes and total DC supply currents Ib for a supply voltage Vb=3.6 V.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

τ Wkup = T Wkup av T Sleep = 2.5 × 10 5 , τ RxTx = T RxTx T Sleep = 8.3 × 10 6 , τ Poll = T Sleep T Poll = 0.33 .
I b = ( 1 τ Poll ) ( I Sleep + 2 τ Wkup I Rx )
+ τ Poll ( 1 2 I Sleep + 1 2 I Snooze + τ Wkup I Rx + τ RxTx I RxTx ) .

Metrics