Abstract

Enhanced light to electric power conversion efficiency of photovoltaic cells with a low absorbance was achieved using waveguide integration. We present a proof of concept using a very thin dye-sensitized solar cell which absorbed only a small fraction of the light at normal incidence. The glass substrate in conjunction with the solar cells reflecting back contact formed a planar waveguide, which lead to more than four times higher conversion efficiency compared to conventional illumination at normal incidence. This illumination concept leads to a new type of multi-junction PV systems based on enforced spectral splitting along the waveguide.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Kaiser, K. Ernst, C. H. Fischer, R. Könenkamp, C. Rost, I. Sieber, and M. C. Lux-Steiner, "The eta-solar cell with CuInS2: A photovoltaic cell concept using an extremely thin absorber (eta)," Sol. Energy Mater. Sol. Cells 67, 89-96 (2001).
    [CrossRef]
  2. D. Kieven, T. Dittrich, A. Belaidi, J. Tornow, K. Schwarzburg, N. Allsop, and M. Lux-Steiner, "Effect of internal surface area on the performance of ZnO/In2S3/CuSCN solar cells with extremely thin absorber," Appl. Phys. Lett. 92, 153107-153103 (2008).
    [CrossRef]
  3. M. Grätzel, "Photovoltaic performance and long-term stability of dye-sensitized meosocopic solar cells," C. R. Chimie 9, 578-583 (2006).
    [CrossRef]
  4. F.-T. Kong, S.-D. Dai, and K.-J. Wang, "Review of recent progress in dye-sensitized solar cells," Adv.OptoElectron. 2007, doi:10.1155/2007/75384 (2007).
    [CrossRef]
  5. F. O. Lenzmann and J. M. Kroon, "Recent advances in dye-sensitized solar cells," Adv.OptoElectron. 2007, doi:10.1155/2007/65073 (2007).
    [CrossRef]
  6. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, "Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions," Science 270, 1789 (1995).
    [CrossRef]
  7. H. Hoppe and N. S. Sariciftci, "Morphology of polymer/fullerene bulk heterojunction solar cells," J. Mater. Chem. 16, 45 (2006).
    [CrossRef]
  8. C. Lévy-Clément, R. Tena-Zaera, M. A. Ryan, A. Katty, and G. Hodes, "CdSe-sensitized p-CuSCN/nanowire n-ZnO heterojunctions," Adv. Mater. 17, 1512-1515 (2005).
    [CrossRef]
  9. P. Campbell and M. A. Green, "Light trapping properties of pyramidally textured surfaces," J. Appl. Phys. 62, 243-249 (1987).
    [CrossRef]
  10. Z. Zhang, S. Ito, B. O'Regan, D. Kuang, S. M. Zakeeruddin, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, R. Humphry-Baker, T. Koyanagi, T. Mizuno, and M. Grätzel, "The electronic role of the TiO2 light-scattering layer in dye-sensitized solar cells," Z. Phys. Chem. 221, 319 (2007).
    [CrossRef]
  11. T. Stubinger and W. Brutting, "Exciton diffusion and optical interference in organic donor-acceptor photovoltaic cells," J. Appl. Phys. 90, 3632-3641 (2001).
    [CrossRef]
  12. H. Hoppe, S. Shokhovets, and G. Gobsch, "Inverse relation between photocurrent and absorption layer thickness in polymer solar cells," Phys. Status Solidi(RRL) 1, R40-R42 (2007).
    [CrossRef]
  13. B. O'Connor, K. H. An, K. P. Pipe, Y. Zhao, and M. Shtein, "Enhanced optical field intensity distribution in organic photovoltaic devices using external coatings," Appl. Phys. Lett. 89, 233502-233503 (2006).
    [CrossRef]
  14. M. Agrawal and P. Peumans, "Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells," Opt. Express 16, 5385-5396 (2008).
    [CrossRef] [PubMed]
  15. H. R. Stuart and D. G. Hall, "Absorption enhancement in silicon-on-insulator waveguides using metal island films," Appl. Phys. Lett. 69, 2327-2329 (1996).
    [CrossRef]
  16. H. R. Stuart and D. G. Hall, "Island size effects in nanoparticle-enhanced photodetectors," Appl. Phys. Lett. 73, 3815-3817 (1998).
    [CrossRef]
  17. B. J. Soller, H. R. Stuart, and D. G. Hall, "Energy transfer at optical frequencies to silicon-on-insulator structures," Opt. Lett. 26, 1421-1423 (2001).
    [CrossRef]
  18. H. R. Stuart and D. G. Hall, "Enhanced dipole-dipole interaction between elementary radiators near a surface," Phys. Rev. Lett. 80, 5663 (1998).
    [CrossRef]
  19. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, "Surface plasmon enhanced silicon solar cells," J. Appl. Phys. 101, 093105-093108 (2007).
    [CrossRef]
  20. N. C. Panoiu and J. R. M. Osgood, "Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes," Opt. Lett. 32, 2825-2827 (2007).
    [CrossRef] [PubMed]
  21. S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, "An effective light trapping configuration for thin-film solar cells," Appl. Phys. Lett. 91, 243501-243503 (2007).
    [CrossRef]

2008

D. Kieven, T. Dittrich, A. Belaidi, J. Tornow, K. Schwarzburg, N. Allsop, and M. Lux-Steiner, "Effect of internal surface area on the performance of ZnO/In2S3/CuSCN solar cells with extremely thin absorber," Appl. Phys. Lett. 92, 153107-153103 (2008).
[CrossRef]

M. Agrawal and P. Peumans, "Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells," Opt. Express 16, 5385-5396 (2008).
[CrossRef] [PubMed]

2007

H. Hoppe, S. Shokhovets, and G. Gobsch, "Inverse relation between photocurrent and absorption layer thickness in polymer solar cells," Phys. Status Solidi(RRL) 1, R40-R42 (2007).
[CrossRef]

F.-T. Kong, S.-D. Dai, and K.-J. Wang, "Review of recent progress in dye-sensitized solar cells," Adv.OptoElectron. 2007, doi:10.1155/2007/75384 (2007).
[CrossRef]

F. O. Lenzmann and J. M. Kroon, "Recent advances in dye-sensitized solar cells," Adv.OptoElectron. 2007, doi:10.1155/2007/65073 (2007).
[CrossRef]

Z. Zhang, S. Ito, B. O'Regan, D. Kuang, S. M. Zakeeruddin, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, R. Humphry-Baker, T. Koyanagi, T. Mizuno, and M. Grätzel, "The electronic role of the TiO2 light-scattering layer in dye-sensitized solar cells," Z. Phys. Chem. 221, 319 (2007).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, "Surface plasmon enhanced silicon solar cells," J. Appl. Phys. 101, 093105-093108 (2007).
[CrossRef]

N. C. Panoiu and J. R. M. Osgood, "Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes," Opt. Lett. 32, 2825-2827 (2007).
[CrossRef] [PubMed]

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, "An effective light trapping configuration for thin-film solar cells," Appl. Phys. Lett. 91, 243501-243503 (2007).
[CrossRef]

2006

H. Hoppe and N. S. Sariciftci, "Morphology of polymer/fullerene bulk heterojunction solar cells," J. Mater. Chem. 16, 45 (2006).
[CrossRef]

M. Grätzel, "Photovoltaic performance and long-term stability of dye-sensitized meosocopic solar cells," C. R. Chimie 9, 578-583 (2006).
[CrossRef]

B. O'Connor, K. H. An, K. P. Pipe, Y. Zhao, and M. Shtein, "Enhanced optical field intensity distribution in organic photovoltaic devices using external coatings," Appl. Phys. Lett. 89, 233502-233503 (2006).
[CrossRef]

2005

C. Lévy-Clément, R. Tena-Zaera, M. A. Ryan, A. Katty, and G. Hodes, "CdSe-sensitized p-CuSCN/nanowire n-ZnO heterojunctions," Adv. Mater. 17, 1512-1515 (2005).
[CrossRef]

2001

T. Stubinger and W. Brutting, "Exciton diffusion and optical interference in organic donor-acceptor photovoltaic cells," J. Appl. Phys. 90, 3632-3641 (2001).
[CrossRef]

I. Kaiser, K. Ernst, C. H. Fischer, R. Könenkamp, C. Rost, I. Sieber, and M. C. Lux-Steiner, "The eta-solar cell with CuInS2: A photovoltaic cell concept using an extremely thin absorber (eta)," Sol. Energy Mater. Sol. Cells 67, 89-96 (2001).
[CrossRef]

B. J. Soller, H. R. Stuart, and D. G. Hall, "Energy transfer at optical frequencies to silicon-on-insulator structures," Opt. Lett. 26, 1421-1423 (2001).
[CrossRef]

1998

H. R. Stuart and D. G. Hall, "Enhanced dipole-dipole interaction between elementary radiators near a surface," Phys. Rev. Lett. 80, 5663 (1998).
[CrossRef]

H. R. Stuart and D. G. Hall, "Island size effects in nanoparticle-enhanced photodetectors," Appl. Phys. Lett. 73, 3815-3817 (1998).
[CrossRef]

1996

H. R. Stuart and D. G. Hall, "Absorption enhancement in silicon-on-insulator waveguides using metal island films," Appl. Phys. Lett. 69, 2327-2329 (1996).
[CrossRef]

1995

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, "Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions," Science 270, 1789 (1995).
[CrossRef]

1987

P. Campbell and M. A. Green, "Light trapping properties of pyramidally textured surfaces," J. Appl. Phys. 62, 243-249 (1987).
[CrossRef]

Agrawal, M.

Allsop, N.

D. Kieven, T. Dittrich, A. Belaidi, J. Tornow, K. Schwarzburg, N. Allsop, and M. Lux-Steiner, "Effect of internal surface area on the performance of ZnO/In2S3/CuSCN solar cells with extremely thin absorber," Appl. Phys. Lett. 92, 153107-153103 (2008).
[CrossRef]

An, K. H.

B. O'Connor, K. H. An, K. P. Pipe, Y. Zhao, and M. Shtein, "Enhanced optical field intensity distribution in organic photovoltaic devices using external coatings," Appl. Phys. Lett. 89, 233502-233503 (2006).
[CrossRef]

Belaidi, A.

D. Kieven, T. Dittrich, A. Belaidi, J. Tornow, K. Schwarzburg, N. Allsop, and M. Lux-Steiner, "Effect of internal surface area on the performance of ZnO/In2S3/CuSCN solar cells with extremely thin absorber," Appl. Phys. Lett. 92, 153107-153103 (2008).
[CrossRef]

Brutting, W.

T. Stubinger and W. Brutting, "Exciton diffusion and optical interference in organic donor-acceptor photovoltaic cells," J. Appl. Phys. 90, 3632-3641 (2001).
[CrossRef]

Campbell, P.

P. Campbell and M. A. Green, "Light trapping properties of pyramidally textured surfaces," J. Appl. Phys. 62, 243-249 (1987).
[CrossRef]

Catchpole, K. R.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, "Surface plasmon enhanced silicon solar cells," J. Appl. Phys. 101, 093105-093108 (2007).
[CrossRef]

Charvet, R.

Z. Zhang, S. Ito, B. O'Regan, D. Kuang, S. M. Zakeeruddin, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, R. Humphry-Baker, T. Koyanagi, T. Mizuno, and M. Grätzel, "The electronic role of the TiO2 light-scattering layer in dye-sensitized solar cells," Z. Phys. Chem. 221, 319 (2007).
[CrossRef]

Comte, P.

Z. Zhang, S. Ito, B. O'Regan, D. Kuang, S. M. Zakeeruddin, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, R. Humphry-Baker, T. Koyanagi, T. Mizuno, and M. Grätzel, "The electronic role of the TiO2 light-scattering layer in dye-sensitized solar cells," Z. Phys. Chem. 221, 319 (2007).
[CrossRef]

Dai, S.-D.

F.-T. Kong, S.-D. Dai, and K.-J. Wang, "Review of recent progress in dye-sensitized solar cells," Adv.OptoElectron. 2007, doi:10.1155/2007/75384 (2007).
[CrossRef]

Dittrich, T.

D. Kieven, T. Dittrich, A. Belaidi, J. Tornow, K. Schwarzburg, N. Allsop, and M. Lux-Steiner, "Effect of internal surface area on the performance of ZnO/In2S3/CuSCN solar cells with extremely thin absorber," Appl. Phys. Lett. 92, 153107-153103 (2008).
[CrossRef]

Ernst, K.

I. Kaiser, K. Ernst, C. H. Fischer, R. Könenkamp, C. Rost, I. Sieber, and M. C. Lux-Steiner, "The eta-solar cell with CuInS2: A photovoltaic cell concept using an extremely thin absorber (eta)," Sol. Energy Mater. Sol. Cells 67, 89-96 (2001).
[CrossRef]

Fischer, C. H.

I. Kaiser, K. Ernst, C. H. Fischer, R. Könenkamp, C. Rost, I. Sieber, and M. C. Lux-Steiner, "The eta-solar cell with CuInS2: A photovoltaic cell concept using an extremely thin absorber (eta)," Sol. Energy Mater. Sol. Cells 67, 89-96 (2001).
[CrossRef]

Gao, J.

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, "Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions," Science 270, 1789 (1995).
[CrossRef]

Gobsch, G.

H. Hoppe, S. Shokhovets, and G. Gobsch, "Inverse relation between photocurrent and absorption layer thickness in polymer solar cells," Phys. Status Solidi(RRL) 1, R40-R42 (2007).
[CrossRef]

Grätzel, M.

Z. Zhang, S. Ito, B. O'Regan, D. Kuang, S. M. Zakeeruddin, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, R. Humphry-Baker, T. Koyanagi, T. Mizuno, and M. Grätzel, "The electronic role of the TiO2 light-scattering layer in dye-sensitized solar cells," Z. Phys. Chem. 221, 319 (2007).
[CrossRef]

M. Grätzel, "Photovoltaic performance and long-term stability of dye-sensitized meosocopic solar cells," C. R. Chimie 9, 578-583 (2006).
[CrossRef]

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, "Surface plasmon enhanced silicon solar cells," J. Appl. Phys. 101, 093105-093108 (2007).
[CrossRef]

P. Campbell and M. A. Green, "Light trapping properties of pyramidally textured surfaces," J. Appl. Phys. 62, 243-249 (1987).
[CrossRef]

Hall, D. G.

B. J. Soller, H. R. Stuart, and D. G. Hall, "Energy transfer at optical frequencies to silicon-on-insulator structures," Opt. Lett. 26, 1421-1423 (2001).
[CrossRef]

H. R. Stuart and D. G. Hall, "Enhanced dipole-dipole interaction between elementary radiators near a surface," Phys. Rev. Lett. 80, 5663 (1998).
[CrossRef]

H. R. Stuart and D. G. Hall, "Island size effects in nanoparticle-enhanced photodetectors," Appl. Phys. Lett. 73, 3815-3817 (1998).
[CrossRef]

H. R. Stuart and D. G. Hall, "Absorption enhancement in silicon-on-insulator waveguides using metal island films," Appl. Phys. Lett. 69, 2327-2329 (1996).
[CrossRef]

Heeger, A. J.

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, "Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions," Science 270, 1789 (1995).
[CrossRef]

Hodes, G.

C. Lévy-Clément, R. Tena-Zaera, M. A. Ryan, A. Katty, and G. Hodes, "CdSe-sensitized p-CuSCN/nanowire n-ZnO heterojunctions," Adv. Mater. 17, 1512-1515 (2005).
[CrossRef]

Hoppe, H.

H. Hoppe, S. Shokhovets, and G. Gobsch, "Inverse relation between photocurrent and absorption layer thickness in polymer solar cells," Phys. Status Solidi(RRL) 1, R40-R42 (2007).
[CrossRef]

H. Hoppe and N. S. Sariciftci, "Morphology of polymer/fullerene bulk heterojunction solar cells," J. Mater. Chem. 16, 45 (2006).
[CrossRef]

Hummelen, J. C.

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, "Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions," Science 270, 1789 (1995).
[CrossRef]

Humphry-Baker, R.

Z. Zhang, S. Ito, B. O'Regan, D. Kuang, S. M. Zakeeruddin, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, R. Humphry-Baker, T. Koyanagi, T. Mizuno, and M. Grätzel, "The electronic role of the TiO2 light-scattering layer in dye-sensitized solar cells," Z. Phys. Chem. 221, 319 (2007).
[CrossRef]

Ito, S.

Z. Zhang, S. Ito, B. O'Regan, D. Kuang, S. M. Zakeeruddin, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, R. Humphry-Baker, T. Koyanagi, T. Mizuno, and M. Grätzel, "The electronic role of the TiO2 light-scattering layer in dye-sensitized solar cells," Z. Phys. Chem. 221, 319 (2007).
[CrossRef]

Kaiser, I.

I. Kaiser, K. Ernst, C. H. Fischer, R. Könenkamp, C. Rost, I. Sieber, and M. C. Lux-Steiner, "The eta-solar cell with CuInS2: A photovoltaic cell concept using an extremely thin absorber (eta)," Sol. Energy Mater. Sol. Cells 67, 89-96 (2001).
[CrossRef]

Katty, A.

C. Lévy-Clément, R. Tena-Zaera, M. A. Ryan, A. Katty, and G. Hodes, "CdSe-sensitized p-CuSCN/nanowire n-ZnO heterojunctions," Adv. Mater. 17, 1512-1515 (2005).
[CrossRef]

Kieven, D.

D. Kieven, T. Dittrich, A. Belaidi, J. Tornow, K. Schwarzburg, N. Allsop, and M. Lux-Steiner, "Effect of internal surface area on the performance of ZnO/In2S3/CuSCN solar cells with extremely thin absorber," Appl. Phys. Lett. 92, 153107-153103 (2008).
[CrossRef]

Könenkamp, R.

I. Kaiser, K. Ernst, C. H. Fischer, R. Könenkamp, C. Rost, I. Sieber, and M. C. Lux-Steiner, "The eta-solar cell with CuInS2: A photovoltaic cell concept using an extremely thin absorber (eta)," Sol. Energy Mater. Sol. Cells 67, 89-96 (2001).
[CrossRef]

Kong, F.-T.

F.-T. Kong, S.-D. Dai, and K.-J. Wang, "Review of recent progress in dye-sensitized solar cells," Adv.OptoElectron. 2007, doi:10.1155/2007/75384 (2007).
[CrossRef]

Koyanagi, T.

Z. Zhang, S. Ito, B. O'Regan, D. Kuang, S. M. Zakeeruddin, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, R. Humphry-Baker, T. Koyanagi, T. Mizuno, and M. Grätzel, "The electronic role of the TiO2 light-scattering layer in dye-sensitized solar cells," Z. Phys. Chem. 221, 319 (2007).
[CrossRef]

Kroon, J. M.

F. O. Lenzmann and J. M. Kroon, "Recent advances in dye-sensitized solar cells," Adv.OptoElectron. 2007, doi:10.1155/2007/65073 (2007).
[CrossRef]

Kuang, D.

Z. Zhang, S. Ito, B. O'Regan, D. Kuang, S. M. Zakeeruddin, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, R. Humphry-Baker, T. Koyanagi, T. Mizuno, and M. Grätzel, "The electronic role of the TiO2 light-scattering layer in dye-sensitized solar cells," Z. Phys. Chem. 221, 319 (2007).
[CrossRef]

Lenzmann, F. O.

F. O. Lenzmann and J. M. Kroon, "Recent advances in dye-sensitized solar cells," Adv.OptoElectron. 2007, doi:10.1155/2007/65073 (2007).
[CrossRef]

Lévy-Clément, C.

C. Lévy-Clément, R. Tena-Zaera, M. A. Ryan, A. Katty, and G. Hodes, "CdSe-sensitized p-CuSCN/nanowire n-ZnO heterojunctions," Adv. Mater. 17, 1512-1515 (2005).
[CrossRef]

Liska, P.

Z. Zhang, S. Ito, B. O'Regan, D. Kuang, S. M. Zakeeruddin, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, R. Humphry-Baker, T. Koyanagi, T. Mizuno, and M. Grätzel, "The electronic role of the TiO2 light-scattering layer in dye-sensitized solar cells," Z. Phys. Chem. 221, 319 (2007).
[CrossRef]

Lux-Steiner, M.

D. Kieven, T. Dittrich, A. Belaidi, J. Tornow, K. Schwarzburg, N. Allsop, and M. Lux-Steiner, "Effect of internal surface area on the performance of ZnO/In2S3/CuSCN solar cells with extremely thin absorber," Appl. Phys. Lett. 92, 153107-153103 (2008).
[CrossRef]

Lux-Steiner, M. C.

I. Kaiser, K. Ernst, C. H. Fischer, R. Könenkamp, C. Rost, I. Sieber, and M. C. Lux-Steiner, "The eta-solar cell with CuInS2: A photovoltaic cell concept using an extremely thin absorber (eta)," Sol. Energy Mater. Sol. Cells 67, 89-96 (2001).
[CrossRef]

McGehee, M. D.

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, "An effective light trapping configuration for thin-film solar cells," Appl. Phys. Lett. 91, 243501-243503 (2007).
[CrossRef]

Mizuno, T.

Z. Zhang, S. Ito, B. O'Regan, D. Kuang, S. M. Zakeeruddin, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, R. Humphry-Baker, T. Koyanagi, T. Mizuno, and M. Grätzel, "The electronic role of the TiO2 light-scattering layer in dye-sensitized solar cells," Z. Phys. Chem. 221, 319 (2007).
[CrossRef]

Nazeeruddin, M. K.

Z. Zhang, S. Ito, B. O'Regan, D. Kuang, S. M. Zakeeruddin, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, R. Humphry-Baker, T. Koyanagi, T. Mizuno, and M. Grätzel, "The electronic role of the TiO2 light-scattering layer in dye-sensitized solar cells," Z. Phys. Chem. 221, 319 (2007).
[CrossRef]

O'Connor, B.

B. O'Connor, K. H. An, K. P. Pipe, Y. Zhao, and M. Shtein, "Enhanced optical field intensity distribution in organic photovoltaic devices using external coatings," Appl. Phys. Lett. 89, 233502-233503 (2006).
[CrossRef]

O'Regan, B.

Z. Zhang, S. Ito, B. O'Regan, D. Kuang, S. M. Zakeeruddin, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, R. Humphry-Baker, T. Koyanagi, T. Mizuno, and M. Grätzel, "The electronic role of the TiO2 light-scattering layer in dye-sensitized solar cells," Z. Phys. Chem. 221, 319 (2007).
[CrossRef]

Osgood, J. R. M.

Panoiu, N. C.

Péchy, P.

Z. Zhang, S. Ito, B. O'Regan, D. Kuang, S. M. Zakeeruddin, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, R. Humphry-Baker, T. Koyanagi, T. Mizuno, and M. Grätzel, "The electronic role of the TiO2 light-scattering layer in dye-sensitized solar cells," Z. Phys. Chem. 221, 319 (2007).
[CrossRef]

Peumans, P.

M. Agrawal and P. Peumans, "Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells," Opt. Express 16, 5385-5396 (2008).
[CrossRef] [PubMed]

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, "An effective light trapping configuration for thin-film solar cells," Appl. Phys. Lett. 91, 243501-243503 (2007).
[CrossRef]

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, "Surface plasmon enhanced silicon solar cells," J. Appl. Phys. 101, 093105-093108 (2007).
[CrossRef]

Pipe, K. P.

B. O'Connor, K. H. An, K. P. Pipe, Y. Zhao, and M. Shtein, "Enhanced optical field intensity distribution in organic photovoltaic devices using external coatings," Appl. Phys. Lett. 89, 233502-233503 (2006).
[CrossRef]

Rim, S.-B.

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, "An effective light trapping configuration for thin-film solar cells," Appl. Phys. Lett. 91, 243501-243503 (2007).
[CrossRef]

Rost, C.

I. Kaiser, K. Ernst, C. H. Fischer, R. Könenkamp, C. Rost, I. Sieber, and M. C. Lux-Steiner, "The eta-solar cell with CuInS2: A photovoltaic cell concept using an extremely thin absorber (eta)," Sol. Energy Mater. Sol. Cells 67, 89-96 (2001).
[CrossRef]

Ryan, M. A.

C. Lévy-Clément, R. Tena-Zaera, M. A. Ryan, A. Katty, and G. Hodes, "CdSe-sensitized p-CuSCN/nanowire n-ZnO heterojunctions," Adv. Mater. 17, 1512-1515 (2005).
[CrossRef]

Sariciftci, N. S.

H. Hoppe and N. S. Sariciftci, "Morphology of polymer/fullerene bulk heterojunction solar cells," J. Mater. Chem. 16, 45 (2006).
[CrossRef]

Schwarzburg, K.

D. Kieven, T. Dittrich, A. Belaidi, J. Tornow, K. Schwarzburg, N. Allsop, and M. Lux-Steiner, "Effect of internal surface area on the performance of ZnO/In2S3/CuSCN solar cells with extremely thin absorber," Appl. Phys. Lett. 92, 153107-153103 (2008).
[CrossRef]

Scully, S. R.

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, "An effective light trapping configuration for thin-film solar cells," Appl. Phys. Lett. 91, 243501-243503 (2007).
[CrossRef]

Shokhovets, S.

H. Hoppe, S. Shokhovets, and G. Gobsch, "Inverse relation between photocurrent and absorption layer thickness in polymer solar cells," Phys. Status Solidi(RRL) 1, R40-R42 (2007).
[CrossRef]

Shtein, M.

B. O'Connor, K. H. An, K. P. Pipe, Y. Zhao, and M. Shtein, "Enhanced optical field intensity distribution in organic photovoltaic devices using external coatings," Appl. Phys. Lett. 89, 233502-233503 (2006).
[CrossRef]

Sieber, I.

I. Kaiser, K. Ernst, C. H. Fischer, R. Könenkamp, C. Rost, I. Sieber, and M. C. Lux-Steiner, "The eta-solar cell with CuInS2: A photovoltaic cell concept using an extremely thin absorber (eta)," Sol. Energy Mater. Sol. Cells 67, 89-96 (2001).
[CrossRef]

Soller, B. J.

Stuart, H. R.

B. J. Soller, H. R. Stuart, and D. G. Hall, "Energy transfer at optical frequencies to silicon-on-insulator structures," Opt. Lett. 26, 1421-1423 (2001).
[CrossRef]

H. R. Stuart and D. G. Hall, "Island size effects in nanoparticle-enhanced photodetectors," Appl. Phys. Lett. 73, 3815-3817 (1998).
[CrossRef]

H. R. Stuart and D. G. Hall, "Enhanced dipole-dipole interaction between elementary radiators near a surface," Phys. Rev. Lett. 80, 5663 (1998).
[CrossRef]

H. R. Stuart and D. G. Hall, "Absorption enhancement in silicon-on-insulator waveguides using metal island films," Appl. Phys. Lett. 69, 2327-2329 (1996).
[CrossRef]

Stubinger, T.

T. Stubinger and W. Brutting, "Exciton diffusion and optical interference in organic donor-acceptor photovoltaic cells," J. Appl. Phys. 90, 3632-3641 (2001).
[CrossRef]

Tena-Zaera, R.

C. Lévy-Clément, R. Tena-Zaera, M. A. Ryan, A. Katty, and G. Hodes, "CdSe-sensitized p-CuSCN/nanowire n-ZnO heterojunctions," Adv. Mater. 17, 1512-1515 (2005).
[CrossRef]

Tornow, J.

D. Kieven, T. Dittrich, A. Belaidi, J. Tornow, K. Schwarzburg, N. Allsop, and M. Lux-Steiner, "Effect of internal surface area on the performance of ZnO/In2S3/CuSCN solar cells with extremely thin absorber," Appl. Phys. Lett. 92, 153107-153103 (2008).
[CrossRef]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, "Surface plasmon enhanced silicon solar cells," J. Appl. Phys. 101, 093105-093108 (2007).
[CrossRef]

Wang, K.-J.

F.-T. Kong, S.-D. Dai, and K.-J. Wang, "Review of recent progress in dye-sensitized solar cells," Adv.OptoElectron. 2007, doi:10.1155/2007/75384 (2007).
[CrossRef]

Wudl, F.

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, "Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions," Science 270, 1789 (1995).
[CrossRef]

Yu, G.

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, "Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions," Science 270, 1789 (1995).
[CrossRef]

Zakeeruddin, S. M.

Z. Zhang, S. Ito, B. O'Regan, D. Kuang, S. M. Zakeeruddin, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, R. Humphry-Baker, T. Koyanagi, T. Mizuno, and M. Grätzel, "The electronic role of the TiO2 light-scattering layer in dye-sensitized solar cells," Z. Phys. Chem. 221, 319 (2007).
[CrossRef]

Zhang, Z.

Z. Zhang, S. Ito, B. O'Regan, D. Kuang, S. M. Zakeeruddin, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, R. Humphry-Baker, T. Koyanagi, T. Mizuno, and M. Grätzel, "The electronic role of the TiO2 light-scattering layer in dye-sensitized solar cells," Z. Phys. Chem. 221, 319 (2007).
[CrossRef]

Zhao, S.

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, "An effective light trapping configuration for thin-film solar cells," Appl. Phys. Lett. 91, 243501-243503 (2007).
[CrossRef]

Zhao, Y.

B. O'Connor, K. H. An, K. P. Pipe, Y. Zhao, and M. Shtein, "Enhanced optical field intensity distribution in organic photovoltaic devices using external coatings," Appl. Phys. Lett. 89, 233502-233503 (2006).
[CrossRef]

Adv. Mater.

C. Lévy-Clément, R. Tena-Zaera, M. A. Ryan, A. Katty, and G. Hodes, "CdSe-sensitized p-CuSCN/nanowire n-ZnO heterojunctions," Adv. Mater. 17, 1512-1515 (2005).
[CrossRef]

Appl. Phys. Lett.

D. Kieven, T. Dittrich, A. Belaidi, J. Tornow, K. Schwarzburg, N. Allsop, and M. Lux-Steiner, "Effect of internal surface area on the performance of ZnO/In2S3/CuSCN solar cells with extremely thin absorber," Appl. Phys. Lett. 92, 153107-153103 (2008).
[CrossRef]

B. O'Connor, K. H. An, K. P. Pipe, Y. Zhao, and M. Shtein, "Enhanced optical field intensity distribution in organic photovoltaic devices using external coatings," Appl. Phys. Lett. 89, 233502-233503 (2006).
[CrossRef]

H. R. Stuart and D. G. Hall, "Absorption enhancement in silicon-on-insulator waveguides using metal island films," Appl. Phys. Lett. 69, 2327-2329 (1996).
[CrossRef]

H. R. Stuart and D. G. Hall, "Island size effects in nanoparticle-enhanced photodetectors," Appl. Phys. Lett. 73, 3815-3817 (1998).
[CrossRef]

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, "An effective light trapping configuration for thin-film solar cells," Appl. Phys. Lett. 91, 243501-243503 (2007).
[CrossRef]

C. R. Chimie

M. Grätzel, "Photovoltaic performance and long-term stability of dye-sensitized meosocopic solar cells," C. R. Chimie 9, 578-583 (2006).
[CrossRef]

J. Appl. Phys.

P. Campbell and M. A. Green, "Light trapping properties of pyramidally textured surfaces," J. Appl. Phys. 62, 243-249 (1987).
[CrossRef]

T. Stubinger and W. Brutting, "Exciton diffusion and optical interference in organic donor-acceptor photovoltaic cells," J. Appl. Phys. 90, 3632-3641 (2001).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, "Surface plasmon enhanced silicon solar cells," J. Appl. Phys. 101, 093105-093108 (2007).
[CrossRef]

J. Mater. Chem.

H. Hoppe and N. S. Sariciftci, "Morphology of polymer/fullerene bulk heterojunction solar cells," J. Mater. Chem. 16, 45 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

OptoElectron.

F.-T. Kong, S.-D. Dai, and K.-J. Wang, "Review of recent progress in dye-sensitized solar cells," Adv.OptoElectron. 2007, doi:10.1155/2007/75384 (2007).
[CrossRef]

F. O. Lenzmann and J. M. Kroon, "Recent advances in dye-sensitized solar cells," Adv.OptoElectron. 2007, doi:10.1155/2007/65073 (2007).
[CrossRef]

Phys. Rev. Lett.

H. R. Stuart and D. G. Hall, "Enhanced dipole-dipole interaction between elementary radiators near a surface," Phys. Rev. Lett. 80, 5663 (1998).
[CrossRef]

Phys. Status Solidi

H. Hoppe, S. Shokhovets, and G. Gobsch, "Inverse relation between photocurrent and absorption layer thickness in polymer solar cells," Phys. Status Solidi(RRL) 1, R40-R42 (2007).
[CrossRef]

Science

G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, "Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions," Science 270, 1789 (1995).
[CrossRef]

Sol. Energy Mater. Sol. Cells

I. Kaiser, K. Ernst, C. H. Fischer, R. Könenkamp, C. Rost, I. Sieber, and M. C. Lux-Steiner, "The eta-solar cell with CuInS2: A photovoltaic cell concept using an extremely thin absorber (eta)," Sol. Energy Mater. Sol. Cells 67, 89-96 (2001).
[CrossRef]

Z. Phys. Chem.

Z. Zhang, S. Ito, B. O'Regan, D. Kuang, S. M. Zakeeruddin, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, R. Humphry-Baker, T. Koyanagi, T. Mizuno, and M. Grätzel, "The electronic role of the TiO2 light-scattering layer in dye-sensitized solar cells," Z. Phys. Chem. 221, 319 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(Color online) Schematic illustration of the waveguide based (a) and standard (b) dye-sensitized solar cell, which differ only by the illumination path. The dye-sensitized solar cell is deposited onto a glass slide (1) covered with ITO which is separated by insulating gaps to form 12 conducting terminals (T1–T12). The thin, mesoporous TiO2 film (2) is deposited onto the ITO terminals and sensitized with a N3 monolayer while the pores are filled with a redox electrolyte (3). Pt sputtered onto a FTO covered glass slide acts as s counter electrode (4). (a) In the waveguide configuration light is coupled through a home made prism (5) into the glass substrate, which was attached by index matching oil. Light propagates due to total internal reflection on the bottom side and reflection at the Pt electrode at the top side of the cell (4). The illuminated area is defined by the aperture in front of the prism (6). For monochromatic illumination band pass filters were placed in front of the aperture (7). (b) Reference measurements of each terminal were performed under illumination of the entire terminal area.

Fig. 2.
Fig. 2.

(Color online) (a) Current-voltage curves measured as a function of the active WGSC length, which was defined by the number of terminals connected in parallel. (b) Conversion efficiency η as a function of waveguide terminals connected in parallel. The dashed line shows the average power density of the terminals at normal incidence.

Fig. 3.
Fig. 3.

(Color online) (a) Short circuit current density J sc as function of the terminal number at white light and monochromatic illumination. (b) Absorbance of the dye-sensitized photoelectrode measured in transmission at normal light incidence and transmission windows of the band pass filters.

Fig. 4.
Fig. 4.

(Color online) (a) Possible design of a WGSC where waveguide slabs are stacked together. (b) WGSC in conjunction with light concentration and spectral splitting using solar cells with different absorption spectra. Blue rays (dashed) show photons with high energy, which are absorbed in the high bandgap WGSC while red rays (dashed-dotted) symbolize low energy photons that generate charge carriers in the low bandgap WGSC.

Metrics