Abstract

An optical MEMS pressure sensor based on a mesa-diaphragm is presented. The operating principle of the sensor is expatiated by Fabry-Perot (F-P) interference. Both the mechanical model and the signal averaging effect of the mesa diaphragm is validated by simulation, which declares that the mesa diaphragm is superior to the planar one on the parallelism and can reduce the signal averaging effect. Experimental results demonstrate that the mesa structure sensor has a reasonable linearity and sensitivity.

©2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical MEMS pressure sensor based on Fabry-Perot interferometry

Ming Li, Ming Wang, and Hongpu Li
Opt. Express 14(4) 1497-1504 (2006)

Non-destructive residual pressure self-measurement method for the sensing chip of optical Fabry-Perot pressure sensor

Xue Wang, Shuang Wang, Junfeng Jiang, Kun Liu, Xuezhi Zhang, Mengnan Xiao, Hai Xiao, and Tiegen Liu
Opt. Express 25(25) 31937-31947 (2017)

Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm

Wenhui Wang, Nan Wu, Ye Tian, Christopher Niezrecki, and Xingwei Wang
Opt. Express 18(9) 9006-9014 (2010)

References

  • View by:
  • |
  • |
  • |

  1. W. Stuart, G. Matthew J, and J. D. C. Jones “Laser-machined fibes as Fabry-Perot pressure sensors,” Applied Optics. 45, 5590–5596 (2006).
    [Crossref]
  2. D. C. Abeysinghe, S. Dasgupta, and J. T. Boyd, “A novel MEMS pressure sensor fabricated on an optical fiber,” IEEE Photonics Technol. Lett. 13, 993–995 (2001).
    [Crossref]
  3. J. Xu, G. Pickrell, and X. Wang, “A Novel Temperature-Insensitive Optical Fiber Pressure Sensor for Harsh Environments,” IEEE Photonics Technol. Lett. 17, 870–872 (2005).
    [Crossref]
  4. J. Zhou and S. Dasgupta, et al. “Optically interrogated MEMS pressure sensors for propulsion applications,” Opt. Eng. 40, 598–604 (2001).
    [Crossref]
  5. P. R. Scheeper, W. Olthuis, and P. Bergveld, “The design fabrication and testing of corrugated silicon nitride diaphragms,” Microelectromech Syst. 3, 36–42 (1994).
    [Crossref]
  6. W. J. Wang and R. M. Lin, et al. “Performance -enhanced Fabry-Perot microcavity structure with a novel nonplanar diaphragm,” Microelectron. Eng. 70, 102–108 (2003).
    [Crossref]
  7. Y. X. Ge, M. Wang, and X. Chen. “An optical MEMS pressure sensor based on a phase demodulation,” Sensors and Actuators A: Physical. 143, 224–229 (2008).
    [Crossref]
  8. K. Z. Huang, Theory of Plates and Shells, (Tsinghua University Press, Beijing, 1987) Chap. 4.
  9. Y. Kim and D. P. Neikirk, “Micromachined Fabry-Perot cavity pressure transducer with optical fiber interconnects,” Proc. SPIE 2624, 242–249 (1995).
    [Crossref]

2008 (1)

Y. X. Ge, M. Wang, and X. Chen. “An optical MEMS pressure sensor based on a phase demodulation,” Sensors and Actuators A: Physical. 143, 224–229 (2008).
[Crossref]

2006 (1)

W. Stuart, G. Matthew J, and J. D. C. Jones “Laser-machined fibes as Fabry-Perot pressure sensors,” Applied Optics. 45, 5590–5596 (2006).
[Crossref]

2005 (1)

J. Xu, G. Pickrell, and X. Wang, “A Novel Temperature-Insensitive Optical Fiber Pressure Sensor for Harsh Environments,” IEEE Photonics Technol. Lett. 17, 870–872 (2005).
[Crossref]

2003 (1)

W. J. Wang and R. M. Lin, et al. “Performance -enhanced Fabry-Perot microcavity structure with a novel nonplanar diaphragm,” Microelectron. Eng. 70, 102–108 (2003).
[Crossref]

2001 (2)

J. Zhou and S. Dasgupta, et al. “Optically interrogated MEMS pressure sensors for propulsion applications,” Opt. Eng. 40, 598–604 (2001).
[Crossref]

D. C. Abeysinghe, S. Dasgupta, and J. T. Boyd, “A novel MEMS pressure sensor fabricated on an optical fiber,” IEEE Photonics Technol. Lett. 13, 993–995 (2001).
[Crossref]

1995 (1)

Y. Kim and D. P. Neikirk, “Micromachined Fabry-Perot cavity pressure transducer with optical fiber interconnects,” Proc. SPIE 2624, 242–249 (1995).
[Crossref]

1994 (1)

P. R. Scheeper, W. Olthuis, and P. Bergveld, “The design fabrication and testing of corrugated silicon nitride diaphragms,” Microelectromech Syst. 3, 36–42 (1994).
[Crossref]

Abeysinghe, D. C.

D. C. Abeysinghe, S. Dasgupta, and J. T. Boyd, “A novel MEMS pressure sensor fabricated on an optical fiber,” IEEE Photonics Technol. Lett. 13, 993–995 (2001).
[Crossref]

Bergveld, P.

P. R. Scheeper, W. Olthuis, and P. Bergveld, “The design fabrication and testing of corrugated silicon nitride diaphragms,” Microelectromech Syst. 3, 36–42 (1994).
[Crossref]

Boyd, J. T.

D. C. Abeysinghe, S. Dasgupta, and J. T. Boyd, “A novel MEMS pressure sensor fabricated on an optical fiber,” IEEE Photonics Technol. Lett. 13, 993–995 (2001).
[Crossref]

Chen, X.

Y. X. Ge, M. Wang, and X. Chen. “An optical MEMS pressure sensor based on a phase demodulation,” Sensors and Actuators A: Physical. 143, 224–229 (2008).
[Crossref]

Dasgupta, S.

D. C. Abeysinghe, S. Dasgupta, and J. T. Boyd, “A novel MEMS pressure sensor fabricated on an optical fiber,” IEEE Photonics Technol. Lett. 13, 993–995 (2001).
[Crossref]

J. Zhou and S. Dasgupta, et al. “Optically interrogated MEMS pressure sensors for propulsion applications,” Opt. Eng. 40, 598–604 (2001).
[Crossref]

Ge, Y. X.

Y. X. Ge, M. Wang, and X. Chen. “An optical MEMS pressure sensor based on a phase demodulation,” Sensors and Actuators A: Physical. 143, 224–229 (2008).
[Crossref]

Huang, K. Z.

K. Z. Huang, Theory of Plates and Shells, (Tsinghua University Press, Beijing, 1987) Chap. 4.

Jones, J. D. C.

W. Stuart, G. Matthew J, and J. D. C. Jones “Laser-machined fibes as Fabry-Perot pressure sensors,” Applied Optics. 45, 5590–5596 (2006).
[Crossref]

Kim, Y.

Y. Kim and D. P. Neikirk, “Micromachined Fabry-Perot cavity pressure transducer with optical fiber interconnects,” Proc. SPIE 2624, 242–249 (1995).
[Crossref]

Lin, R. M.

W. J. Wang and R. M. Lin, et al. “Performance -enhanced Fabry-Perot microcavity structure with a novel nonplanar diaphragm,” Microelectron. Eng. 70, 102–108 (2003).
[Crossref]

Matthew J, G.

W. Stuart, G. Matthew J, and J. D. C. Jones “Laser-machined fibes as Fabry-Perot pressure sensors,” Applied Optics. 45, 5590–5596 (2006).
[Crossref]

Neikirk, D. P.

Y. Kim and D. P. Neikirk, “Micromachined Fabry-Perot cavity pressure transducer with optical fiber interconnects,” Proc. SPIE 2624, 242–249 (1995).
[Crossref]

Olthuis, W.

P. R. Scheeper, W. Olthuis, and P. Bergveld, “The design fabrication and testing of corrugated silicon nitride diaphragms,” Microelectromech Syst. 3, 36–42 (1994).
[Crossref]

Pickrell, G.

J. Xu, G. Pickrell, and X. Wang, “A Novel Temperature-Insensitive Optical Fiber Pressure Sensor for Harsh Environments,” IEEE Photonics Technol. Lett. 17, 870–872 (2005).
[Crossref]

Scheeper, P. R.

P. R. Scheeper, W. Olthuis, and P. Bergveld, “The design fabrication and testing of corrugated silicon nitride diaphragms,” Microelectromech Syst. 3, 36–42 (1994).
[Crossref]

Stuart, W.

W. Stuart, G. Matthew J, and J. D. C. Jones “Laser-machined fibes as Fabry-Perot pressure sensors,” Applied Optics. 45, 5590–5596 (2006).
[Crossref]

Wang, M.

Y. X. Ge, M. Wang, and X. Chen. “An optical MEMS pressure sensor based on a phase demodulation,” Sensors and Actuators A: Physical. 143, 224–229 (2008).
[Crossref]

Wang, W. J.

W. J. Wang and R. M. Lin, et al. “Performance -enhanced Fabry-Perot microcavity structure with a novel nonplanar diaphragm,” Microelectron. Eng. 70, 102–108 (2003).
[Crossref]

Wang, X.

J. Xu, G. Pickrell, and X. Wang, “A Novel Temperature-Insensitive Optical Fiber Pressure Sensor for Harsh Environments,” IEEE Photonics Technol. Lett. 17, 870–872 (2005).
[Crossref]

Xu, J.

J. Xu, G. Pickrell, and X. Wang, “A Novel Temperature-Insensitive Optical Fiber Pressure Sensor for Harsh Environments,” IEEE Photonics Technol. Lett. 17, 870–872 (2005).
[Crossref]

Zhou, J.

J. Zhou and S. Dasgupta, et al. “Optically interrogated MEMS pressure sensors for propulsion applications,” Opt. Eng. 40, 598–604 (2001).
[Crossref]

Applied Optics. (1)

W. Stuart, G. Matthew J, and J. D. C. Jones “Laser-machined fibes as Fabry-Perot pressure sensors,” Applied Optics. 45, 5590–5596 (2006).
[Crossref]

IEEE Photonics Technol. Lett. (2)

D. C. Abeysinghe, S. Dasgupta, and J. T. Boyd, “A novel MEMS pressure sensor fabricated on an optical fiber,” IEEE Photonics Technol. Lett. 13, 993–995 (2001).
[Crossref]

J. Xu, G. Pickrell, and X. Wang, “A Novel Temperature-Insensitive Optical Fiber Pressure Sensor for Harsh Environments,” IEEE Photonics Technol. Lett. 17, 870–872 (2005).
[Crossref]

Microelectromech Syst. (1)

P. R. Scheeper, W. Olthuis, and P. Bergveld, “The design fabrication and testing of corrugated silicon nitride diaphragms,” Microelectromech Syst. 3, 36–42 (1994).
[Crossref]

Microelectron. Eng. (1)

W. J. Wang and R. M. Lin, et al. “Performance -enhanced Fabry-Perot microcavity structure with a novel nonplanar diaphragm,” Microelectron. Eng. 70, 102–108 (2003).
[Crossref]

Opt. Eng. (1)

J. Zhou and S. Dasgupta, et al. “Optically interrogated MEMS pressure sensors for propulsion applications,” Opt. Eng. 40, 598–604 (2001).
[Crossref]

Proc. SPIE (1)

Y. Kim and D. P. Neikirk, “Micromachined Fabry-Perot cavity pressure transducer with optical fiber interconnects,” Proc. SPIE 2624, 242–249 (1995).
[Crossref]

Sensors and Actuators A: Physical. (1)

Y. X. Ge, M. Wang, and X. Chen. “An optical MEMS pressure sensor based on a phase demodulation,” Sensors and Actuators A: Physical. 143, 224–229 (2008).
[Crossref]

Other (1)

K. Z. Huang, Theory of Plates and Shells, (Tsinghua University Press, Beijing, 1987) Chap. 4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Sketch of optical fiber MEMS pressure sensor
Fig. 2.
Fig. 2. The section configuration of the mesa membrane
Fig. 3.
Fig. 3. The deformation of the mesa-diaphragm
Fig. 4.
Fig. 4. The comparison between the mesa membrane and the planar one. Fig. 4 (a) the deformation of the mesa membrane Fig. 4 (b) the deformation of the planar membrane
Fig. 5.
Fig. 5. Evaluation of SAE of the F-P cavity with a conventional planar diaphragm and the mesa structure
Fig. 6.
Fig. 6. Fabrication process.
Fig. 7.
Fig. 7. SEM photograph of the mesa-diaphragm
Fig. 8.
Fig. 8. The sample of the sensor
Fig. 9.
Fig. 9. The measurement system of the sensor
Fig. 10.
Fig. 10. Pressure versus reflectivity (a) planar diaphragm and (b) mesa diaphragm
Fig. 11.
Fig. 11. The experimental results
Fig. 12.
Fig. 12. The repeatability of the sensor

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d 4 w 1 d r 4 + 2 r d 3 w 1 d r 3 1 r 2 d 2 w 1 d r 2 + 1 r 3 d w 1 d r = P D 1 ( 0 r b )
d 4 w 2 d r 4 + 2 r d 3 w 2 d r 3 1 r 2 d 2 w 2 d r 2 + 1 r 3 d w 2 d r = P D 2 ( b r a )
D 1 = E ( h 1 + h 2 ) 3 12 ( 1 v 2 ) D 2 = E h 1 3 12 ( 1 v 2 )
w 1 = P ( r 4 64 D 1 b 2 32 D 1 r 2 + a 4 b 4 64 D 2 + b 4 64 D 1 + a 2 b 2 16 D 2 log b a )
w 2 = q ( r 4 64 D 2 a 2 + b 2 32 D 2 r 2 + a 2 b 2 16 D 2 log r + ( a 2 + b 2 ) a 2 32 D 2 a 2 b 2 16 D 2 log a a 4 64 D 2 )
w m = P ( a 4 b 4 64 D 2 + b 4 64 D 1 + a 2 b 2 16 D 2 log b a )
R avg = R ( g ) A ( g ) A ( g )

Metrics