Abstract

We introduce recent advances in dynamic control over the Q factor of a photonic crystal nanocavity system. By carefully timing a rapid increase of the Q factor from 3800 to 22,000, we succeed in capturing a 4ps signal pulse within the nanocavity with a photon lifetime of 18ps. By performing an additional transition of the Q factor within the photon lifetime, the held light is once again ejected from of the system on demand.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944--947 (2003).
    [CrossRef] [PubMed]
  2. B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
    [CrossRef]
  3. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavites realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
    [CrossRef]
  4. Y. Tanaka, T. Asano, and S. Noda, "Design of Photonic Crystal Nanocavity with Q-Factor of ~109," J. Lightwave Technol. 26, 1532-1539 (2008).
    [CrossRef]
  5. Y. Takahashi, H. Hagino, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, "High-Q nanocavity with a 2-ns photon lifetime," Opt. Express 15, 17206-17213 (2007).
    [CrossRef] [PubMed]
  6. J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, "Enhanced nonlinear optics in photonic-crystal microcavities," Opt. Express 15, 16161-16176 (2007).
    [CrossRef] [PubMed]
  7. P. E. Barclay, K. Srinivasan, and O. Painter, "Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper," Opt. Express 13, 801-820 (2005).
    [CrossRef] [PubMed]
  8. M. F. Yanik and S. Fan, "Stopping light all optically," Phys. Rev. Lett. 92, 083901 (2004).
    [CrossRef] [PubMed]
  9. M. F. Yanik and S. Fan, "Stopping and storing light coherently," Phys. Rev. A 71, 013803 (2005).
    [CrossRef]
  10. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, "Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity," Phys. Rev. Lett. 69, 3314-3317 (1992).
    [CrossRef] [PubMed]
  11. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly-coupled single quantum dot-cavity system," Nature 445, 895-899 (2007).
    [CrossRef]
  12. M. Yamaguchi, T. Asano, andS. Noda, "Photon emission by nanocavity-enhanced quantum anti-Zeno effect in solid-state cavity quantum-electrodynamics," Opt. Express 16, 18067-18081 (2008).
    [CrossRef] [PubMed]
  13. Y. Tanaka, T. Asano, and S. Noda, "Trapping of ultrashort optical pulse into ultra-high-Q photonic nanocavity," in Proceedings of Pacific Rim Conference on Lasers and Electro-Optics (Tokyo, Japan, 2005), 1024-1025.
  14. Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, "Dynamic control of the Q factor in a photonic crystal nanocavity," Nat. Mater. 6, 862-865 (2007).
    [CrossRef] [PubMed]
  15. Q.F. Xu, P. Dong, and M. Lipson, "Breaking the delay-bandwidth limit in a photonic structure," Nature Phys. 3, 406-410 (2007).
    [CrossRef]
  16. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," Quantum Electron. 35, 1322-1331 (1999).
    [CrossRef]
  17. B. S. Song, T. Asano, Y. Akahane, and S. Noda, "Role of interfaces in heterophotonic crystals for manipulation of photons," Phys. Rev. B 71, 195101 (2005).
    [CrossRef]
  18. T. Uesugi, B. Song, T. Asano, and S. Noda, "Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab," Opt. Express 14, 377-386 (2006).
    [CrossRef] [PubMed]

2008

2007

J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, "Enhanced nonlinear optics in photonic-crystal microcavities," Opt. Express 15, 16161-16176 (2007).
[CrossRef] [PubMed]

Y. Takahashi, H. Hagino, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, "High-Q nanocavity with a 2-ns photon lifetime," Opt. Express 15, 17206-17213 (2007).
[CrossRef] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly-coupled single quantum dot-cavity system," Nature 445, 895-899 (2007).
[CrossRef]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, "Dynamic control of the Q factor in a photonic crystal nanocavity," Nat. Mater. 6, 862-865 (2007).
[CrossRef] [PubMed]

Q.F. Xu, P. Dong, and M. Lipson, "Breaking the delay-bandwidth limit in a photonic structure," Nature Phys. 3, 406-410 (2007).
[CrossRef]

2006

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavites realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

T. Uesugi, B. Song, T. Asano, and S. Noda, "Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab," Opt. Express 14, 377-386 (2006).
[CrossRef] [PubMed]

2005

B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
[CrossRef]

M. F. Yanik and S. Fan, "Stopping and storing light coherently," Phys. Rev. A 71, 013803 (2005).
[CrossRef]

B. S. Song, T. Asano, Y. Akahane, and S. Noda, "Role of interfaces in heterophotonic crystals for manipulation of photons," Phys. Rev. B 71, 195101 (2005).
[CrossRef]

P. E. Barclay, K. Srinivasan, and O. Painter, "Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper," Opt. Express 13, 801-820 (2005).
[CrossRef] [PubMed]

2004

M. F. Yanik and S. Fan, "Stopping light all optically," Phys. Rev. Lett. 92, 083901 (2004).
[CrossRef] [PubMed]

2003

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944--947 (2003).
[CrossRef] [PubMed]

1999

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

1992

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, "Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity," Phys. Rev. Lett. 69, 3314-3317 (1992).
[CrossRef] [PubMed]

Akahane, Y.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
[CrossRef]

B. S. Song, T. Asano, Y. Akahane, and S. Noda, "Role of interfaces in heterophotonic crystals for manipulation of photons," Phys. Rev. B 71, 195101 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944--947 (2003).
[CrossRef] [PubMed]

Arakawa, Y.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, "Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity," Phys. Rev. Lett. 69, 3314-3317 (1992).
[CrossRef] [PubMed]

Asano, T.

M. Yamaguchi, T. Asano, andS. Noda, "Photon emission by nanocavity-enhanced quantum anti-Zeno effect in solid-state cavity quantum-electrodynamics," Opt. Express 16, 18067-18081 (2008).
[CrossRef] [PubMed]

Y. Tanaka, T. Asano, and S. Noda, "Design of Photonic Crystal Nanocavity with Q-Factor of ~109," J. Lightwave Technol. 26, 1532-1539 (2008).
[CrossRef]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, "Dynamic control of the Q factor in a photonic crystal nanocavity," Nat. Mater. 6, 862-865 (2007).
[CrossRef] [PubMed]

Y. Takahashi, H. Hagino, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, "High-Q nanocavity with a 2-ns photon lifetime," Opt. Express 15, 17206-17213 (2007).
[CrossRef] [PubMed]

T. Uesugi, B. Song, T. Asano, and S. Noda, "Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab," Opt. Express 14, 377-386 (2006).
[CrossRef] [PubMed]

B. S. Song, T. Asano, Y. Akahane, and S. Noda, "Role of interfaces in heterophotonic crystals for manipulation of photons," Phys. Rev. B 71, 195101 (2005).
[CrossRef]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944--947 (2003).
[CrossRef] [PubMed]

Atature, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly-coupled single quantum dot-cavity system," Nature 445, 895-899 (2007).
[CrossRef]

Badolato, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly-coupled single quantum dot-cavity system," Nature 445, 895-899 (2007).
[CrossRef]

Barclay, P. E.

Bermel, P.

Bravo-Abad, J.

Dong, P.

Q.F. Xu, P. Dong, and M. Lipson, "Breaking the delay-bandwidth limit in a photonic structure," Nature Phys. 3, 406-410 (2007).
[CrossRef]

Falt, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly-coupled single quantum dot-cavity system," Nature 445, 895-899 (2007).
[CrossRef]

Fan, S.

M. F. Yanik and S. Fan, "Stopping and storing light coherently," Phys. Rev. A 71, 013803 (2005).
[CrossRef]

M. F. Yanik and S. Fan, "Stopping light all optically," Phys. Rev. Lett. 92, 083901 (2004).
[CrossRef] [PubMed]

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

Gerace, D.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly-coupled single quantum dot-cavity system," Nature 445, 895-899 (2007).
[CrossRef]

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly-coupled single quantum dot-cavity system," Nature 445, 895-899 (2007).
[CrossRef]

Hagino, H.

Haus, H. A.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly-coupled single quantum dot-cavity system," Nature 445, 895-899 (2007).
[CrossRef]

Hu, E. L.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly-coupled single quantum dot-cavity system," Nature 445, 895-899 (2007).
[CrossRef]

Imamoglu, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly-coupled single quantum dot-cavity system," Nature 445, 895-899 (2007).
[CrossRef]

Ishikawa, A.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, "Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity," Phys. Rev. Lett. 69, 3314-3317 (1992).
[CrossRef] [PubMed]

Joannopoulos, J. D.

J. Bravo-Abad, A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, "Enhanced nonlinear optics in photonic-crystal microcavities," Opt. Express 15, 16161-16176 (2007).
[CrossRef] [PubMed]

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

Johnson, S. G.

Khan, M. J.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

Kuramochi, E.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavites realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

Lipson, M.

Q.F. Xu, P. Dong, and M. Lipson, "Breaking the delay-bandwidth limit in a photonic structure," Nature Phys. 3, 406-410 (2007).
[CrossRef]

Manolatou, C.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

Mitsugi, S.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavites realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

Nagashima, T.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, "Dynamic control of the Q factor in a photonic crystal nanocavity," Nat. Mater. 6, 862-865 (2007).
[CrossRef] [PubMed]

Nishioka, M.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, "Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity," Phys. Rev. Lett. 69, 3314-3317 (1992).
[CrossRef] [PubMed]

Noda, S.

Y. Tanaka, T. Asano, and S. Noda, "Design of Photonic Crystal Nanocavity with Q-Factor of ~109," J. Lightwave Technol. 26, 1532-1539 (2008).
[CrossRef]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, "Dynamic control of the Q factor in a photonic crystal nanocavity," Nat. Mater. 6, 862-865 (2007).
[CrossRef] [PubMed]

Y. Takahashi, H. Hagino, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, "High-Q nanocavity with a 2-ns photon lifetime," Opt. Express 15, 17206-17213 (2007).
[CrossRef] [PubMed]

T. Uesugi, B. Song, T. Asano, and S. Noda, "Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab," Opt. Express 14, 377-386 (2006).
[CrossRef] [PubMed]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
[CrossRef]

B. S. Song, T. Asano, Y. Akahane, and S. Noda, "Role of interfaces in heterophotonic crystals for manipulation of photons," Phys. Rev. B 71, 195101 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944--947 (2003).
[CrossRef] [PubMed]

Notomi, M.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavites realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

Painter, O.

Rodriguez, A.

Shinya, A.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavites realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

Soljacic, M.

Song, B.

Song, B. S.

Y. Takahashi, H. Hagino, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, "High-Q nanocavity with a 2-ns photon lifetime," Opt. Express 15, 17206-17213 (2007).
[CrossRef] [PubMed]

B. S. Song, T. Asano, Y. Akahane, and S. Noda, "Role of interfaces in heterophotonic crystals for manipulation of photons," Phys. Rev. B 71, 195101 (2005).
[CrossRef]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944--947 (2003).
[CrossRef] [PubMed]

Srinivasan, K.

Sugiya, T.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, "Dynamic control of the Q factor in a photonic crystal nanocavity," Nat. Mater. 6, 862-865 (2007).
[CrossRef] [PubMed]

Takahashi, Y.

Tanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavites realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

Tanaka, Y.

Uesugi, T.

Upham, J.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, "Dynamic control of the Q factor in a photonic crystal nanocavity," Nat. Mater. 6, 862-865 (2007).
[CrossRef] [PubMed]

Villeneuve, P. R.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

Watanabe, T.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavites realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

Weisbuch, C.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, "Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity," Phys. Rev. Lett. 69, 3314-3317 (1992).
[CrossRef] [PubMed]

Winger, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly-coupled single quantum dot-cavity system," Nature 445, 895-899 (2007).
[CrossRef]

Xu, Q.F.

Q.F. Xu, P. Dong, and M. Lipson, "Breaking the delay-bandwidth limit in a photonic structure," Nature Phys. 3, 406-410 (2007).
[CrossRef]

Yamaguchi, M.

Yanik, M. F.

M. F. Yanik and S. Fan, "Stopping and storing light coherently," Phys. Rev. A 71, 013803 (2005).
[CrossRef]

M. F. Yanik and S. Fan, "Stopping light all optically," Phys. Rev. Lett. 92, 083901 (2004).
[CrossRef] [PubMed]

Appl. Phys. Lett.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavites realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006).
[CrossRef]

J. Lightwave Technol.

Nat. Mater.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, "Dynamic control of the Q factor in a photonic crystal nanocavity," Nat. Mater. 6, 862-865 (2007).
[CrossRef] [PubMed]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
[CrossRef]

Nature

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944--947 (2003).
[CrossRef] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly-coupled single quantum dot-cavity system," Nature 445, 895-899 (2007).
[CrossRef]

Nature Phys.

Q.F. Xu, P. Dong, and M. Lipson, "Breaking the delay-bandwidth limit in a photonic structure," Nature Phys. 3, 406-410 (2007).
[CrossRef]

Opt. Express

Phys. Rev. A

M. F. Yanik and S. Fan, "Stopping and storing light coherently," Phys. Rev. A 71, 013803 (2005).
[CrossRef]

Phys. Rev. B

B. S. Song, T. Asano, Y. Akahane, and S. Noda, "Role of interfaces in heterophotonic crystals for manipulation of photons," Phys. Rev. B 71, 195101 (2005).
[CrossRef]

Phys. Rev. Lett.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, "Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity," Phys. Rev. Lett. 69, 3314-3317 (1992).
[CrossRef] [PubMed]

M. F. Yanik and S. Fan, "Stopping light all optically," Phys. Rev. Lett. 92, 083901 (2004).
[CrossRef] [PubMed]

Quantum Electron.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

Other

Y. Tanaka, T. Asano, and S. Noda, "Trapping of ultrashort optical pulse into ultra-high-Q photonic nanocavity," in Proceedings of Pacific Rim Conference on Lasers and Electro-Optics (Tokyo, Japan, 2005), 1024-1025.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of sample with signal and control pulses.

Fig. 2.
Fig. 2.

Coupled mode theory calculation of cavity energy vs. time calculated for various Q conditions. Black line: low Q (~4000). Red line: high Q (~22,000). Blue line: dynamic change from low to high Q over 4 ps.

Fig. 3.
Fig. 3.

Results of improved single-step dynamic Q control a) vertical emission vs. time difference between control and signal pulses b) spectrum of vertical emission for simultaneous case (low to high Q) c) spectrum of vertical emission for signal early case (low Q) d) spectrum of vertical emission for control early case.

Fig. 4.
Fig. 4.

2D FDTD simulation of cavity energy behavior over time for different Q conditions using experimental parameters. Black line: low Q case (Q sys~4000). Red line: high Q case (Q sys~22,000). Blue line: dynamic shift of Q from low to high by a 4 ps control pulse.

Fig. 5.
Fig. 5.

Simulation of system’s response to phase shifts induced by the second control pulse a short time after first control pulse. (a–j) Calculated energy flux leaving the cavity vertically or down the waveguide over time for various phases.

Fig. 6.
Fig. 6.

(a) Predicted observable vertical emission as a function of second phase shift, using the data from Fig. 5(b) Measured results of vertical emission for increasing energies of the second control pulse.

Fig. 7.
Fig. 7.

Vertical emission as a function of delay between the control pulses T (a) Simulated response of cavity energy to different times between the two changes of Q, compared to the case with only Q increase (blue line). (b) Experimental response of the vertical emission between the Q increase only case (blue line) and static Q case (red line) for various T. Dashed line indicates a photon lifetime of 18 ps.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Q in = Q in-orig 1 + cos ( θ )
1 Q sys = 1 Q v + 1 + cos ( θ ) Q in-orig
d E cav ( t ) dt = ω E cav ( t ) Q in ( t ) ω E cav ( t ) Q v
0 ( d E cav ( t ) dt ) vert dt = ω Q v 0 E cav ( t ) dt

Metrics