Abstract

A differential pulse-width pair Brillouin optical time domain analysis (DPP-BOTDA) for centimeter spatial resolution sensing using meter equivalent pulses is proposed. This scheme uses the time domain waveform subtraction at the same scanned Brillouin frequency obtained from pulse lights with different pulse-widths (e.g. 50ns and 49ns) to form the differential Brillouin gain spectrum (BGS) at each fiber location. The spatial resolution is defined by the average of the rise and fall time equivalent fiber length for a small stress section rather than the pulse-width difference equivalent length. The spatial resolution of 0.18m for the 50/49ns pulse pair and 0.15m for 20/19ns pulse pair over 1km sensing length with Brillouin frequency shift accuracy of 2.6MHz are demonstrated.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Ohno, H. Naruse, T. Kurashima, A. Nobiki, Y. Uchiyama, and Y. Kusakabe, "Application of Brillouin scattering-based distributed optical fiber strain sensor to actual concrete piles," IEICE Trans. Electron. E 85-C, 945-951 (2002).
  2. X. Zeng, X. Bao, C. Chhoa, T. Bremner, A. Brown, M. DeMerchant, G. Ferrier, A. L. Kalamkarov, and A. V. Georgiades, "Strain measurement in a concrete beam by use of the Brillouin-scattering-based distributed fiber sensor with single-mode fibers imbedded in glass fiber reinforced polymer rods and bonded to steel reinforcing bars," Appl. Opt. 41, 5105-5114 (2002).
    [CrossRef] [PubMed]
  3. L. Zou, X. Bao, Y. Wan, and L. Chen, "Coherent pump-probe-based Brillouin sensor for centimetre-crack detection," Opt. Lett. 30, 370-372 (2005).
    [CrossRef] [PubMed]
  4. L. Zou, X. Bao, S. V. Afshar, and L. Chen, "Dependence of the Brillouin frequency shift on strain and temperature in a photonic crystal fiber," Simple method to identify the spatial location better than pulse length with high strain accuracy," Opt. Lett. 29, 1485-1487 (2004).
    [CrossRef] [PubMed]
  5. V. Lecoueche, D. J. Web, C. N. Pannell, and D. A. Jackson, "Transient response in high-resolution Brillouin-based distributed sensing using probe pulses shorter than the acoustic relaxation time," Opt. Lett. 25, 156-158 (2000).
    [CrossRef]
  6. X. Bao, Y. Wan, L. Zou, and L. Chen, "Effect of optical phase on a distributed Brillouin sensor at centimeter spatial resolution," Opt. Lett. 30, 827-829 (2005).
    [CrossRef] [PubMed]
  7. Y. Li, X. Bao, F. Ravet, and E. Ponomarev, "Distributed Brillouin sensor system based on offset locking of two distributed feedback lasers," Appl. Opt. 47, 99-102 (2008).
    [CrossRef] [PubMed]
  8. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, "Development of a distributed sensing technique using Brillouin scattering," J. Lightwave Technol. 13, 1296-1302 (1995).
    [CrossRef]

2008 (1)

2005 (2)

2004 (1)

2002 (2)

2000 (1)

1995 (1)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, "Development of a distributed sensing technique using Brillouin scattering," J. Lightwave Technol. 13, 1296-1302 (1995).
[CrossRef]

Afshar, S. V.

Bao, X.

Bremner, T.

Brown, A.

Chen, L.

Chhoa, C.

DeMerchant, M.

Ferrier, G.

Georgiades, A. V.

Horiguchi, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, "Development of a distributed sensing technique using Brillouin scattering," J. Lightwave Technol. 13, 1296-1302 (1995).
[CrossRef]

Jackson, D. A.

Kalamkarov, A. L.

Koyamada, Y.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, "Development of a distributed sensing technique using Brillouin scattering," J. Lightwave Technol. 13, 1296-1302 (1995).
[CrossRef]

Kurashima, T.

H. Ohno, H. Naruse, T. Kurashima, A. Nobiki, Y. Uchiyama, and Y. Kusakabe, "Application of Brillouin scattering-based distributed optical fiber strain sensor to actual concrete piles," IEICE Trans. Electron. E 85-C, 945-951 (2002).

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, "Development of a distributed sensing technique using Brillouin scattering," J. Lightwave Technol. 13, 1296-1302 (1995).
[CrossRef]

Kusakabe, Y.

H. Ohno, H. Naruse, T. Kurashima, A. Nobiki, Y. Uchiyama, and Y. Kusakabe, "Application of Brillouin scattering-based distributed optical fiber strain sensor to actual concrete piles," IEICE Trans. Electron. E 85-C, 945-951 (2002).

Lecoueche, V.

Li, Y.

Naruse, H.

H. Ohno, H. Naruse, T. Kurashima, A. Nobiki, Y. Uchiyama, and Y. Kusakabe, "Application of Brillouin scattering-based distributed optical fiber strain sensor to actual concrete piles," IEICE Trans. Electron. E 85-C, 945-951 (2002).

Nobiki, A.

H. Ohno, H. Naruse, T. Kurashima, A. Nobiki, Y. Uchiyama, and Y. Kusakabe, "Application of Brillouin scattering-based distributed optical fiber strain sensor to actual concrete piles," IEICE Trans. Electron. E 85-C, 945-951 (2002).

Ohno, H.

H. Ohno, H. Naruse, T. Kurashima, A. Nobiki, Y. Uchiyama, and Y. Kusakabe, "Application of Brillouin scattering-based distributed optical fiber strain sensor to actual concrete piles," IEICE Trans. Electron. E 85-C, 945-951 (2002).

Pannell, C. N.

Ponomarev, E.

Ravet, F.

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, "Development of a distributed sensing technique using Brillouin scattering," J. Lightwave Technol. 13, 1296-1302 (1995).
[CrossRef]

Tateda, M.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, "Development of a distributed sensing technique using Brillouin scattering," J. Lightwave Technol. 13, 1296-1302 (1995).
[CrossRef]

Uchiyama, Y.

H. Ohno, H. Naruse, T. Kurashima, A. Nobiki, Y. Uchiyama, and Y. Kusakabe, "Application of Brillouin scattering-based distributed optical fiber strain sensor to actual concrete piles," IEICE Trans. Electron. E 85-C, 945-951 (2002).

Wan, Y.

Web, D. J.

Zeng, X.

Zou, L.

Appl. Opt. (2)

IEICE Trans. Electron. E (1)

H. Ohno, H. Naruse, T. Kurashima, A. Nobiki, Y. Uchiyama, and Y. Kusakabe, "Application of Brillouin scattering-based distributed optical fiber strain sensor to actual concrete piles," IEICE Trans. Electron. E 85-C, 945-951 (2002).

J. Lightwave Technol. (1)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, "Development of a distributed sensing technique using Brillouin scattering," J. Lightwave Technol. 13, 1296-1302 (1995).
[CrossRef]

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

The principle of DPP-BOTDA is to use a pulse pair with different pulse-widths to obtain high spatial resolution determined by the difference of the two pulse-widths and rise and fall time of the pulses.

Fig. 2.
Fig. 2.

The 3D BOTDA spectra along the sensing fiber for a 0.2m length fiber section with 60MHz Brillouin frequency shift from 12800MHz. (a) Conventional BOTDA using 50ns pulse light and, (b) DPP-BOTDA using 50 and 49ns pulse pair.

Fig. 3.
Fig. 3.

The calculated conventional BOTDA for 50ns pulse light (solid) and DPP-BOTDA for the 50/49ns pulse pairs at peak Brillouin frequency shift of 12860MHz for various stress section length of 0.2m (dash), 1.0m (point) and 1.5m (dash-point).

Fig. 4.
Fig. 4.

Configuration of the DPP-BOTDA sensing system. PD: photo-detectors, FUT: fiber under test, EOM: electro-optic modulator. The pulse width is controlled by pulse generator.

Fig. 5.
Fig. 5.

(a). The sensing fiber layout with two stress sections of 2,000 and 3,000 micro-strains separated by 1m loose fiber. (b). 3D graph of the BGS from a conventional BOTDA using 50ns pulse.

Fig. 6.
Fig. 6.

The 3D graphs of the BGS by DPP-BOTDA using (a) 50/45ns pulse pair and (b) 50/48ns pulse pair. The later shows better spatial resolution and finer fiber feature.

Fig. 7.
Fig. 7.

Comparison of different DPP-BOTDA using pulse pair with various rise/fall times of the pulses: (a) 20/19ns pulse pair with= r τ 0.67ns and (b)= r τ 2ns, (c) 20/15ns pulse pair with= r τ 0.67ns and (d)= r τ 2ns.

Fig. 8.
Fig. 8.

Evaluation of the spatial resolution for DPP-BOTDA with 50/45ns pulse pair based on (rise time+fall time)/2, in the time-domain DPP-BOTDA signal at the Brillouin frequency shift of 12900MHz.

Tables (1)

Tables Icon

Table 1. Spatial and Brillouin frequency resolution of DPP-BOTDA

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

( z n c t ) E p = Q ̅ E s
( z + n c t ) E s = Q ̅ * E p
( t + Γ ) Q ̅ = 1 2 Γ 1 g B E p E s *
Q ̅ ( z , t ) = 1 2 Γ 1 g B exp ( Γ t ) 0 t E p ( z , t ) E s * ( z , t ) exp ( Γ t ) dt
Q ̅ ( 0 , t ) 2 = 1 4 Γ 1 2 g B 2 exp ( 2 Γ t ) 0 t E p ( 0 , t ) E s * ( 0 , t ) exp ( Γ t ) dt 2
Q ̅ ( 0 , t ) 2 = 1 4 Γ 1 2 g B 2 exp ( 2 Γ t ) E s 0 2 0 t E p ( 0 , t ) exp ( Γ t ) f ( t , t 0 , τ p ) dt 2

Metrics