Abstract

A sub-millimeter-dimension electro-optic probe that provides enhanced scanning accessibility with significantly less intrusiveness than metal-based or even other dielectric probes during electromagnetic characterization of microwave devices is presented. The quantitative and qualitative relative invasiveness of the probe on the operation of an example antenna device-under-test is explored with respect to previously demonstrated fiber and wafer electro-optic sensors. We also demonstrate that the miniaturized probe, with a diameter of 125 µm, can be used to reconstruct the three orthogonal vector components of near-electric fields without the need for different probe crystals or multiple calibration procedures. Finally, the advantages of the reduced size and invasiveness of the new micro-scale probe are demonstrated through the enhanced resolution of detailed images extracted from planar antennas, as well as the capability of reaching into circuit locations heretofore inaccessible.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, "Electro-optic Mapping of Near-field Distributions in Integrated Microwave Circuits," IEEE Trans. Microwave Theory Tech. 46, 2338-2343 (1998).
    [CrossRef]
  2. K. Yang, J. G. Yook, L. P. B. Katehi, and J. F. Whitaker, "Electrooptic Mapping and Finite-Element Modeling of the Near-Field Pattern of a Microstrip Patch Antenna," IEEE Trans. Microwave Theory Tech. 48, 228-294 (2000).
  3. K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, "Active-amplifier-array diagnostics using high-resolution electrooptic field mapping," IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
    [CrossRef]
  4. K. Yang, L. P. B. Katehi, and J. F. Whitaker, "Electro-optic field mapping system utilizing external gallium arsenide probes," Appl. Phys. Lett. 77, 486-488 (2000).
    [CrossRef]
  5. H. Togo, N. Shimizu, and T. Nagatsuma, "Near-Field Mapping System Using Fiber-Based Electro-Optic Probe for Specific Absorption Rate Measurement," IEICE Trans. Electron. E90-C, 436-442 (2007).
    [CrossRef]
  6. S. Wakana, E. Yamazaki, S. Mitani, H. Park, M. Iwanami, S. Hoshino, M. Kishi, and M. Tsuchiya, "Performance evaluation of fiber-edge magnetooptic probe," J. Lightwave Technol. 21, 3292-3299 (2003).
    [CrossRef]
  7. S. M. Chandani, "Fiber-Based Probe for Electrooptic Sampling," IEEE Photon. Technol. Lett. 18, 1290-1292 (2006).
    [CrossRef]
  8. D. J. Lee and J. F. Whitaker, "A Simplified Fabry-Pérot Electrooptic-Modulation Sensor," IEEE Photon. Technol. Lett. 20, 866-868 (2008).
    [CrossRef]
  9. D. J. Lee, M. H. Crites, and J. F. Whitaker, "Electro-Optic Probing of Microwave Fields Using a Wavelength-Tunable Modulation Depth," Meas. Sci. Technol. 19, 115301-115310 (2008).
    [CrossRef]
  10. D. J. Lee and J. F. Whitaker, "Bandwidth Enhancement of Electro-Optic Field Sensing Using Photonic Down-Mixing with Harmonic Sidebands," Opt. Express. 16, 14771-14779 (2008).
    [CrossRef] [PubMed]
  11. J. L. Casson, K. T. Gahagan, D. A. Scrymgeour, R. K. Jain, J. M. Robinson, V. Gopalan, and R. K. Sander, "Electro-optic coefficients of lithium tantalite at near-infrared wavelengths," J. Opt. Soc. Am. B 21, 1948-1952 (2004).
    [CrossRef]
  12. J. A. Deibel, and J. F. Whitaker, "A fiber-mounted polymer electro-optic-sampling field sensor," in 2003 IEEE LEOS Annual Meeting Conference Proceedings (IEEE, 2003), pp. 786-787.
  13. D. J. Lee, J. J Kang, and J. F. Whitaker, "Vector Near-Field Measurements Using Optimized Electrical and Photonic Down-Conversion," IEEE Trans. Microwave Theory Tech.(to be published, Dec. 2008).
    [CrossRef]
  14. A. G. Yaghjian, "An Overview of Near-Field Antenna Measurements," IEEE Trans. Antennas Propagat. AP-34, 30-45 (1986).
    [CrossRef]
  15. K. Sasagawa, A Kanno, T. Kawanishi, and M. Tsuchiya, "Live Electrooptic Imaging System Based on Ultraparallel Photonic Heterodyne for Microwave Near-Fields," IEEE Trans. Microwave Theory Tech. 55, 2782-2791 (2007).
    [CrossRef]

2008

D. J. Lee and J. F. Whitaker, "A Simplified Fabry-Pérot Electrooptic-Modulation Sensor," IEEE Photon. Technol. Lett. 20, 866-868 (2008).
[CrossRef]

D. J. Lee, M. H. Crites, and J. F. Whitaker, "Electro-Optic Probing of Microwave Fields Using a Wavelength-Tunable Modulation Depth," Meas. Sci. Technol. 19, 115301-115310 (2008).
[CrossRef]

D. J. Lee and J. F. Whitaker, "Bandwidth Enhancement of Electro-Optic Field Sensing Using Photonic Down-Mixing with Harmonic Sidebands," Opt. Express. 16, 14771-14779 (2008).
[CrossRef] [PubMed]

D. J. Lee, J. J Kang, and J. F. Whitaker, "Vector Near-Field Measurements Using Optimized Electrical and Photonic Down-Conversion," IEEE Trans. Microwave Theory Tech.(to be published, Dec. 2008).
[CrossRef]

2007

H. Togo, N. Shimizu, and T. Nagatsuma, "Near-Field Mapping System Using Fiber-Based Electro-Optic Probe for Specific Absorption Rate Measurement," IEICE Trans. Electron. E90-C, 436-442 (2007).
[CrossRef]

K. Sasagawa, A Kanno, T. Kawanishi, and M. Tsuchiya, "Live Electrooptic Imaging System Based on Ultraparallel Photonic Heterodyne for Microwave Near-Fields," IEEE Trans. Microwave Theory Tech. 55, 2782-2791 (2007).
[CrossRef]

2006

S. M. Chandani, "Fiber-Based Probe for Electrooptic Sampling," IEEE Photon. Technol. Lett. 18, 1290-1292 (2006).
[CrossRef]

2004

2003

2001

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, "Active-amplifier-array diagnostics using high-resolution electrooptic field mapping," IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

2000

K. Yang, L. P. B. Katehi, and J. F. Whitaker, "Electro-optic field mapping system utilizing external gallium arsenide probes," Appl. Phys. Lett. 77, 486-488 (2000).
[CrossRef]

K. Yang, J. G. Yook, L. P. B. Katehi, and J. F. Whitaker, "Electrooptic Mapping and Finite-Element Modeling of the Near-Field Pattern of a Microstrip Patch Antenna," IEEE Trans. Microwave Theory Tech. 48, 228-294 (2000).

1998

K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, "Electro-optic Mapping of Near-field Distributions in Integrated Microwave Circuits," IEEE Trans. Microwave Theory Tech. 46, 2338-2343 (1998).
[CrossRef]

1986

A. G. Yaghjian, "An Overview of Near-Field Antenna Measurements," IEEE Trans. Antennas Propagat. AP-34, 30-45 (1986).
[CrossRef]

Casson, J. L.

Chandani, S. M.

S. M. Chandani, "Fiber-Based Probe for Electrooptic Sampling," IEEE Photon. Technol. Lett. 18, 1290-1292 (2006).
[CrossRef]

Crites, M. H.

D. J. Lee, M. H. Crites, and J. F. Whitaker, "Electro-Optic Probing of Microwave Fields Using a Wavelength-Tunable Modulation Depth," Meas. Sci. Technol. 19, 115301-115310 (2008).
[CrossRef]

David, G.

K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, "Electro-optic Mapping of Near-field Distributions in Integrated Microwave Circuits," IEEE Trans. Microwave Theory Tech. 46, 2338-2343 (1998).
[CrossRef]

Forman, M.

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, "Active-amplifier-array diagnostics using high-resolution electrooptic field mapping," IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

Gahagan, K. T.

Gopalan, V.

Hoshino, S.

Hubert, J.

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, "Active-amplifier-array diagnostics using high-resolution electrooptic field mapping," IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

Iwanami, M.

Jain, R. K.

Kang, J. J

D. J. Lee, J. J Kang, and J. F. Whitaker, "Vector Near-Field Measurements Using Optimized Electrical and Photonic Down-Conversion," IEEE Trans. Microwave Theory Tech.(to be published, Dec. 2008).
[CrossRef]

Kanno, A

K. Sasagawa, A Kanno, T. Kawanishi, and M. Tsuchiya, "Live Electrooptic Imaging System Based on Ultraparallel Photonic Heterodyne for Microwave Near-Fields," IEEE Trans. Microwave Theory Tech. 55, 2782-2791 (2007).
[CrossRef]

Katehi, L. P. B.

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, "Active-amplifier-array diagnostics using high-resolution electrooptic field mapping," IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

K. Yang, L. P. B. Katehi, and J. F. Whitaker, "Electro-optic field mapping system utilizing external gallium arsenide probes," Appl. Phys. Lett. 77, 486-488 (2000).
[CrossRef]

K. Yang, J. G. Yook, L. P. B. Katehi, and J. F. Whitaker, "Electrooptic Mapping and Finite-Element Modeling of the Near-Field Pattern of a Microstrip Patch Antenna," IEEE Trans. Microwave Theory Tech. 48, 228-294 (2000).

K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, "Electro-optic Mapping of Near-field Distributions in Integrated Microwave Circuits," IEEE Trans. Microwave Theory Tech. 46, 2338-2343 (1998).
[CrossRef]

Kawanishi, T.

K. Sasagawa, A Kanno, T. Kawanishi, and M. Tsuchiya, "Live Electrooptic Imaging System Based on Ultraparallel Photonic Heterodyne for Microwave Near-Fields," IEEE Trans. Microwave Theory Tech. 55, 2782-2791 (2007).
[CrossRef]

Kishi, M.

Lee, D. J.

D. J. Lee, J. J Kang, and J. F. Whitaker, "Vector Near-Field Measurements Using Optimized Electrical and Photonic Down-Conversion," IEEE Trans. Microwave Theory Tech.(to be published, Dec. 2008).
[CrossRef]

D. J. Lee and J. F. Whitaker, "Bandwidth Enhancement of Electro-Optic Field Sensing Using Photonic Down-Mixing with Harmonic Sidebands," Opt. Express. 16, 14771-14779 (2008).
[CrossRef] [PubMed]

D. J. Lee, M. H. Crites, and J. F. Whitaker, "Electro-Optic Probing of Microwave Fields Using a Wavelength-Tunable Modulation Depth," Meas. Sci. Technol. 19, 115301-115310 (2008).
[CrossRef]

D. J. Lee and J. F. Whitaker, "A Simplified Fabry-Pérot Electrooptic-Modulation Sensor," IEEE Photon. Technol. Lett. 20, 866-868 (2008).
[CrossRef]

Marshall, T.

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, "Active-amplifier-array diagnostics using high-resolution electrooptic field mapping," IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

Mirth, L.

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, "Active-amplifier-array diagnostics using high-resolution electrooptic field mapping," IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

Mitani, S.

Nagatsuma, T.

H. Togo, N. Shimizu, and T. Nagatsuma, "Near-Field Mapping System Using Fiber-Based Electro-Optic Probe for Specific Absorption Rate Measurement," IEICE Trans. Electron. E90-C, 436-442 (2007).
[CrossRef]

Park, H.

Popovic, Z.

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, "Active-amplifier-array diagnostics using high-resolution electrooptic field mapping," IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

Robertson, S.

K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, "Electro-optic Mapping of Near-field Distributions in Integrated Microwave Circuits," IEEE Trans. Microwave Theory Tech. 46, 2338-2343 (1998).
[CrossRef]

Robinson, J. M.

Sander, R. K.

Sasagawa, K.

K. Sasagawa, A Kanno, T. Kawanishi, and M. Tsuchiya, "Live Electrooptic Imaging System Based on Ultraparallel Photonic Heterodyne for Microwave Near-Fields," IEEE Trans. Microwave Theory Tech. 55, 2782-2791 (2007).
[CrossRef]

Scrymgeour, D. A.

Shimizu, N.

H. Togo, N. Shimizu, and T. Nagatsuma, "Near-Field Mapping System Using Fiber-Based Electro-Optic Probe for Specific Absorption Rate Measurement," IEICE Trans. Electron. E90-C, 436-442 (2007).
[CrossRef]

Togo, H.

H. Togo, N. Shimizu, and T. Nagatsuma, "Near-Field Mapping System Using Fiber-Based Electro-Optic Probe for Specific Absorption Rate Measurement," IEICE Trans. Electron. E90-C, 436-442 (2007).
[CrossRef]

Tsuchiya, M.

K. Sasagawa, A Kanno, T. Kawanishi, and M. Tsuchiya, "Live Electrooptic Imaging System Based on Ultraparallel Photonic Heterodyne for Microwave Near-Fields," IEEE Trans. Microwave Theory Tech. 55, 2782-2791 (2007).
[CrossRef]

S. Wakana, E. Yamazaki, S. Mitani, H. Park, M. Iwanami, S. Hoshino, M. Kishi, and M. Tsuchiya, "Performance evaluation of fiber-edge magnetooptic probe," J. Lightwave Technol. 21, 3292-3299 (2003).
[CrossRef]

Wakana, S.

Whitaker, J. F.

D. J. Lee and J. F. Whitaker, "Bandwidth Enhancement of Electro-Optic Field Sensing Using Photonic Down-Mixing with Harmonic Sidebands," Opt. Express. 16, 14771-14779 (2008).
[CrossRef] [PubMed]

D. J. Lee, J. J Kang, and J. F. Whitaker, "Vector Near-Field Measurements Using Optimized Electrical and Photonic Down-Conversion," IEEE Trans. Microwave Theory Tech.(to be published, Dec. 2008).
[CrossRef]

D. J. Lee and J. F. Whitaker, "A Simplified Fabry-Pérot Electrooptic-Modulation Sensor," IEEE Photon. Technol. Lett. 20, 866-868 (2008).
[CrossRef]

D. J. Lee, M. H. Crites, and J. F. Whitaker, "Electro-Optic Probing of Microwave Fields Using a Wavelength-Tunable Modulation Depth," Meas. Sci. Technol. 19, 115301-115310 (2008).
[CrossRef]

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, "Active-amplifier-array diagnostics using high-resolution electrooptic field mapping," IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

K. Yang, L. P. B. Katehi, and J. F. Whitaker, "Electro-optic field mapping system utilizing external gallium arsenide probes," Appl. Phys. Lett. 77, 486-488 (2000).
[CrossRef]

K. Yang, J. G. Yook, L. P. B. Katehi, and J. F. Whitaker, "Electrooptic Mapping and Finite-Element Modeling of the Near-Field Pattern of a Microstrip Patch Antenna," IEEE Trans. Microwave Theory Tech. 48, 228-294 (2000).

K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, "Electro-optic Mapping of Near-field Distributions in Integrated Microwave Circuits," IEEE Trans. Microwave Theory Tech. 46, 2338-2343 (1998).
[CrossRef]

Yaghjian, A. G.

A. G. Yaghjian, "An Overview of Near-Field Antenna Measurements," IEEE Trans. Antennas Propagat. AP-34, 30-45 (1986).
[CrossRef]

Yamazaki, E.

Yang, K.

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, "Active-amplifier-array diagnostics using high-resolution electrooptic field mapping," IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

K. Yang, J. G. Yook, L. P. B. Katehi, and J. F. Whitaker, "Electrooptic Mapping and Finite-Element Modeling of the Near-Field Pattern of a Microstrip Patch Antenna," IEEE Trans. Microwave Theory Tech. 48, 228-294 (2000).

K. Yang, L. P. B. Katehi, and J. F. Whitaker, "Electro-optic field mapping system utilizing external gallium arsenide probes," Appl. Phys. Lett. 77, 486-488 (2000).
[CrossRef]

K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, "Electro-optic Mapping of Near-field Distributions in Integrated Microwave Circuits," IEEE Trans. Microwave Theory Tech. 46, 2338-2343 (1998).
[CrossRef]

Yook, J. G.

K. Yang, J. G. Yook, L. P. B. Katehi, and J. F. Whitaker, "Electrooptic Mapping and Finite-Element Modeling of the Near-Field Pattern of a Microstrip Patch Antenna," IEEE Trans. Microwave Theory Tech. 48, 228-294 (2000).

Appl. Phys. Lett.

K. Yang, L. P. B. Katehi, and J. F. Whitaker, "Electro-optic field mapping system utilizing external gallium arsenide probes," Appl. Phys. Lett. 77, 486-488 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

S. M. Chandani, "Fiber-Based Probe for Electrooptic Sampling," IEEE Photon. Technol. Lett. 18, 1290-1292 (2006).
[CrossRef]

D. J. Lee and J. F. Whitaker, "A Simplified Fabry-Pérot Electrooptic-Modulation Sensor," IEEE Photon. Technol. Lett. 20, 866-868 (2008).
[CrossRef]

IEEE Trans. Antennas Propagat.

A. G. Yaghjian, "An Overview of Near-Field Antenna Measurements," IEEE Trans. Antennas Propagat. AP-34, 30-45 (1986).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

K. Sasagawa, A Kanno, T. Kawanishi, and M. Tsuchiya, "Live Electrooptic Imaging System Based on Ultraparallel Photonic Heterodyne for Microwave Near-Fields," IEEE Trans. Microwave Theory Tech. 55, 2782-2791 (2007).
[CrossRef]

D. J. Lee, J. J Kang, and J. F. Whitaker, "Vector Near-Field Measurements Using Optimized Electrical and Photonic Down-Conversion," IEEE Trans. Microwave Theory Tech.(to be published, Dec. 2008).
[CrossRef]

K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, "Electro-optic Mapping of Near-field Distributions in Integrated Microwave Circuits," IEEE Trans. Microwave Theory Tech. 46, 2338-2343 (1998).
[CrossRef]

K. Yang, J. G. Yook, L. P. B. Katehi, and J. F. Whitaker, "Electrooptic Mapping and Finite-Element Modeling of the Near-Field Pattern of a Microstrip Patch Antenna," IEEE Trans. Microwave Theory Tech. 48, 228-294 (2000).

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, "Active-amplifier-array diagnostics using high-resolution electrooptic field mapping," IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

IEICE Trans. Electron.

H. Togo, N. Shimizu, and T. Nagatsuma, "Near-Field Mapping System Using Fiber-Based Electro-Optic Probe for Specific Absorption Rate Measurement," IEICE Trans. Electron. E90-C, 436-442 (2007).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Meas. Sci. Technol.

D. J. Lee, M. H. Crites, and J. F. Whitaker, "Electro-Optic Probing of Microwave Fields Using a Wavelength-Tunable Modulation Depth," Meas. Sci. Technol. 19, 115301-115310 (2008).
[CrossRef]

Opt. Express.

D. J. Lee and J. F. Whitaker, "Bandwidth Enhancement of Electro-Optic Field Sensing Using Photonic Down-Mixing with Harmonic Sidebands," Opt. Express. 16, 14771-14779 (2008).
[CrossRef] [PubMed]

Other

J. A. Deibel, and J. F. Whitaker, "A fiber-mounted polymer electro-optic-sampling field sensor," in 2003 IEEE LEOS Annual Meeting Conference Proceedings (IEEE, 2003), pp. 786-787.

Supplementary Material (3)

» Media 1: AVI (3264 KB)     
» Media 2: AVI (3342 KB)     
» Media 3: AVI (3915 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Structure of a micro-cavity EO fiber probe. (b) Photograph of three different LiTaO3 EO sensors over an X-band patch antenna. A is a conventional resonance-based EO probe with a 1.8-mm-diameter ferrule mount [9], positioned with the fiber axis normal to the plane of the antenna. Probe B is the micro-scale probe of (a), mounted with the fiber axis parallel to the plane of the antenna. C is a thin (60 µm), circular wafer (diameter: 10 mm) of LiTaO3 that covers the antenna and could be used with an expanded, free-space optical beam for rapid, large-area sensing. (invasiveness: C A > B )

Fig. 2.
Fig. 2.

Concept of electric field distortions near the radiating edge of the sample patch antenna, (a) for A in Fig.1 and (b) for probe B in Fig.1. (Dashed lines are electric field flux.)

Fig. 3.
Fig. 3.

EO field amplitude maps of the X-band patch antenna (a) Vertical transverse (x-component) measured with probe A [from Ref. 10] (b) Vertical transverse (x-component) measured with probe B (Media 1 for amplitude-phase animation). (c) Horizontal transverse (y-component) measured with probe B (Media 2 for amplitude-phase animation). (d) Normal (z-component) measured with probe B (Media 3 for amplitude-phase animation).

Fig. 4.
Fig. 4.

Evolution of the resonance performance of the X-band patch antenna in Fig. 1(b), where the small return-loss values correspond to the peak of the antenna radiation spectrum. Black curve: antenna, 200 µm below probe A or B ; red dashed curve: antenna covered with 150-µm-thick glass slide; green curve: antenna covered with 60-µm-thick LiTaO3 wafer with 200 µm air gap; and blue curve: antenna covered with 60-µm-thick LiTaO3 wafer with no air gap.

Fig. 5.
Fig. 5.

Distorted EO field amplitude maps measured under invasive conditions of the capacitively-loading wafer probe C on the X-band patch antenna. (a) x, (b) y, and (c) z components at 10.485 GHz; (d) x, (e) y, and (f) z components at 10.319 GHz.

Fig. 6.
Fig. 6.

(a) Photograph of a copper transmission wire over a ground plane with probe A positioned over the top of the wire and probe B positioned in the air gap between the wire and ground plane. Probe B has much greater accessibility, as probe A would not fit under the wire in this structure. (b) Standing-wave pattern of the normal electric field directed between the wire and ground plane.

Fig. 7.
Fig. 7.

(a) Photograph of a Ka-band patch-antenna array with EO probes A and B . (b) Horizontal transverse (x-component) EO field amplitude map measured with probe A , (c) vertical transverse (y-component) EO field amplitude map measured with probe A , (d) and (e) are the cases of (a) and (b) with the probe B .

Metrics