Abstract

A sub-millimeter-dimension electro-optic probe that provides enhanced scanning accessibility with significantly less intrusiveness than metal-based or even other dielectric probes during electromagnetic characterization of microwave devices is presented. The quantitative and qualitative relative invasiveness of the probe on the operation of an example antenna device-under-test is explored with respect to previously demonstrated fiber and wafer electro-optic sensors. We also demonstrate that the miniaturized probe, with a diameter of 125 m, can be used to reconstruct the three orthogonal vector components of near-electric fields without the need for different probe crystals or multiple calibration procedures. Finally, the advantages of the reduced size and invasiveness of the new micro-scale probe are demonstrated through the enhanced resolution of detailed images extracted from planar antennas, as well as the capability of reaching into circuit locations heretofore inaccessible.

© 2008 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, "Electro-optic Mapping of Near-field Distributions in Integrated Microwave Circuits," IEEE Trans. Microwave Theory Tech. 46, 2338-2343 (1998).
    [CrossRef]
  2. K. Yang, J. G. Yook, L. P. B. Katehi, and J. F. Whitaker, "Electrooptic Mapping and Finite-Element Modeling of the Near-Field Pattern of a Microstrip Patch Antenna," IEEE Trans. Microwave Theory Tech. 48, 228-294 (2000).
  3. K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, "Active-amplifier-array diagnostics using high-resolution electrooptic field mapping," IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
    [CrossRef]
  4. K. Yang, L. P. B. Katehi, and J. F. Whitaker, "Electro-optic field mapping system utilizing external gallium arsenide probes," Appl. Phys. Lett. 77, 486-488 (2000).
    [CrossRef]
  5. H. Togo, N. Shimizu, and T. Nagatsuma, "Near-Field Mapping System Using Fiber-Based Electro-Optic Probe for Specific Absorption Rate Measurement," IEICE Trans. Electron. E90-C, 436-442 (2007).
    [CrossRef]
  6. S. Wakana, E. Yamazaki, S. Mitani, H. Park, M. Iwanami, S. Hoshino, M. Kishi, and M. Tsuchiya, "Performance evaluation of fiber-edge magnetooptic probe," J. Lightwave Technol. 21, 3292-3299 (2003).
    [CrossRef]
  7. S. M. Chandani, "Fiber-Based Probe for Electrooptic Sampling," IEEE Photon. Technol. Lett. 18, 1290-1292 (2006).
    [CrossRef]
  8. D. J. Lee and J. F. Whitaker, "A Simplified Fabry-Pérot Electrooptic-Modulation Sensor," IEEE Photon. Technol. Lett. 20, 866-868 (2008).
    [CrossRef]
  9. D. J. Lee, M. H. Crites, and J. F. Whitaker, "Electro-Optic Probing of Microwave Fields Using a Wavelength-Tunable Modulation Depth," Meas. Sci. Technol. 19, 115301-115310 (2008).
    [CrossRef]
  10. D. J. Lee and J. F. Whitaker, "Bandwidth Enhancement of Electro-Optic Field Sensing Using Photonic Down-Mixing with Harmonic Sidebands," Opt. Express. 16, 14771-14779 (2008).
    [CrossRef]
  11. J. L. Casson, K. T. Gahagan, D. A. Scrymgeour, R. K. Jain, J. M. Robinson, V. Gopalan, and R. K. Sander, "Electro-optic coefficients of lithium tantalite at near-infrared wavelengths," J. Opt. Soc. Am. B 21, 1948-1952 (2004).
  12. J. A. Deibel, and J. F. Whitaker, "A fiber-mounted polymer electro-optic-sampling field sensor," in 2003 IEEE LEOS Annual Meeting Conference Proceedings (IEEE, 2003), pp. 786-787.
  13. D. J. Lee, J. J Kang, and J. F. Whitaker, "Vector Near-Field Measurements Using Optimized Electrical and Photonic Down-Conversion," IEEE Trans. Microwave Theory Tech.(to be published, Dec. 2008).
  14. A. G. Yaghjian, "An Overview of Near-Field Antenna Measurements," IEEE Trans. Antennas Propagat. AP-34, 30-45 (1986).
    [CrossRef]
  15. K. Sasagawa, A Kanno, T. Kawanishi, and M. Tsuchiya, "Live Electrooptic Imaging System Based on Ultraparallel Photonic Heterodyne for Microwave Near-Fields," IEEE Trans. Microwave Theory Tech. 55, 2782-2791 (2007).
    [CrossRef]

2008 (4)

D. J. Lee and J. F. Whitaker, "A Simplified Fabry-Pérot Electrooptic-Modulation Sensor," IEEE Photon. Technol. Lett. 20, 866-868 (2008).
[CrossRef]

D. J. Lee, M. H. Crites, and J. F. Whitaker, "Electro-Optic Probing of Microwave Fields Using a Wavelength-Tunable Modulation Depth," Meas. Sci. Technol. 19, 115301-115310 (2008).
[CrossRef]

D. J. Lee and J. F. Whitaker, "Bandwidth Enhancement of Electro-Optic Field Sensing Using Photonic Down-Mixing with Harmonic Sidebands," Opt. Express. 16, 14771-14779 (2008).
[CrossRef]

D. J. Lee, J. J Kang, and J. F. Whitaker, "Vector Near-Field Measurements Using Optimized Electrical and Photonic Down-Conversion," IEEE Trans. Microwave Theory Tech.(to be published, Dec. 2008).

2007 (2)

H. Togo, N. Shimizu, and T. Nagatsuma, "Near-Field Mapping System Using Fiber-Based Electro-Optic Probe for Specific Absorption Rate Measurement," IEICE Trans. Electron. E90-C, 436-442 (2007).
[CrossRef]

K. Sasagawa, A Kanno, T. Kawanishi, and M. Tsuchiya, "Live Electrooptic Imaging System Based on Ultraparallel Photonic Heterodyne for Microwave Near-Fields," IEEE Trans. Microwave Theory Tech. 55, 2782-2791 (2007).
[CrossRef]

2006 (1)

S. M. Chandani, "Fiber-Based Probe for Electrooptic Sampling," IEEE Photon. Technol. Lett. 18, 1290-1292 (2006).
[CrossRef]

2004 (1)

2003 (1)

2001 (1)

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, "Active-amplifier-array diagnostics using high-resolution electrooptic field mapping," IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

2000 (2)

K. Yang, L. P. B. Katehi, and J. F. Whitaker, "Electro-optic field mapping system utilizing external gallium arsenide probes," Appl. Phys. Lett. 77, 486-488 (2000).
[CrossRef]

K. Yang, J. G. Yook, L. P. B. Katehi, and J. F. Whitaker, "Electrooptic Mapping and Finite-Element Modeling of the Near-Field Pattern of a Microstrip Patch Antenna," IEEE Trans. Microwave Theory Tech. 48, 228-294 (2000).

1998 (1)

K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, "Electro-optic Mapping of Near-field Distributions in Integrated Microwave Circuits," IEEE Trans. Microwave Theory Tech. 46, 2338-2343 (1998).
[CrossRef]

1986 (1)

A. G. Yaghjian, "An Overview of Near-Field Antenna Measurements," IEEE Trans. Antennas Propagat. AP-34, 30-45 (1986).
[CrossRef]

Casson, J. L.

Chandani, S. M.

S. M. Chandani, "Fiber-Based Probe for Electrooptic Sampling," IEEE Photon. Technol. Lett. 18, 1290-1292 (2006).
[CrossRef]

Crites, M. H.

D. J. Lee, M. H. Crites, and J. F. Whitaker, "Electro-Optic Probing of Microwave Fields Using a Wavelength-Tunable Modulation Depth," Meas. Sci. Technol. 19, 115301-115310 (2008).
[CrossRef]

David, G.

K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, "Electro-optic Mapping of Near-field Distributions in Integrated Microwave Circuits," IEEE Trans. Microwave Theory Tech. 46, 2338-2343 (1998).
[CrossRef]

Forman, M.

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, "Active-amplifier-array diagnostics using high-resolution electrooptic field mapping," IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

Gahagan, K. T.

Gopalan, V.

Hoshino, S.

Hubert, J.

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, "Active-amplifier-array diagnostics using high-resolution electrooptic field mapping," IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

Iwanami, M.

Jain, R. K.

Kang, J. J

D. J. Lee, J. J Kang, and J. F. Whitaker, "Vector Near-Field Measurements Using Optimized Electrical and Photonic Down-Conversion," IEEE Trans. Microwave Theory Tech.(to be published, Dec. 2008).

Kanno, A

K. Sasagawa, A Kanno, T. Kawanishi, and M. Tsuchiya, "Live Electrooptic Imaging System Based on Ultraparallel Photonic Heterodyne for Microwave Near-Fields," IEEE Trans. Microwave Theory Tech. 55, 2782-2791 (2007).
[CrossRef]

Katehi, L. P. B.

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, "Active-amplifier-array diagnostics using high-resolution electrooptic field mapping," IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

K. Yang, L. P. B. Katehi, and J. F. Whitaker, "Electro-optic field mapping system utilizing external gallium arsenide probes," Appl. Phys. Lett. 77, 486-488 (2000).
[CrossRef]

K. Yang, J. G. Yook, L. P. B. Katehi, and J. F. Whitaker, "Electrooptic Mapping and Finite-Element Modeling of the Near-Field Pattern of a Microstrip Patch Antenna," IEEE Trans. Microwave Theory Tech. 48, 228-294 (2000).

K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, "Electro-optic Mapping of Near-field Distributions in Integrated Microwave Circuits," IEEE Trans. Microwave Theory Tech. 46, 2338-2343 (1998).
[CrossRef]

Kawanishi, T.

K. Sasagawa, A Kanno, T. Kawanishi, and M. Tsuchiya, "Live Electrooptic Imaging System Based on Ultraparallel Photonic Heterodyne for Microwave Near-Fields," IEEE Trans. Microwave Theory Tech. 55, 2782-2791 (2007).
[CrossRef]

Kishi, M.

Lee, D. J.

D. J. Lee and J. F. Whitaker, "A Simplified Fabry-Pérot Electrooptic-Modulation Sensor," IEEE Photon. Technol. Lett. 20, 866-868 (2008).
[CrossRef]

D. J. Lee and J. F. Whitaker, "Bandwidth Enhancement of Electro-Optic Field Sensing Using Photonic Down-Mixing with Harmonic Sidebands," Opt. Express. 16, 14771-14779 (2008).
[CrossRef]

D. J. Lee, J. J Kang, and J. F. Whitaker, "Vector Near-Field Measurements Using Optimized Electrical and Photonic Down-Conversion," IEEE Trans. Microwave Theory Tech.(to be published, Dec. 2008).

D. J. Lee, M. H. Crites, and J. F. Whitaker, "Electro-Optic Probing of Microwave Fields Using a Wavelength-Tunable Modulation Depth," Meas. Sci. Technol. 19, 115301-115310 (2008).
[CrossRef]

Marshall, T.

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, "Active-amplifier-array diagnostics using high-resolution electrooptic field mapping," IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

Mirth, L.

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, "Active-amplifier-array diagnostics using high-resolution electrooptic field mapping," IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

Mitani, S.

Nagatsuma, T.

H. Togo, N. Shimizu, and T. Nagatsuma, "Near-Field Mapping System Using Fiber-Based Electro-Optic Probe for Specific Absorption Rate Measurement," IEICE Trans. Electron. E90-C, 436-442 (2007).
[CrossRef]

Park, H.

Popovic, Z.

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, "Active-amplifier-array diagnostics using high-resolution electrooptic field mapping," IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

Robertson, S.

K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, "Electro-optic Mapping of Near-field Distributions in Integrated Microwave Circuits," IEEE Trans. Microwave Theory Tech. 46, 2338-2343 (1998).
[CrossRef]

Robinson, J. M.

Sander, R. K.

Sasagawa, K.

K. Sasagawa, A Kanno, T. Kawanishi, and M. Tsuchiya, "Live Electrooptic Imaging System Based on Ultraparallel Photonic Heterodyne for Microwave Near-Fields," IEEE Trans. Microwave Theory Tech. 55, 2782-2791 (2007).
[CrossRef]

Scrymgeour, D. A.

Shimizu, N.

H. Togo, N. Shimizu, and T. Nagatsuma, "Near-Field Mapping System Using Fiber-Based Electro-Optic Probe for Specific Absorption Rate Measurement," IEICE Trans. Electron. E90-C, 436-442 (2007).
[CrossRef]

Togo, H.

H. Togo, N. Shimizu, and T. Nagatsuma, "Near-Field Mapping System Using Fiber-Based Electro-Optic Probe for Specific Absorption Rate Measurement," IEICE Trans. Electron. E90-C, 436-442 (2007).
[CrossRef]

Tsuchiya, M.

K. Sasagawa, A Kanno, T. Kawanishi, and M. Tsuchiya, "Live Electrooptic Imaging System Based on Ultraparallel Photonic Heterodyne for Microwave Near-Fields," IEEE Trans. Microwave Theory Tech. 55, 2782-2791 (2007).
[CrossRef]

S. Wakana, E. Yamazaki, S. Mitani, H. Park, M. Iwanami, S. Hoshino, M. Kishi, and M. Tsuchiya, "Performance evaluation of fiber-edge magnetooptic probe," J. Lightwave Technol. 21, 3292-3299 (2003).
[CrossRef]

Wakana, S.

Whitaker, J. F.

D. J. Lee and J. F. Whitaker, "Bandwidth Enhancement of Electro-Optic Field Sensing Using Photonic Down-Mixing with Harmonic Sidebands," Opt. Express. 16, 14771-14779 (2008).
[CrossRef]

D. J. Lee and J. F. Whitaker, "A Simplified Fabry-Pérot Electrooptic-Modulation Sensor," IEEE Photon. Technol. Lett. 20, 866-868 (2008).
[CrossRef]

D. J. Lee, J. J Kang, and J. F. Whitaker, "Vector Near-Field Measurements Using Optimized Electrical and Photonic Down-Conversion," IEEE Trans. Microwave Theory Tech.(to be published, Dec. 2008).

D. J. Lee, M. H. Crites, and J. F. Whitaker, "Electro-Optic Probing of Microwave Fields Using a Wavelength-Tunable Modulation Depth," Meas. Sci. Technol. 19, 115301-115310 (2008).
[CrossRef]

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, "Active-amplifier-array diagnostics using high-resolution electrooptic field mapping," IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

K. Yang, L. P. B. Katehi, and J. F. Whitaker, "Electro-optic field mapping system utilizing external gallium arsenide probes," Appl. Phys. Lett. 77, 486-488 (2000).
[CrossRef]

K. Yang, J. G. Yook, L. P. B. Katehi, and J. F. Whitaker, "Electrooptic Mapping and Finite-Element Modeling of the Near-Field Pattern of a Microstrip Patch Antenna," IEEE Trans. Microwave Theory Tech. 48, 228-294 (2000).

K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, "Electro-optic Mapping of Near-field Distributions in Integrated Microwave Circuits," IEEE Trans. Microwave Theory Tech. 46, 2338-2343 (1998).
[CrossRef]

Yaghjian, A. G.

A. G. Yaghjian, "An Overview of Near-Field Antenna Measurements," IEEE Trans. Antennas Propagat. AP-34, 30-45 (1986).
[CrossRef]

Yamazaki, E.

Yang, K.

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, "Active-amplifier-array diagnostics using high-resolution electrooptic field mapping," IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

K. Yang, L. P. B. Katehi, and J. F. Whitaker, "Electro-optic field mapping system utilizing external gallium arsenide probes," Appl. Phys. Lett. 77, 486-488 (2000).
[CrossRef]

K. Yang, J. G. Yook, L. P. B. Katehi, and J. F. Whitaker, "Electrooptic Mapping and Finite-Element Modeling of the Near-Field Pattern of a Microstrip Patch Antenna," IEEE Trans. Microwave Theory Tech. 48, 228-294 (2000).

K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, "Electro-optic Mapping of Near-field Distributions in Integrated Microwave Circuits," IEEE Trans. Microwave Theory Tech. 46, 2338-2343 (1998).
[CrossRef]

Yook, J. G.

K. Yang, J. G. Yook, L. P. B. Katehi, and J. F. Whitaker, "Electrooptic Mapping and Finite-Element Modeling of the Near-Field Pattern of a Microstrip Patch Antenna," IEEE Trans. Microwave Theory Tech. 48, 228-294 (2000).

Appl. Phys. Lett. (1)

K. Yang, L. P. B. Katehi, and J. F. Whitaker, "Electro-optic field mapping system utilizing external gallium arsenide probes," Appl. Phys. Lett. 77, 486-488 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S. M. Chandani, "Fiber-Based Probe for Electrooptic Sampling," IEEE Photon. Technol. Lett. 18, 1290-1292 (2006).
[CrossRef]

D. J. Lee and J. F. Whitaker, "A Simplified Fabry-Pérot Electrooptic-Modulation Sensor," IEEE Photon. Technol. Lett. 20, 866-868 (2008).
[CrossRef]

IEEE Trans. Antennas Propagat. (1)

A. G. Yaghjian, "An Overview of Near-Field Antenna Measurements," IEEE Trans. Antennas Propagat. AP-34, 30-45 (1986).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (5)

K. Sasagawa, A Kanno, T. Kawanishi, and M. Tsuchiya, "Live Electrooptic Imaging System Based on Ultraparallel Photonic Heterodyne for Microwave Near-Fields," IEEE Trans. Microwave Theory Tech. 55, 2782-2791 (2007).
[CrossRef]

D. J. Lee, J. J Kang, and J. F. Whitaker, "Vector Near-Field Measurements Using Optimized Electrical and Photonic Down-Conversion," IEEE Trans. Microwave Theory Tech.(to be published, Dec. 2008).

K. Yang, G. David, S. Robertson, J. F. Whitaker, and L. P. B. Katehi, "Electro-optic Mapping of Near-field Distributions in Integrated Microwave Circuits," IEEE Trans. Microwave Theory Tech. 46, 2338-2343 (1998).
[CrossRef]

K. Yang, J. G. Yook, L. P. B. Katehi, and J. F. Whitaker, "Electrooptic Mapping and Finite-Element Modeling of the Near-Field Pattern of a Microstrip Patch Antenna," IEEE Trans. Microwave Theory Tech. 48, 228-294 (2000).

K. Yang, T. Marshall, M. Forman, J. Hubert, L. Mirth, Z. Popovic, L. P. B. Katehi, and J. F. Whitaker, "Active-amplifier-array diagnostics using high-resolution electrooptic field mapping," IEEE Trans. Microwave Theory Tech. 49, 849-857 (2001).
[CrossRef]

IEICE Trans. Electron. (1)

H. Togo, N. Shimizu, and T. Nagatsuma, "Near-Field Mapping System Using Fiber-Based Electro-Optic Probe for Specific Absorption Rate Measurement," IEICE Trans. Electron. E90-C, 436-442 (2007).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

D. J. Lee, M. H. Crites, and J. F. Whitaker, "Electro-Optic Probing of Microwave Fields Using a Wavelength-Tunable Modulation Depth," Meas. Sci. Technol. 19, 115301-115310 (2008).
[CrossRef]

Opt. Express. (1)

D. J. Lee and J. F. Whitaker, "Bandwidth Enhancement of Electro-Optic Field Sensing Using Photonic Down-Mixing with Harmonic Sidebands," Opt. Express. 16, 14771-14779 (2008).
[CrossRef]

Other (1)

J. A. Deibel, and J. F. Whitaker, "A fiber-mounted polymer electro-optic-sampling field sensor," in 2003 IEEE LEOS Annual Meeting Conference Proceedings (IEEE, 2003), pp. 786-787.

Supplementary Material (3)

» Media 1: AVI (3264 KB)     
» Media 2: AVI (3342 KB)     
» Media 3: AVI (3915 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics