Abstract

We report greatly enhanced modulation response of multimode vertical-cavity surface-emitting lasers (MM-VCSELs), for the first time, using optical injection locking. A 3-dB bandwidth of 38 GHz and 54 GHz resonance frequency are achieved using a MM-VCSEL with a 3 GHz free-running bandwidth. We show that transverse mode selection can be attained with optical injection locking through frequency and spatial detuning.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Vez, S. Eitel, S. G. Hunziker, G. Knight, M. Moser, R. Hoevel, H.-P. Gauggel, M. Brunner, A. Hold, and K. H. Gulden, "10 Gbit/s VCSELs for Datacom: Devices and applications," Proc. SPIE 4942, 29 (2003).
    [CrossRef]
  2. C. Carlsson, A. Larsson, A. Alping, "RF Transmission Over Multimode Fibers Using VCSELs - Comparing Standard and High-Bandwidth Multimode Fibers," IEEE J. Lightwave Technol. 22,1694-1700 (2004).
    [CrossRef]
  3. K. Iwashita and K. Nakagawa, "Suppression of Mode Partition Noise by Laser Diode Light Injection," IEEE Trans. Microwave Theory Tech. 82,1657-1662 (1982).
    [CrossRef]
  4. L.-G. Zei, S. Ebers, J.-R. Kropp, and K. Petermann, "Noise performance of multimode VCSELs," IEEE J. Lightwave Technol. 19,884-892 (2001).
    [CrossRef]
  5. C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, "Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers," IEEE J. Quantum Electron. 27,1402-1409 (1991).
    [CrossRef]
  6. L. Chrostowski, X. Zhao, and C. J. Chang-Hasnain, "Microwave performance of optically injection-locked VCSELs," IEEE Trans. Microwave Theory Tech. 54,788-796 (2006).
    [CrossRef]
  7. B. Zhang; X. Zhao, L. Christen, D. Parekh, W. Hofmann, M. C. Wu, M. C. Amann, C. J. Chang-Hasnain, and A. E. Willner, "Adjustable Chirp Injection-Locked 1.55-µm VCSELs for Enhanced Chromatic Dispersion Compensation at 10-Gbit/s," OFC/NFOEC 1-3 (2008).
  8. X. Zhao and C. J. Chang-Hasnain, "A New Amplifier Model for Resonance Enhancement of Optically Injection-Locked Lasers," IEEE Photon. Technol. Lett. 6395-7 (2008)
    [CrossRef]
  9. N. H. Zhu, W. Li, J. M. Wen, W. Han, W. Chen, and L. Xie, "Enhanced Modulation Bandwidth of a Fabry-Pérot Semiconductor Laser Subject to Light Injection From Another Fabry-Pérot Laser," IEEE J. Quantum Electron. 44,528-535 (2008),
    [CrossRef]
  10. A. Valle, I. Gatare, K. Panajotov, and M. Sciamanna, "Transverse Mode Switching and Locking in Vertical-Cavity Surface-Emitting Lasers Subject to Orthogonal Optical Injection," IEEE J. Quantum Electron. 43,322-333 (2007),
    [CrossRef]
  11. J. Y. Law, G. H. M. van Tartwijk, and G. P. Agrawal, "Effects of Transverse-Mode Competition on the Injection Dynamics of Vertical-Cavity Surface-Emitting Lasers," Quantum Semiclassic Opt. 9,737-747 (1997).
    [CrossRef]
  12. W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, Y. Liu, and M.-C. Amann, "High speed (>11 GHz) modulation of BCB-passivated 1.55 µm InGaAlAs-InP VCSELs," Electron. Lett. 42,976-977 (2006).
    [CrossRef]
  13. E. K. Lau, X. Zhao, H. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, "Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths," Opt. Express 16, 6609-6618 (2008).
    [CrossRef] [PubMed]

2008

X. Zhao and C. J. Chang-Hasnain, "A New Amplifier Model for Resonance Enhancement of Optically Injection-Locked Lasers," IEEE Photon. Technol. Lett. 6395-7 (2008)
[CrossRef]

N. H. Zhu, W. Li, J. M. Wen, W. Han, W. Chen, and L. Xie, "Enhanced Modulation Bandwidth of a Fabry-Pérot Semiconductor Laser Subject to Light Injection From Another Fabry-Pérot Laser," IEEE J. Quantum Electron. 44,528-535 (2008),
[CrossRef]

E. K. Lau, X. Zhao, H. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, "Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths," Opt. Express 16, 6609-6618 (2008).
[CrossRef] [PubMed]

2007

A. Valle, I. Gatare, K. Panajotov, and M. Sciamanna, "Transverse Mode Switching and Locking in Vertical-Cavity Surface-Emitting Lasers Subject to Orthogonal Optical Injection," IEEE J. Quantum Electron. 43,322-333 (2007),
[CrossRef]

2006

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, Y. Liu, and M.-C. Amann, "High speed (>11 GHz) modulation of BCB-passivated 1.55 µm InGaAlAs-InP VCSELs," Electron. Lett. 42,976-977 (2006).
[CrossRef]

L. Chrostowski, X. Zhao, and C. J. Chang-Hasnain, "Microwave performance of optically injection-locked VCSELs," IEEE Trans. Microwave Theory Tech. 54,788-796 (2006).
[CrossRef]

2004

C. Carlsson, A. Larsson, A. Alping, "RF Transmission Over Multimode Fibers Using VCSELs - Comparing Standard and High-Bandwidth Multimode Fibers," IEEE J. Lightwave Technol. 22,1694-1700 (2004).
[CrossRef]

2003

D. Vez, S. Eitel, S. G. Hunziker, G. Knight, M. Moser, R. Hoevel, H.-P. Gauggel, M. Brunner, A. Hold, and K. H. Gulden, "10 Gbit/s VCSELs for Datacom: Devices and applications," Proc. SPIE 4942, 29 (2003).
[CrossRef]

2001

L.-G. Zei, S. Ebers, J.-R. Kropp, and K. Petermann, "Noise performance of multimode VCSELs," IEEE J. Lightwave Technol. 19,884-892 (2001).
[CrossRef]

1997

J. Y. Law, G. H. M. van Tartwijk, and G. P. Agrawal, "Effects of Transverse-Mode Competition on the Injection Dynamics of Vertical-Cavity Surface-Emitting Lasers," Quantum Semiclassic Opt. 9,737-747 (1997).
[CrossRef]

1991

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, "Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers," IEEE J. Quantum Electron. 27,1402-1409 (1991).
[CrossRef]

1982

K. Iwashita and K. Nakagawa, "Suppression of Mode Partition Noise by Laser Diode Light Injection," IEEE Trans. Microwave Theory Tech. 82,1657-1662 (1982).
[CrossRef]

Agrawal, G. P.

J. Y. Law, G. H. M. van Tartwijk, and G. P. Agrawal, "Effects of Transverse-Mode Competition on the Injection Dynamics of Vertical-Cavity Surface-Emitting Lasers," Quantum Semiclassic Opt. 9,737-747 (1997).
[CrossRef]

Alping, A.

C. Carlsson, A. Larsson, A. Alping, "RF Transmission Over Multimode Fibers Using VCSELs - Comparing Standard and High-Bandwidth Multimode Fibers," IEEE J. Lightwave Technol. 22,1694-1700 (2004).
[CrossRef]

Amann, M.-C.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, Y. Liu, and M.-C. Amann, "High speed (>11 GHz) modulation of BCB-passivated 1.55 µm InGaAlAs-InP VCSELs," Electron. Lett. 42,976-977 (2006).
[CrossRef]

Bohm, G.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, Y. Liu, and M.-C. Amann, "High speed (>11 GHz) modulation of BCB-passivated 1.55 µm InGaAlAs-InP VCSELs," Electron. Lett. 42,976-977 (2006).
[CrossRef]

Brunner, M.

D. Vez, S. Eitel, S. G. Hunziker, G. Knight, M. Moser, R. Hoevel, H.-P. Gauggel, M. Brunner, A. Hold, and K. H. Gulden, "10 Gbit/s VCSELs for Datacom: Devices and applications," Proc. SPIE 4942, 29 (2003).
[CrossRef]

Carlsson, C.

C. Carlsson, A. Larsson, A. Alping, "RF Transmission Over Multimode Fibers Using VCSELs - Comparing Standard and High-Bandwidth Multimode Fibers," IEEE J. Lightwave Technol. 22,1694-1700 (2004).
[CrossRef]

Chang-Hasnain, C.

Chang-Hasnain, C. J.

X. Zhao and C. J. Chang-Hasnain, "A New Amplifier Model for Resonance Enhancement of Optically Injection-Locked Lasers," IEEE Photon. Technol. Lett. 6395-7 (2008)
[CrossRef]

L. Chrostowski, X. Zhao, and C. J. Chang-Hasnain, "Microwave performance of optically injection-locked VCSELs," IEEE Trans. Microwave Theory Tech. 54,788-796 (2006).
[CrossRef]

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, "Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers," IEEE J. Quantum Electron. 27,1402-1409 (1991).
[CrossRef]

Chen, W.

N. H. Zhu, W. Li, J. M. Wen, W. Han, W. Chen, and L. Xie, "Enhanced Modulation Bandwidth of a Fabry-Pérot Semiconductor Laser Subject to Light Injection From Another Fabry-Pérot Laser," IEEE J. Quantum Electron. 44,528-535 (2008),
[CrossRef]

Chrostowski, L.

L. Chrostowski, X. Zhao, and C. J. Chang-Hasnain, "Microwave performance of optically injection-locked VCSELs," IEEE Trans. Microwave Theory Tech. 54,788-796 (2006).
[CrossRef]

Ebers, S.

L.-G. Zei, S. Ebers, J.-R. Kropp, and K. Petermann, "Noise performance of multimode VCSELs," IEEE J. Lightwave Technol. 19,884-892 (2001).
[CrossRef]

Eitel, S.

D. Vez, S. Eitel, S. G. Hunziker, G. Knight, M. Moser, R. Hoevel, H.-P. Gauggel, M. Brunner, A. Hold, and K. H. Gulden, "10 Gbit/s VCSELs for Datacom: Devices and applications," Proc. SPIE 4942, 29 (2003).
[CrossRef]

Florez, L. T.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, "Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers," IEEE J. Quantum Electron. 27,1402-1409 (1991).
[CrossRef]

Gatare, I.

A. Valle, I. Gatare, K. Panajotov, and M. Sciamanna, "Transverse Mode Switching and Locking in Vertical-Cavity Surface-Emitting Lasers Subject to Orthogonal Optical Injection," IEEE J. Quantum Electron. 43,322-333 (2007),
[CrossRef]

Gauggel, H.-P.

D. Vez, S. Eitel, S. G. Hunziker, G. Knight, M. Moser, R. Hoevel, H.-P. Gauggel, M. Brunner, A. Hold, and K. H. Gulden, "10 Gbit/s VCSELs for Datacom: Devices and applications," Proc. SPIE 4942, 29 (2003).
[CrossRef]

Gulden, K. H.

D. Vez, S. Eitel, S. G. Hunziker, G. Knight, M. Moser, R. Hoevel, H.-P. Gauggel, M. Brunner, A. Hold, and K. H. Gulden, "10 Gbit/s VCSELs for Datacom: Devices and applications," Proc. SPIE 4942, 29 (2003).
[CrossRef]

Han, W.

N. H. Zhu, W. Li, J. M. Wen, W. Han, W. Chen, and L. Xie, "Enhanced Modulation Bandwidth of a Fabry-Pérot Semiconductor Laser Subject to Light Injection From Another Fabry-Pérot Laser," IEEE J. Quantum Electron. 44,528-535 (2008),
[CrossRef]

Harbison, J. P.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, "Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers," IEEE J. Quantum Electron. 27,1402-1409 (1991).
[CrossRef]

Hasnain, G.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, "Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers," IEEE J. Quantum Electron. 27,1402-1409 (1991).
[CrossRef]

Hoevel, R.

D. Vez, S. Eitel, S. G. Hunziker, G. Knight, M. Moser, R. Hoevel, H.-P. Gauggel, M. Brunner, A. Hold, and K. H. Gulden, "10 Gbit/s VCSELs for Datacom: Devices and applications," Proc. SPIE 4942, 29 (2003).
[CrossRef]

Hofmann, W.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, Y. Liu, and M.-C. Amann, "High speed (>11 GHz) modulation of BCB-passivated 1.55 µm InGaAlAs-InP VCSELs," Electron. Lett. 42,976-977 (2006).
[CrossRef]

Hold, A.

D. Vez, S. Eitel, S. G. Hunziker, G. Knight, M. Moser, R. Hoevel, H.-P. Gauggel, M. Brunner, A. Hold, and K. H. Gulden, "10 Gbit/s VCSELs for Datacom: Devices and applications," Proc. SPIE 4942, 29 (2003).
[CrossRef]

Hunziker, S. G.

D. Vez, S. Eitel, S. G. Hunziker, G. Knight, M. Moser, R. Hoevel, H.-P. Gauggel, M. Brunner, A. Hold, and K. H. Gulden, "10 Gbit/s VCSELs for Datacom: Devices and applications," Proc. SPIE 4942, 29 (2003).
[CrossRef]

Iwashita, K.

K. Iwashita and K. Nakagawa, "Suppression of Mode Partition Noise by Laser Diode Light Injection," IEEE Trans. Microwave Theory Tech. 82,1657-1662 (1982).
[CrossRef]

Knight, G.

D. Vez, S. Eitel, S. G. Hunziker, G. Knight, M. Moser, R. Hoevel, H.-P. Gauggel, M. Brunner, A. Hold, and K. H. Gulden, "10 Gbit/s VCSELs for Datacom: Devices and applications," Proc. SPIE 4942, 29 (2003).
[CrossRef]

Kropp, J.-R.

L.-G. Zei, S. Ebers, J.-R. Kropp, and K. Petermann, "Noise performance of multimode VCSELs," IEEE J. Lightwave Technol. 19,884-892 (2001).
[CrossRef]

Larsson, A.

C. Carlsson, A. Larsson, A. Alping, "RF Transmission Over Multimode Fibers Using VCSELs - Comparing Standard and High-Bandwidth Multimode Fibers," IEEE J. Lightwave Technol. 22,1694-1700 (2004).
[CrossRef]

Lau, E. K.

Law, J. Y.

J. Y. Law, G. H. M. van Tartwijk, and G. P. Agrawal, "Effects of Transverse-Mode Competition on the Injection Dynamics of Vertical-Cavity Surface-Emitting Lasers," Quantum Semiclassic Opt. 9,737-747 (1997).
[CrossRef]

Li, W.

N. H. Zhu, W. Li, J. M. Wen, W. Han, W. Chen, and L. Xie, "Enhanced Modulation Bandwidth of a Fabry-Pérot Semiconductor Laser Subject to Light Injection From Another Fabry-Pérot Laser," IEEE J. Quantum Electron. 44,528-535 (2008),
[CrossRef]

Liu, Y.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, Y. Liu, and M.-C. Amann, "High speed (>11 GHz) modulation of BCB-passivated 1.55 µm InGaAlAs-InP VCSELs," Electron. Lett. 42,976-977 (2006).
[CrossRef]

Moser, M.

D. Vez, S. Eitel, S. G. Hunziker, G. Knight, M. Moser, R. Hoevel, H.-P. Gauggel, M. Brunner, A. Hold, and K. H. Gulden, "10 Gbit/s VCSELs for Datacom: Devices and applications," Proc. SPIE 4942, 29 (2003).
[CrossRef]

Nakagawa, K.

K. Iwashita and K. Nakagawa, "Suppression of Mode Partition Noise by Laser Diode Light Injection," IEEE Trans. Microwave Theory Tech. 82,1657-1662 (1982).
[CrossRef]

Ortsiefer, M.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, Y. Liu, and M.-C. Amann, "High speed (>11 GHz) modulation of BCB-passivated 1.55 µm InGaAlAs-InP VCSELs," Electron. Lett. 42,976-977 (2006).
[CrossRef]

Panajotov, K.

A. Valle, I. Gatare, K. Panajotov, and M. Sciamanna, "Transverse Mode Switching and Locking in Vertical-Cavity Surface-Emitting Lasers Subject to Orthogonal Optical Injection," IEEE J. Quantum Electron. 43,322-333 (2007),
[CrossRef]

Parekh, D.

Petermann, K.

L.-G. Zei, S. Ebers, J.-R. Kropp, and K. Petermann, "Noise performance of multimode VCSELs," IEEE J. Lightwave Technol. 19,884-892 (2001).
[CrossRef]

Sciamanna, M.

A. Valle, I. Gatare, K. Panajotov, and M. Sciamanna, "Transverse Mode Switching and Locking in Vertical-Cavity Surface-Emitting Lasers Subject to Orthogonal Optical Injection," IEEE J. Quantum Electron. 43,322-333 (2007),
[CrossRef]

Stoffel, N. G.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, "Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers," IEEE J. Quantum Electron. 27,1402-1409 (1991).
[CrossRef]

Sung, H.

Valle, A.

A. Valle, I. Gatare, K. Panajotov, and M. Sciamanna, "Transverse Mode Switching and Locking in Vertical-Cavity Surface-Emitting Lasers Subject to Orthogonal Optical Injection," IEEE J. Quantum Electron. 43,322-333 (2007),
[CrossRef]

van Tartwijk, G. H. M.

J. Y. Law, G. H. M. van Tartwijk, and G. P. Agrawal, "Effects of Transverse-Mode Competition on the Injection Dynamics of Vertical-Cavity Surface-Emitting Lasers," Quantum Semiclassic Opt. 9,737-747 (1997).
[CrossRef]

Vez, D.

D. Vez, S. Eitel, S. G. Hunziker, G. Knight, M. Moser, R. Hoevel, H.-P. Gauggel, M. Brunner, A. Hold, and K. H. Gulden, "10 Gbit/s VCSELs for Datacom: Devices and applications," Proc. SPIE 4942, 29 (2003).
[CrossRef]

Von Lehmen, A. C.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, "Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers," IEEE J. Quantum Electron. 27,1402-1409 (1991).
[CrossRef]

Wen, J. M.

N. H. Zhu, W. Li, J. M. Wen, W. Han, W. Chen, and L. Xie, "Enhanced Modulation Bandwidth of a Fabry-Pérot Semiconductor Laser Subject to Light Injection From Another Fabry-Pérot Laser," IEEE J. Quantum Electron. 44,528-535 (2008),
[CrossRef]

Wu, M. C.

Xie, L.

N. H. Zhu, W. Li, J. M. Wen, W. Han, W. Chen, and L. Xie, "Enhanced Modulation Bandwidth of a Fabry-Pérot Semiconductor Laser Subject to Light Injection From Another Fabry-Pérot Laser," IEEE J. Quantum Electron. 44,528-535 (2008),
[CrossRef]

Zei, L.-G.

L.-G. Zei, S. Ebers, J.-R. Kropp, and K. Petermann, "Noise performance of multimode VCSELs," IEEE J. Lightwave Technol. 19,884-892 (2001).
[CrossRef]

Zhao, X.

X. Zhao and C. J. Chang-Hasnain, "A New Amplifier Model for Resonance Enhancement of Optically Injection-Locked Lasers," IEEE Photon. Technol. Lett. 6395-7 (2008)
[CrossRef]

E. K. Lau, X. Zhao, H. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, "Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths," Opt. Express 16, 6609-6618 (2008).
[CrossRef] [PubMed]

L. Chrostowski, X. Zhao, and C. J. Chang-Hasnain, "Microwave performance of optically injection-locked VCSELs," IEEE Trans. Microwave Theory Tech. 54,788-796 (2006).
[CrossRef]

Zhu, N. H.

N. H. Zhu, W. Li, J. M. Wen, W. Han, W. Chen, and L. Xie, "Enhanced Modulation Bandwidth of a Fabry-Pérot Semiconductor Laser Subject to Light Injection From Another Fabry-Pérot Laser," IEEE J. Quantum Electron. 44,528-535 (2008),
[CrossRef]

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, Y. Liu, and M.-C. Amann, "High speed (>11 GHz) modulation of BCB-passivated 1.55 µm InGaAlAs-InP VCSELs," Electron. Lett. 42,976-977 (2006).
[CrossRef]

Electron. Lett.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, Y. Liu, and M.-C. Amann, "High speed (>11 GHz) modulation of BCB-passivated 1.55 µm InGaAlAs-InP VCSELs," Electron. Lett. 42,976-977 (2006).
[CrossRef]

IEEE J. Lightwave Technol.

L.-G. Zei, S. Ebers, J.-R. Kropp, and K. Petermann, "Noise performance of multimode VCSELs," IEEE J. Lightwave Technol. 19,884-892 (2001).
[CrossRef]

C. Carlsson, A. Larsson, A. Alping, "RF Transmission Over Multimode Fibers Using VCSELs - Comparing Standard and High-Bandwidth Multimode Fibers," IEEE J. Lightwave Technol. 22,1694-1700 (2004).
[CrossRef]

IEEE J. Quantum Electron.

C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, "Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers," IEEE J. Quantum Electron. 27,1402-1409 (1991).
[CrossRef]

N. H. Zhu, W. Li, J. M. Wen, W. Han, W. Chen, and L. Xie, "Enhanced Modulation Bandwidth of a Fabry-Pérot Semiconductor Laser Subject to Light Injection From Another Fabry-Pérot Laser," IEEE J. Quantum Electron. 44,528-535 (2008),
[CrossRef]

A. Valle, I. Gatare, K. Panajotov, and M. Sciamanna, "Transverse Mode Switching and Locking in Vertical-Cavity Surface-Emitting Lasers Subject to Orthogonal Optical Injection," IEEE J. Quantum Electron. 43,322-333 (2007),
[CrossRef]

IEEE Photon. Technol. Lett.

X. Zhao and C. J. Chang-Hasnain, "A New Amplifier Model for Resonance Enhancement of Optically Injection-Locked Lasers," IEEE Photon. Technol. Lett. 6395-7 (2008)
[CrossRef]

IEEE Trans. Microwave Theory Tech.

K. Iwashita and K. Nakagawa, "Suppression of Mode Partition Noise by Laser Diode Light Injection," IEEE Trans. Microwave Theory Tech. 82,1657-1662 (1982).
[CrossRef]

L. Chrostowski, X. Zhao, and C. J. Chang-Hasnain, "Microwave performance of optically injection-locked VCSELs," IEEE Trans. Microwave Theory Tech. 54,788-796 (2006).
[CrossRef]

Opt. Express

Proc. SPIE

D. Vez, S. Eitel, S. G. Hunziker, G. Knight, M. Moser, R. Hoevel, H.-P. Gauggel, M. Brunner, A. Hold, and K. H. Gulden, "10 Gbit/s VCSELs for Datacom: Devices and applications," Proc. SPIE 4942, 29 (2003).
[CrossRef]

Quantum Semiclassic Opt.

J. Y. Law, G. H. M. van Tartwijk, and G. P. Agrawal, "Effects of Transverse-Mode Competition on the Injection Dynamics of Vertical-Cavity Surface-Emitting Lasers," Quantum Semiclassic Opt. 9,737-747 (1997).
[CrossRef]

Other

B. Zhang; X. Zhao, L. Christen, D. Parekh, W. Hofmann, M. C. Wu, M. C. Amann, C. J. Chang-Hasnain, and A. E. Willner, "Adjustable Chirp Injection-Locked 1.55-µm VCSELs for Enhanced Chromatic Dispersion Compensation at 10-Gbit/s," OFC/NFOEC 1-3 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Optical spectra of 10 µm MM VCSEL. The tranverse modes are spectrally and spatially distinct.

Fig. 2.
Fig. 2.

Schematic of experimental setup

Fig. 3.
Fig. 3.

(a), Optical spectra and (b) frequency response of 10 µm 1550-nm multimode VCSEL under optical injection with constant injection ratio (~8.1 dB) and negative detuning. Black traces are free running MM VCSEL. The frequency response curves are raw data which includes VCSEL parasitics (10 GHz) and measurement system parasitics such as the electric probe (40 GHz), photo-detector (50 GHz) and the bias tee (50 GHz). The ripples in the frequency response are caused by reflections off of the cleaved fiber, and can be reduced by switching to a lensed fiber.

Fig. 4.
Fig. 4.

(a). Optical spectra and (b) frequency response of 10 µm 1550-nm multimode VCSEL under optical injection with constant injection ratio (~9.03 dB) and positive detuning. Black traces are free running MM VCSEL. The frequency response curves are raw data and include the system parasitics similar to Fig. 2(b). The ripples in the frequency response are caused by reflections off of the cleaved fiber, and can be reduced by switching to a lensed fiber.

Fig. 5.
Fig. 5.

(a). Optical spectra and (b) frequency response of 15 µm 1550-nm multimode VCSEL under optical injection with constant injection ratio (~6 dB) and negative detuning with 1st order mode selected as the dominant mode. Dual peak in frequency response is due to dual polarization modes of the 1st order mode. Black traces are free running MM VCSEL. The frequency response curves are raw data and include the system parasitics similar to Fig. 2(b).

Fig. 6.
Fig. 6.

(a). Optical spectra and (b) frequency response of 15 µm 1550-nm multimode VCSEL under optical injection with constant injection ratio (~6 dB) with fundamental mode selected as the dominant mode. .Black traces are free running MM VCSEL. The frequency response curves are raw data and include the system parasitics similar to Fig. 2(b).

Metrics