Abstract

Photoacoustic imaging provides optical contrast with improved tissue penetration and spatial resolution compared to pure optical techniques. Three-dimensional photoacoustic imaging is particularly advantageous for visualizing non-planar light absorbing structures, such as blood vessels, internal organs or tumours. We have developed a fast 3-D photoacoustic imaging system for small animal research based on a sparse array of ultrasonic detectors and iterative image reconstruction. The system can acquire 3-D images with a single laser-shot at a frame rate of 10 Hz. To demonstrate the imaging capabilities we have constructed phantoms made of a scanning point source and a rotating line object and imaged them at a rate of 10 frames per second. The resulting 4-D photoacoustic images depicted well the motion of each target. Comparison of the perceived motion in the images with the known velocity of the target showed good agreement. To our knowledge, this is the first report of single-shot high frame-rate 3-D photoacoustic imaging system. With further developments, this system could bring to bear its inherent speed for applications in small animal research, such as motion tracking of tumour outline during respiration, and rapid monitoring of contrast agent kinetics.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. V. Wang, "Ultrasound-mediated biophotonic imaging: a review of acousto-optical tomography and photo-acoustic tomography," Disease Markers 19, 123-138 (2003).
  2. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nature Biotech. 24, 848-851 (2006).
    [CrossRef]
  3. K. H. Song, G. Stoica, and L. V. Wang, "In vivo three-dimensional photoacoustic tomography of a whole mouse head," Opt. Lett. 31, 2453-2455 (2006).
    [CrossRef] [PubMed]
  4. E. Z. Zhang, J. Laufer, and P. Beard, "Three-dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system," in Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics(SPIE, San Jose, CA, USA, 2007), 6437, pp. 64370S-64378.
  5. G. F. Lungu, M.-L. Li, X. Xie, L. V. Wang, and G. Stoica, "In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion," Inter. J. Oncol. 30, 45-54 (2007).
  6. L. Yeqi, X. Da, Y. Sihua, and X. Liangzhong, "Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth," Phys. Med. Biol. 53, 4203-4212 (2008).
    [CrossRef]
  7. E. Z. Zhang, J. Laufer, R. B. Pedley, and P. Beard, "3D photoacoustic imaging system for in vivo studies of small animal models," in Photons Plus Ultrasound: Imaging and Sensing 2008: The Ninth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics(SPIE, San Jose, CA, USA, 2008), 6856, pp. 68560P-68568.
  8. R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, Jr., D. R. Reinecke, and G. A. Kruger, "Breast Cancer in Vivo: Contrast Enhancement with Thermoacoustic CT at 434 MHz-Feasibility Study," Radiology 216, 279-283 (2000).
    [PubMed]
  9. S. Ermilov, A. Stein, A. Conjusteau, R. Gharieb, R. Lacewell, T. Miller, S. Thompson, P. Otto, B. McCorvey, T. Khamapirad, M. Leonard, and A. Oraevsky, "Detection and noninvasive diagnostics of breast cancer with 2-color laser optoacoustic imaging system," in Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics(SPIE, San Jose, CA, USA, 2007), 6437, pp. 643703-643711.
  10. S. Manohar, S. E. Vaartjes, J. G. C. van Hespen, J. M. Klaase, F. M. van den Engh, A. K. H. The, W. Steenbergen, and T. G. van Leeuwen, "Region-of-interest breast images with the Twente Photoacoustic Mammoscope (PAM)," in Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics (SPIE, San Jose, CA, USA, 2007), 6437, pp. 643702-643709.
  11. W. Xueding, X. Xueyi, K. Geng, L. V. Wang, and G. Stoica, "Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography," J. Biomed. Opt. 11, 24015-24011 (2006).
    [CrossRef]
  12. J. Laufer, E. Zhang, and P. Beard, "Quantitative in-vivo measurements of blood oxygen saturation using multiwavelength photoacoustic imaging," in Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics(SPIE, San Jose, CA, USA, 2007), 6437, pp. 64371Z-64379.
  13. H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, "Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy," Appl. Phys. Lett. 90, 53901-53901 (2007).
    [CrossRef]
  14. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nature Biotech. 21, 803-806 (2003).
    [CrossRef]
  15. L. Li, R. J. Zemp, G. Lungu, G. Stoica, and L. V. Wang, "Photoacoustic imaging of lacZ gene expression in vivo," J. Biomed. Opt. 12, 020504 (2007).
    [CrossRef] [PubMed]
  16. G. J. Diebold and T. Sun, "Properties of photoacoustic waves in one, two, and three dimensions," Acustica 80, 339-351 (1994).
  17. A. A. Oraevsky and A. A. Karabutov, "Ultimate sensitivity of time-resolved optoacoustic detection," in Biomedical Optoacoustics (SPIE, San Jose, CA, USA, 2000), 3916, pp. 228-239.
  18. P. Liu, "Image reconstruction from photoacoustic pressure signals," in Laser-Tissue Interaction VII(SPIE, San Jose, CA, USA, 1996), 2681, pp. 285-296.
  19. C. G. A. Hoelen and F. F. M. de Mul, "Image Reconstruction for Photoacoustic Scanning of Tissue Structures," Appl. Opt. 39, 5872-5883 (2000).
    [CrossRef]
  20. K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, and M. Frenz, "Optoacoustic imaging using a three-dimensional reconstruction algorithm," IEEE J. Sel. Top. Quantum Electron. 7, 918-923 (2001).
    [CrossRef]
  21. G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, "Iterative reconstruction algorithm for optoacoustic imaging," J. Acoust. Soc. Am. 112, 1536-1544 (2002).
    [CrossRef] [PubMed]
  22. X. Minghua, and L. V. Wang, "Universal back-projection algorithm for photoacoustic computed tomography," Phys. Rev. E (Statistical, Nonlinear, and Soft Matter Physics) 71, 16706-16701 (2005).
    [CrossRef]
  23. C. G. A. Hoelen, F. F. M. de Mul, R. Pongers, and A. Dekker, "Three-dimensional photoacoustic imaging of blood vessels in tissue," Opt. Lett. 23, 648-650 (1998).
    [CrossRef]
  24. J.-T. Oh, M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy," J. Biomed. Opt. 11, 34032 (2006).
    [CrossRef] [PubMed]
  25. S. Vaithilingam, I. O. Wygant, P. S. Kuo, X. Zhuang, O. Oralkan, P. D. Olcott, and B. T. Khuri-Yakub, "Capacitive micromachined ultrasonic transducers (CMUTs) for photoacoustic imaging," in Photons Plus Ultrasound: Imaging and Sensing 2006: The Seventh Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics(SPIE, San Jose, CA, USA, 2006), 6086, pp. 608603-608611.
  26. J. J. Niederhauser, M. Jaeger, and M. Frenz, "Real-time three-dimensional optoacoustic imaging using an acoustic lens system," Appl. Phys. Lett. 85, 846-848 (2004).
    [CrossRef]
  27. R. A. Kruger, W. L. Kiser, D. R. Reinecke, G. A. Kruger, and K. D. Miller, "Thermoacoustic molecular imaging of small animals," Molec. Imag. 2, 113-123 (2003).
    [CrossRef]
  28. P. Guo, J. Gamelin, S. Yan, A. Aguirre, and Q. Zhu, "Co-registered 3-D ultrasound and photoacoustic imaging using a 1.75D 1280-channel ultrasound system," in Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics(SPIE, San Jose, CA, USA, 2007), 6437, pp. 643713-643711.
  29. G. Paltauf, R. Nuster, P. Burgholzer, and M. Haltmeier, "Three-dimensional photoacoustic tomography using acoustic line detectors," in Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics(SPIE, San Jose, CA, USA, 2007), 6437, pp. 64370N-64310.
  30. R. J. Zemp, R. Bitton, M.-L. Li, K. K. Shung, G. Stoica, and L. V. Wang, "Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer," J. Biomed. Opt. 12, 010501 (2007).
    [CrossRef] [PubMed]
  31. L. Song, K. Maslov, R. Bitton, K. K. Shung, and L. V. Wang, "Fast 3-D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array," J. Biomed. Opt. 13, 054028-054025 (2008).
    [CrossRef] [PubMed]
  32. R. J. Zemp, L. Song, R. Bitton, K. K. Shung, and L. V. Wang, "Realtime photoacoustic microscopy of murine cardiovascular and respiratory dynamics in vivo," in Photons Plus Ultrasound: Imaging and Sensing 2008: The Ninth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics(SPIE, San Jose, CA, USA, 2008), 6856, pp. 68560G-68568.
  33. J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, "Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo," IEEE Trans. Med. Imaging,  24, 436-440 (2005).
    [CrossRef] [PubMed]
  34. J. Dean, V. Gornstein, M. Burcher, and L. Jankovic, "Real-time photoacoustic data acquisition with Philips iU22 ultrasound scanner," in Photons Plus Ultrasound: Imaging and Sensing 2008: The Ninth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics (SPIE, San Jose, CA, USA, 2008), 6856, pp. 685622-685611.
  35. C.-K. Liao, S.-W. Huang, C.-W. Wei, and P.-C. Li, "Nanorod-based flow estimation using a high-frame-rate photoacoustic imaging system," J. Biomed. Opt. 12, 064006-064009 (2007).
    [CrossRef]
  36. S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, "The twente photoacoustic mammoscope: system overview and performance," Phys. Med. Biol. 50, 2543-2557 (2005).
    [CrossRef] [PubMed]
  37. P. Ephrat, L. Keenliside, A. Seabrook, F. S. Prato, and J. J. L. Carson, "Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction," J. Biomed. Opt. 13, 054052-054012 (2008).
    [CrossRef] [PubMed]
  38. P. Ephrat, and J. J. L. Carson, "Measurement of photoacoustic detector sensitivity distribution by robotic source placement," in Photons Plus Ultrasound: Imaging and Sensing 2008: The Ninth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics (SPIE, San Jose, CA, USA, 2008), 6856, pp. 685610-685610.
  39. M. Roumeliotis, P. Ephrat, and J. J. L. Carson, "Development of an omni-directional photoacoustic source for the characterization of a hemispherical sparse detector array," in Photons Plus Ultrasound: Imaging and Sensing 2009: The Tenth Conference on Biomedical Thermoacoustics, Optoacoustics and Acousto-optics (SPIE, San Jose, CA, USA, 2009), 7177, pp. 7177-7188.
  40. B. C. Wilson, M. S. Patterson, and D. M. Burns, "Effect of photosensitizer concentration in tissue on the penetration depth of photoactivating light," Lasers Med. Sci. 1, 235-244 (1986).
    [CrossRef]
  41. R. A. Robb, and D. P. Hanson, "The ANALYZE software system for visualization and analysis in surgery simulation," in Computer integrated surgery, T. R. Lavalle S, Burdea G, Mosges R, ed. (MIT Press, Cambridge, MA, 1995).
  42. Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, "Reconstructions in limited-view thermoacoustic tomography," Med. Phys. 31, 724-733 (2004).
    [CrossRef] [PubMed]
  43. M. A. Anastasio, and J. Zhang, "Image reconstruction in photoacoustic tomography with truncated cylindrical measurement apertures," in Photons Plus Ultrasound: Imaging and Sensing 2006: The Seventh Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics (SPIE, San Jose, CA, USA, 2006), 6086, pp. 608610-608617.

2008 (3)

L. Yeqi, X. Da, Y. Sihua, and X. Liangzhong, "Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth," Phys. Med. Biol. 53, 4203-4212 (2008).
[CrossRef]

L. Song, K. Maslov, R. Bitton, K. K. Shung, and L. V. Wang, "Fast 3-D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array," J. Biomed. Opt. 13, 054028-054025 (2008).
[CrossRef] [PubMed]

P. Ephrat, L. Keenliside, A. Seabrook, F. S. Prato, and J. J. L. Carson, "Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction," J. Biomed. Opt. 13, 054052-054012 (2008).
[CrossRef] [PubMed]

2007 (5)

C.-K. Liao, S.-W. Huang, C.-W. Wei, and P.-C. Li, "Nanorod-based flow estimation using a high-frame-rate photoacoustic imaging system," J. Biomed. Opt. 12, 064006-064009 (2007).
[CrossRef]

R. J. Zemp, R. Bitton, M.-L. Li, K. K. Shung, G. Stoica, and L. V. Wang, "Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer," J. Biomed. Opt. 12, 010501 (2007).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, "Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy," Appl. Phys. Lett. 90, 53901-53901 (2007).
[CrossRef]

G. F. Lungu, M.-L. Li, X. Xie, L. V. Wang, and G. Stoica, "In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion," Inter. J. Oncol. 30, 45-54 (2007).

L. Li, R. J. Zemp, G. Lungu, G. Stoica, and L. V. Wang, "Photoacoustic imaging of lacZ gene expression in vivo," J. Biomed. Opt. 12, 020504 (2007).
[CrossRef] [PubMed]

2006 (4)

W. Xueding, X. Xueyi, K. Geng, L. V. Wang, and G. Stoica, "Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography," J. Biomed. Opt. 11, 24015-24011 (2006).
[CrossRef]

J.-T. Oh, M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy," J. Biomed. Opt. 11, 34032 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nature Biotech. 24, 848-851 (2006).
[CrossRef]

K. H. Song, G. Stoica, and L. V. Wang, "In vivo three-dimensional photoacoustic tomography of a whole mouse head," Opt. Lett. 31, 2453-2455 (2006).
[CrossRef] [PubMed]

2005 (2)

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, "Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo," IEEE Trans. Med. Imaging,  24, 436-440 (2005).
[CrossRef] [PubMed]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, "The twente photoacoustic mammoscope: system overview and performance," Phys. Med. Biol. 50, 2543-2557 (2005).
[CrossRef] [PubMed]

2004 (2)

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, "Reconstructions in limited-view thermoacoustic tomography," Med. Phys. 31, 724-733 (2004).
[CrossRef] [PubMed]

J. J. Niederhauser, M. Jaeger, and M. Frenz, "Real-time three-dimensional optoacoustic imaging using an acoustic lens system," Appl. Phys. Lett. 85, 846-848 (2004).
[CrossRef]

2003 (3)

R. A. Kruger, W. L. Kiser, D. R. Reinecke, G. A. Kruger, and K. D. Miller, "Thermoacoustic molecular imaging of small animals," Molec. Imag. 2, 113-123 (2003).
[CrossRef]

L. V. Wang, "Ultrasound-mediated biophotonic imaging: a review of acousto-optical tomography and photo-acoustic tomography," Disease Markers 19, 123-138 (2003).

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nature Biotech. 21, 803-806 (2003).
[CrossRef]

2002 (1)

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, "Iterative reconstruction algorithm for optoacoustic imaging," J. Acoust. Soc. Am. 112, 1536-1544 (2002).
[CrossRef] [PubMed]

2001 (1)

K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, and M. Frenz, "Optoacoustic imaging using a three-dimensional reconstruction algorithm," IEEE J. Sel. Top. Quantum Electron. 7, 918-923 (2001).
[CrossRef]

2000 (2)

C. G. A. Hoelen and F. F. M. de Mul, "Image Reconstruction for Photoacoustic Scanning of Tissue Structures," Appl. Opt. 39, 5872-5883 (2000).
[CrossRef]

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, Jr., D. R. Reinecke, and G. A. Kruger, "Breast Cancer in Vivo: Contrast Enhancement with Thermoacoustic CT at 434 MHz-Feasibility Study," Radiology 216, 279-283 (2000).
[PubMed]

1998 (1)

1994 (1)

G. J. Diebold and T. Sun, "Properties of photoacoustic waves in one, two, and three dimensions," Acustica 80, 339-351 (1994).

1986 (1)

B. C. Wilson, M. S. Patterson, and D. M. Burns, "Effect of photosensitizer concentration in tissue on the penetration depth of photoactivating light," Lasers Med. Sci. 1, 235-244 (1986).
[CrossRef]

Ambartsoumian, G.

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, "Reconstructions in limited-view thermoacoustic tomography," Med. Phys. 31, 724-733 (2004).
[CrossRef] [PubMed]

Bitton, R.

L. Song, K. Maslov, R. Bitton, K. K. Shung, and L. V. Wang, "Fast 3-D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array," J. Biomed. Opt. 13, 054028-054025 (2008).
[CrossRef] [PubMed]

R. J. Zemp, R. Bitton, M.-L. Li, K. K. Shung, G. Stoica, and L. V. Wang, "Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer," J. Biomed. Opt. 12, 010501 (2007).
[CrossRef] [PubMed]

Burns, D. M.

B. C. Wilson, M. S. Patterson, and D. M. Burns, "Effect of photosensitizer concentration in tissue on the penetration depth of photoactivating light," Lasers Med. Sci. 1, 235-244 (1986).
[CrossRef]

Carson, J. J. L.

P. Ephrat, L. Keenliside, A. Seabrook, F. S. Prato, and J. J. L. Carson, "Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction," J. Biomed. Opt. 13, 054052-054012 (2008).
[CrossRef] [PubMed]

Da, X.

L. Yeqi, X. Da, Y. Sihua, and X. Liangzhong, "Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth," Phys. Med. Biol. 53, 4203-4212 (2008).
[CrossRef]

de Mul, F. F. M.

Dekker, A.

Diebold, G. J.

G. J. Diebold and T. Sun, "Properties of photoacoustic waves in one, two, and three dimensions," Acustica 80, 339-351 (1994).

Ephrat, P.

P. Ephrat, L. Keenliside, A. Seabrook, F. S. Prato, and J. J. L. Carson, "Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction," J. Biomed. Opt. 13, 054052-054012 (2008).
[CrossRef] [PubMed]

Frauchiger, D.

K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, and M. Frenz, "Optoacoustic imaging using a three-dimensional reconstruction algorithm," IEEE J. Sel. Top. Quantum Electron. 7, 918-923 (2001).
[CrossRef]

Frenz, M.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, "Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo," IEEE Trans. Med. Imaging,  24, 436-440 (2005).
[CrossRef] [PubMed]

J. J. Niederhauser, M. Jaeger, and M. Frenz, "Real-time three-dimensional optoacoustic imaging using an acoustic lens system," Appl. Phys. Lett. 85, 846-848 (2004).
[CrossRef]

K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, and M. Frenz, "Optoacoustic imaging using a three-dimensional reconstruction algorithm," IEEE J. Sel. Top. Quantum Electron. 7, 918-923 (2001).
[CrossRef]

Geng, K.

W. Xueding, X. Xueyi, K. Geng, L. V. Wang, and G. Stoica, "Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography," J. Biomed. Opt. 11, 24015-24011 (2006).
[CrossRef]

Hoelen, C. G. A.

Huang, S.-W.

C.-K. Liao, S.-W. Huang, C.-W. Wei, and P.-C. Li, "Nanorod-based flow estimation using a high-frame-rate photoacoustic imaging system," J. Biomed. Opt. 12, 064006-064009 (2007).
[CrossRef]

Jacques, S. L.

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, "Iterative reconstruction algorithm for optoacoustic imaging," J. Acoust. Soc. Am. 112, 1536-1544 (2002).
[CrossRef] [PubMed]

Jaeger, M.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, "Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo," IEEE Trans. Med. Imaging,  24, 436-440 (2005).
[CrossRef] [PubMed]

J. J. Niederhauser, M. Jaeger, and M. Frenz, "Real-time three-dimensional optoacoustic imaging using an acoustic lens system," Appl. Phys. Lett. 85, 846-848 (2004).
[CrossRef]

Keenliside, L.

P. Ephrat, L. Keenliside, A. Seabrook, F. S. Prato, and J. J. L. Carson, "Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction," J. Biomed. Opt. 13, 054052-054012 (2008).
[CrossRef] [PubMed]

Kharine, A.

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, "The twente photoacoustic mammoscope: system overview and performance," Phys. Med. Biol. 50, 2543-2557 (2005).
[CrossRef] [PubMed]

Kiser, W. L.

R. A. Kruger, W. L. Kiser, D. R. Reinecke, G. A. Kruger, and K. D. Miller, "Thermoacoustic molecular imaging of small animals," Molec. Imag. 2, 113-123 (2003).
[CrossRef]

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, Jr., D. R. Reinecke, and G. A. Kruger, "Breast Cancer in Vivo: Contrast Enhancement with Thermoacoustic CT at 434 MHz-Feasibility Study," Radiology 216, 279-283 (2000).
[PubMed]

Kostli, K. P.

K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, and M. Frenz, "Optoacoustic imaging using a three-dimensional reconstruction algorithm," IEEE J. Sel. Top. Quantum Electron. 7, 918-923 (2001).
[CrossRef]

Kruger, G. A.

R. A. Kruger, W. L. Kiser, D. R. Reinecke, G. A. Kruger, and K. D. Miller, "Thermoacoustic molecular imaging of small animals," Molec. Imag. 2, 113-123 (2003).
[CrossRef]

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, Jr., D. R. Reinecke, and G. A. Kruger, "Breast Cancer in Vivo: Contrast Enhancement with Thermoacoustic CT at 434 MHz-Feasibility Study," Radiology 216, 279-283 (2000).
[PubMed]

Kruger, R. A.

R. A. Kruger, W. L. Kiser, D. R. Reinecke, G. A. Kruger, and K. D. Miller, "Thermoacoustic molecular imaging of small animals," Molec. Imag. 2, 113-123 (2003).
[CrossRef]

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, Jr., D. R. Reinecke, and G. A. Kruger, "Breast Cancer in Vivo: Contrast Enhancement with Thermoacoustic CT at 434 MHz-Feasibility Study," Radiology 216, 279-283 (2000).
[PubMed]

Ku, G.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nature Biotech. 21, 803-806 (2003).
[CrossRef]

Kuchment, P.

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, "Reconstructions in limited-view thermoacoustic tomography," Med. Phys. 31, 724-733 (2004).
[CrossRef] [PubMed]

Lemor, R.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, "Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo," IEEE Trans. Med. Imaging,  24, 436-440 (2005).
[CrossRef] [PubMed]

Li, L.

L. Li, R. J. Zemp, G. Lungu, G. Stoica, and L. V. Wang, "Photoacoustic imaging of lacZ gene expression in vivo," J. Biomed. Opt. 12, 020504 (2007).
[CrossRef] [PubMed]

Li, M.-L.

G. F. Lungu, M.-L. Li, X. Xie, L. V. Wang, and G. Stoica, "In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion," Inter. J. Oncol. 30, 45-54 (2007).

R. J. Zemp, R. Bitton, M.-L. Li, K. K. Shung, G. Stoica, and L. V. Wang, "Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer," J. Biomed. Opt. 12, 010501 (2007).
[CrossRef] [PubMed]

J.-T. Oh, M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy," J. Biomed. Opt. 11, 34032 (2006).
[CrossRef] [PubMed]

Li, P.-C.

C.-K. Liao, S.-W. Huang, C.-W. Wei, and P.-C. Li, "Nanorod-based flow estimation using a high-frame-rate photoacoustic imaging system," J. Biomed. Opt. 12, 064006-064009 (2007).
[CrossRef]

Liangzhong, X.

L. Yeqi, X. Da, Y. Sihua, and X. Liangzhong, "Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth," Phys. Med. Biol. 53, 4203-4212 (2008).
[CrossRef]

Liao, C.-K.

C.-K. Liao, S.-W. Huang, C.-W. Wei, and P.-C. Li, "Nanorod-based flow estimation using a high-frame-rate photoacoustic imaging system," J. Biomed. Opt. 12, 064006-064009 (2007).
[CrossRef]

Lungu, G.

L. Li, R. J. Zemp, G. Lungu, G. Stoica, and L. V. Wang, "Photoacoustic imaging of lacZ gene expression in vivo," J. Biomed. Opt. 12, 020504 (2007).
[CrossRef] [PubMed]

Lungu, G. F.

G. F. Lungu, M.-L. Li, X. Xie, L. V. Wang, and G. Stoica, "In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion," Inter. J. Oncol. 30, 45-54 (2007).

Manohar, S.

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, "The twente photoacoustic mammoscope: system overview and performance," Phys. Med. Biol. 50, 2543-2557 (2005).
[CrossRef] [PubMed]

Maslov, K.

L. Song, K. Maslov, R. Bitton, K. K. Shung, and L. V. Wang, "Fast 3-D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array," J. Biomed. Opt. 13, 054028-054025 (2008).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, "Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy," Appl. Phys. Lett. 90, 53901-53901 (2007).
[CrossRef]

J.-T. Oh, M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy," J. Biomed. Opt. 11, 34032 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nature Biotech. 24, 848-851 (2006).
[CrossRef]

Miller, K. D.

R. A. Kruger, W. L. Kiser, D. R. Reinecke, G. A. Kruger, and K. D. Miller, "Thermoacoustic molecular imaging of small animals," Molec. Imag. 2, 113-123 (2003).
[CrossRef]

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, Jr., D. R. Reinecke, and G. A. Kruger, "Breast Cancer in Vivo: Contrast Enhancement with Thermoacoustic CT at 434 MHz-Feasibility Study," Radiology 216, 279-283 (2000).
[PubMed]

Niederhauser, J. J.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, "Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo," IEEE Trans. Med. Imaging,  24, 436-440 (2005).
[CrossRef] [PubMed]

J. J. Niederhauser, M. Jaeger, and M. Frenz, "Real-time three-dimensional optoacoustic imaging using an acoustic lens system," Appl. Phys. Lett. 85, 846-848 (2004).
[CrossRef]

K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, and M. Frenz, "Optoacoustic imaging using a three-dimensional reconstruction algorithm," IEEE J. Sel. Top. Quantum Electron. 7, 918-923 (2001).
[CrossRef]

Oh, J.-T.

J.-T. Oh, M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy," J. Biomed. Opt. 11, 34032 (2006).
[CrossRef] [PubMed]

Paltauf, G.

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, "Iterative reconstruction algorithm for optoacoustic imaging," J. Acoust. Soc. Am. 112, 1536-1544 (2002).
[CrossRef] [PubMed]

K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, and M. Frenz, "Optoacoustic imaging using a three-dimensional reconstruction algorithm," IEEE J. Sel. Top. Quantum Electron. 7, 918-923 (2001).
[CrossRef]

Pang, Y.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nature Biotech. 21, 803-806 (2003).
[CrossRef]

Patterson, M. S.

B. C. Wilson, M. S. Patterson, and D. M. Burns, "Effect of photosensitizer concentration in tissue on the penetration depth of photoactivating light," Lasers Med. Sci. 1, 235-244 (1986).
[CrossRef]

Pongers, R.

Prahl, S. A.

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, "Iterative reconstruction algorithm for optoacoustic imaging," J. Acoust. Soc. Am. 112, 1536-1544 (2002).
[CrossRef] [PubMed]

Prato, F. S.

P. Ephrat, L. Keenliside, A. Seabrook, F. S. Prato, and J. J. L. Carson, "Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction," J. Biomed. Opt. 13, 054052-054012 (2008).
[CrossRef] [PubMed]

Reinecke, D. R.

R. A. Kruger, W. L. Kiser, D. R. Reinecke, G. A. Kruger, and K. D. Miller, "Thermoacoustic molecular imaging of small animals," Molec. Imag. 2, 113-123 (2003).
[CrossRef]

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, Jr., D. R. Reinecke, and G. A. Kruger, "Breast Cancer in Vivo: Contrast Enhancement with Thermoacoustic CT at 434 MHz-Feasibility Study," Radiology 216, 279-283 (2000).
[PubMed]

Reynolds, H. E.

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, Jr., D. R. Reinecke, and G. A. Kruger, "Breast Cancer in Vivo: Contrast Enhancement with Thermoacoustic CT at 434 MHz-Feasibility Study," Radiology 216, 279-283 (2000).
[PubMed]

Seabrook, A.

P. Ephrat, L. Keenliside, A. Seabrook, F. S. Prato, and J. J. L. Carson, "Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction," J. Biomed. Opt. 13, 054052-054012 (2008).
[CrossRef] [PubMed]

Shung, K. K.

L. Song, K. Maslov, R. Bitton, K. K. Shung, and L. V. Wang, "Fast 3-D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array," J. Biomed. Opt. 13, 054028-054025 (2008).
[CrossRef] [PubMed]

R. J. Zemp, R. Bitton, M.-L. Li, K. K. Shung, G. Stoica, and L. V. Wang, "Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer," J. Biomed. Opt. 12, 010501 (2007).
[CrossRef] [PubMed]

Sihua, Y.

L. Yeqi, X. Da, Y. Sihua, and X. Liangzhong, "Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth," Phys. Med. Biol. 53, 4203-4212 (2008).
[CrossRef]

Sivaramakrishnan, M.

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, "Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy," Appl. Phys. Lett. 90, 53901-53901 (2007).
[CrossRef]

Song, K. H.

Song, L.

L. Song, K. Maslov, R. Bitton, K. K. Shung, and L. V. Wang, "Fast 3-D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array," J. Biomed. Opt. 13, 054028-054025 (2008).
[CrossRef] [PubMed]

Steenbergen, W.

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, "The twente photoacoustic mammoscope: system overview and performance," Phys. Med. Biol. 50, 2543-2557 (2005).
[CrossRef] [PubMed]

Stoica, G.

R. J. Zemp, R. Bitton, M.-L. Li, K. K. Shung, G. Stoica, and L. V. Wang, "Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer," J. Biomed. Opt. 12, 010501 (2007).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, "Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy," Appl. Phys. Lett. 90, 53901-53901 (2007).
[CrossRef]

L. Li, R. J. Zemp, G. Lungu, G. Stoica, and L. V. Wang, "Photoacoustic imaging of lacZ gene expression in vivo," J. Biomed. Opt. 12, 020504 (2007).
[CrossRef] [PubMed]

G. F. Lungu, M.-L. Li, X. Xie, L. V. Wang, and G. Stoica, "In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion," Inter. J. Oncol. 30, 45-54 (2007).

W. Xueding, X. Xueyi, K. Geng, L. V. Wang, and G. Stoica, "Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography," J. Biomed. Opt. 11, 24015-24011 (2006).
[CrossRef]

J.-T. Oh, M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy," J. Biomed. Opt. 11, 34032 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nature Biotech. 24, 848-851 (2006).
[CrossRef]

K. H. Song, G. Stoica, and L. V. Wang, "In vivo three-dimensional photoacoustic tomography of a whole mouse head," Opt. Lett. 31, 2453-2455 (2006).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nature Biotech. 21, 803-806 (2003).
[CrossRef]

Sun, T.

G. J. Diebold and T. Sun, "Properties of photoacoustic waves in one, two, and three dimensions," Acustica 80, 339-351 (1994).

van Hespen, J. C. G.

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, "The twente photoacoustic mammoscope: system overview and performance," Phys. Med. Biol. 50, 2543-2557 (2005).
[CrossRef] [PubMed]

van Leeuwen, T. G.

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, "The twente photoacoustic mammoscope: system overview and performance," Phys. Med. Biol. 50, 2543-2557 (2005).
[CrossRef] [PubMed]

Viator, J. A.

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, "Iterative reconstruction algorithm for optoacoustic imaging," J. Acoust. Soc. Am. 112, 1536-1544 (2002).
[CrossRef] [PubMed]

Wang, L. V.

L. Song, K. Maslov, R. Bitton, K. K. Shung, and L. V. Wang, "Fast 3-D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array," J. Biomed. Opt. 13, 054028-054025 (2008).
[CrossRef] [PubMed]

R. J. Zemp, R. Bitton, M.-L. Li, K. K. Shung, G. Stoica, and L. V. Wang, "Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer," J. Biomed. Opt. 12, 010501 (2007).
[CrossRef] [PubMed]

L. Li, R. J. Zemp, G. Lungu, G. Stoica, and L. V. Wang, "Photoacoustic imaging of lacZ gene expression in vivo," J. Biomed. Opt. 12, 020504 (2007).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, "Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy," Appl. Phys. Lett. 90, 53901-53901 (2007).
[CrossRef]

G. F. Lungu, M.-L. Li, X. Xie, L. V. Wang, and G. Stoica, "In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion," Inter. J. Oncol. 30, 45-54 (2007).

W. Xueding, X. Xueyi, K. Geng, L. V. Wang, and G. Stoica, "Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography," J. Biomed. Opt. 11, 24015-24011 (2006).
[CrossRef]

J.-T. Oh, M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy," J. Biomed. Opt. 11, 34032 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nature Biotech. 24, 848-851 (2006).
[CrossRef]

K. H. Song, G. Stoica, and L. V. Wang, "In vivo three-dimensional photoacoustic tomography of a whole mouse head," Opt. Lett. 31, 2453-2455 (2006).
[CrossRef] [PubMed]

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, "Reconstructions in limited-view thermoacoustic tomography," Med. Phys. 31, 724-733 (2004).
[CrossRef] [PubMed]

L. V. Wang, "Ultrasound-mediated biophotonic imaging: a review of acousto-optical tomography and photo-acoustic tomography," Disease Markers 19, 123-138 (2003).

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nature Biotech. 21, 803-806 (2003).
[CrossRef]

Wang, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nature Biotech. 21, 803-806 (2003).
[CrossRef]

Weber, H. P.

K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, and M. Frenz, "Optoacoustic imaging using a three-dimensional reconstruction algorithm," IEEE J. Sel. Top. Quantum Electron. 7, 918-923 (2001).
[CrossRef]

Weber, P.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, "Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo," IEEE Trans. Med. Imaging,  24, 436-440 (2005).
[CrossRef] [PubMed]

Wei, C.-W.

C.-K. Liao, S.-W. Huang, C.-W. Wei, and P.-C. Li, "Nanorod-based flow estimation using a high-frame-rate photoacoustic imaging system," J. Biomed. Opt. 12, 064006-064009 (2007).
[CrossRef]

Wilson, B. C.

B. C. Wilson, M. S. Patterson, and D. M. Burns, "Effect of photosensitizer concentration in tissue on the penetration depth of photoactivating light," Lasers Med. Sci. 1, 235-244 (1986).
[CrossRef]

Xie, X.

G. F. Lungu, M.-L. Li, X. Xie, L. V. Wang, and G. Stoica, "In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion," Inter. J. Oncol. 30, 45-54 (2007).

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nature Biotech. 21, 803-806 (2003).
[CrossRef]

Xu, Y.

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, "Reconstructions in limited-view thermoacoustic tomography," Med. Phys. 31, 724-733 (2004).
[CrossRef] [PubMed]

Xueding, W.

W. Xueding, X. Xueyi, K. Geng, L. V. Wang, and G. Stoica, "Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography," J. Biomed. Opt. 11, 24015-24011 (2006).
[CrossRef]

Xueyi, X.

W. Xueding, X. Xueyi, K. Geng, L. V. Wang, and G. Stoica, "Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography," J. Biomed. Opt. 11, 24015-24011 (2006).
[CrossRef]

Yeqi, L.

L. Yeqi, X. Da, Y. Sihua, and X. Liangzhong, "Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth," Phys. Med. Biol. 53, 4203-4212 (2008).
[CrossRef]

Zemp, R. J.

L. Li, R. J. Zemp, G. Lungu, G. Stoica, and L. V. Wang, "Photoacoustic imaging of lacZ gene expression in vivo," J. Biomed. Opt. 12, 020504 (2007).
[CrossRef] [PubMed]

R. J. Zemp, R. Bitton, M.-L. Li, K. K. Shung, G. Stoica, and L. V. Wang, "Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer," J. Biomed. Opt. 12, 010501 (2007).
[CrossRef] [PubMed]

Zhang, H. F.

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, "Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy," Appl. Phys. Lett. 90, 53901-53901 (2007).
[CrossRef]

J.-T. Oh, M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy," J. Biomed. Opt. 11, 34032 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nature Biotech. 24, 848-851 (2006).
[CrossRef]

Acustica (1)

G. J. Diebold and T. Sun, "Properties of photoacoustic waves in one, two, and three dimensions," Acustica 80, 339-351 (1994).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, "Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy," Appl. Phys. Lett. 90, 53901-53901 (2007).
[CrossRef]

J. J. Niederhauser, M. Jaeger, and M. Frenz, "Real-time three-dimensional optoacoustic imaging using an acoustic lens system," Appl. Phys. Lett. 85, 846-848 (2004).
[CrossRef]

Disease Markers (1)

L. V. Wang, "Ultrasound-mediated biophotonic imaging: a review of acousto-optical tomography and photo-acoustic tomography," Disease Markers 19, 123-138 (2003).

IEEE J. Sel. Top. Quantum Electron. (1)

K. P. Kostli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P. Weber, and M. Frenz, "Optoacoustic imaging using a three-dimensional reconstruction algorithm," IEEE J. Sel. Top. Quantum Electron. 7, 918-923 (2001).
[CrossRef]

IEEE Trans. Med. Imaging (1)

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, "Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo," IEEE Trans. Med. Imaging,  24, 436-440 (2005).
[CrossRef] [PubMed]

Inter. J. Oncol. (1)

G. F. Lungu, M.-L. Li, X. Xie, L. V. Wang, and G. Stoica, "In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion," Inter. J. Oncol. 30, 45-54 (2007).

J. Acoust. Soc. Am. (1)

G. Paltauf, J. A. Viator, S. A. Prahl, and S. L. Jacques, "Iterative reconstruction algorithm for optoacoustic imaging," J. Acoust. Soc. Am. 112, 1536-1544 (2002).
[CrossRef] [PubMed]

J. Biomed. Opt. (7)

W. Xueding, X. Xueyi, K. Geng, L. V. Wang, and G. Stoica, "Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography," J. Biomed. Opt. 11, 24015-24011 (2006).
[CrossRef]

C.-K. Liao, S.-W. Huang, C.-W. Wei, and P.-C. Li, "Nanorod-based flow estimation using a high-frame-rate photoacoustic imaging system," J. Biomed. Opt. 12, 064006-064009 (2007).
[CrossRef]

J.-T. Oh, M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy," J. Biomed. Opt. 11, 34032 (2006).
[CrossRef] [PubMed]

R. J. Zemp, R. Bitton, M.-L. Li, K. K. Shung, G. Stoica, and L. V. Wang, "Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer," J. Biomed. Opt. 12, 010501 (2007).
[CrossRef] [PubMed]

L. Song, K. Maslov, R. Bitton, K. K. Shung, and L. V. Wang, "Fast 3-D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array," J. Biomed. Opt. 13, 054028-054025 (2008).
[CrossRef] [PubMed]

L. Li, R. J. Zemp, G. Lungu, G. Stoica, and L. V. Wang, "Photoacoustic imaging of lacZ gene expression in vivo," J. Biomed. Opt. 12, 020504 (2007).
[CrossRef] [PubMed]

P. Ephrat, L. Keenliside, A. Seabrook, F. S. Prato, and J. J. L. Carson, "Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction," J. Biomed. Opt. 13, 054052-054012 (2008).
[CrossRef] [PubMed]

Lasers Med. Sci. (1)

B. C. Wilson, M. S. Patterson, and D. M. Burns, "Effect of photosensitizer concentration in tissue on the penetration depth of photoactivating light," Lasers Med. Sci. 1, 235-244 (1986).
[CrossRef]

Med. Phys. (1)

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, "Reconstructions in limited-view thermoacoustic tomography," Med. Phys. 31, 724-733 (2004).
[CrossRef] [PubMed]

Molec. Imag. (1)

R. A. Kruger, W. L. Kiser, D. R. Reinecke, G. A. Kruger, and K. D. Miller, "Thermoacoustic molecular imaging of small animals," Molec. Imag. 2, 113-123 (2003).
[CrossRef]

Nature Biotech. (2)

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nature Biotech. 21, 803-806 (2003).
[CrossRef]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nature Biotech. 24, 848-851 (2006).
[CrossRef]

Opt. Lett. (2)

Phys. Med. Biol. (2)

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, "The twente photoacoustic mammoscope: system overview and performance," Phys. Med. Biol. 50, 2543-2557 (2005).
[CrossRef] [PubMed]

L. Yeqi, X. Da, Y. Sihua, and X. Liangzhong, "Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth," Phys. Med. Biol. 53, 4203-4212 (2008).
[CrossRef]

Radiology (1)

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, Jr., D. R. Reinecke, and G. A. Kruger, "Breast Cancer in Vivo: Contrast Enhancement with Thermoacoustic CT at 434 MHz-Feasibility Study," Radiology 216, 279-283 (2000).
[PubMed]

Other (17)

S. Ermilov, A. Stein, A. Conjusteau, R. Gharieb, R. Lacewell, T. Miller, S. Thompson, P. Otto, B. McCorvey, T. Khamapirad, M. Leonard, and A. Oraevsky, "Detection and noninvasive diagnostics of breast cancer with 2-color laser optoacoustic imaging system," in Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics(SPIE, San Jose, CA, USA, 2007), 6437, pp. 643703-643711.

S. Manohar, S. E. Vaartjes, J. G. C. van Hespen, J. M. Klaase, F. M. van den Engh, A. K. H. The, W. Steenbergen, and T. G. van Leeuwen, "Region-of-interest breast images with the Twente Photoacoustic Mammoscope (PAM)," in Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics (SPIE, San Jose, CA, USA, 2007), 6437, pp. 643702-643709.

E. Z. Zhang, J. Laufer, R. B. Pedley, and P. Beard, "3D photoacoustic imaging system for in vivo studies of small animal models," in Photons Plus Ultrasound: Imaging and Sensing 2008: The Ninth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics(SPIE, San Jose, CA, USA, 2008), 6856, pp. 68560P-68568.

E. Z. Zhang, J. Laufer, and P. Beard, "Three-dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system," in Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics(SPIE, San Jose, CA, USA, 2007), 6437, pp. 64370S-64378.

J. Laufer, E. Zhang, and P. Beard, "Quantitative in-vivo measurements of blood oxygen saturation using multiwavelength photoacoustic imaging," in Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics(SPIE, San Jose, CA, USA, 2007), 6437, pp. 64371Z-64379.

X. Minghua, and L. V. Wang, "Universal back-projection algorithm for photoacoustic computed tomography," Phys. Rev. E (Statistical, Nonlinear, and Soft Matter Physics) 71, 16706-16701 (2005).
[CrossRef]

J. Dean, V. Gornstein, M. Burcher, and L. Jankovic, "Real-time photoacoustic data acquisition with Philips iU22 ultrasound scanner," in Photons Plus Ultrasound: Imaging and Sensing 2008: The Ninth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics (SPIE, San Jose, CA, USA, 2008), 6856, pp. 685622-685611.

R. J. Zemp, L. Song, R. Bitton, K. K. Shung, and L. V. Wang, "Realtime photoacoustic microscopy of murine cardiovascular and respiratory dynamics in vivo," in Photons Plus Ultrasound: Imaging and Sensing 2008: The Ninth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics(SPIE, San Jose, CA, USA, 2008), 6856, pp. 68560G-68568.

S. Vaithilingam, I. O. Wygant, P. S. Kuo, X. Zhuang, O. Oralkan, P. D. Olcott, and B. T. Khuri-Yakub, "Capacitive micromachined ultrasonic transducers (CMUTs) for photoacoustic imaging," in Photons Plus Ultrasound: Imaging and Sensing 2006: The Seventh Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics(SPIE, San Jose, CA, USA, 2006), 6086, pp. 608603-608611.

A. A. Oraevsky and A. A. Karabutov, "Ultimate sensitivity of time-resolved optoacoustic detection," in Biomedical Optoacoustics (SPIE, San Jose, CA, USA, 2000), 3916, pp. 228-239.

P. Liu, "Image reconstruction from photoacoustic pressure signals," in Laser-Tissue Interaction VII(SPIE, San Jose, CA, USA, 1996), 2681, pp. 285-296.

P. Guo, J. Gamelin, S. Yan, A. Aguirre, and Q. Zhu, "Co-registered 3-D ultrasound and photoacoustic imaging using a 1.75D 1280-channel ultrasound system," in Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics(SPIE, San Jose, CA, USA, 2007), 6437, pp. 643713-643711.

G. Paltauf, R. Nuster, P. Burgholzer, and M. Haltmeier, "Three-dimensional photoacoustic tomography using acoustic line detectors," in Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics(SPIE, San Jose, CA, USA, 2007), 6437, pp. 64370N-64310.

M. A. Anastasio, and J. Zhang, "Image reconstruction in photoacoustic tomography with truncated cylindrical measurement apertures," in Photons Plus Ultrasound: Imaging and Sensing 2006: The Seventh Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics (SPIE, San Jose, CA, USA, 2006), 6086, pp. 608610-608617.

R. A. Robb, and D. P. Hanson, "The ANALYZE software system for visualization and analysis in surgery simulation," in Computer integrated surgery, T. R. Lavalle S, Burdea G, Mosges R, ed. (MIT Press, Cambridge, MA, 1995).

P. Ephrat, and J. J. L. Carson, "Measurement of photoacoustic detector sensitivity distribution by robotic source placement," in Photons Plus Ultrasound: Imaging and Sensing 2008: The Ninth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics (SPIE, San Jose, CA, USA, 2008), 6856, pp. 685610-685610.

M. Roumeliotis, P. Ephrat, and J. J. L. Carson, "Development of an omni-directional photoacoustic source for the characterization of a hemispherical sparse detector array," in Photons Plus Ultrasound: Imaging and Sensing 2009: The Tenth Conference on Biomedical Thermoacoustics, Optoacoustics and Acousto-optics (SPIE, San Jose, CA, USA, 2009), 7177, pp. 7177-7188.

Supplementary Material (8)

» Media 1: MOV (198 KB)     
» Media 2: MOV (89 KB)     
» Media 3: MOV (176 KB)     
» Media 4: MOV (88 KB)     
» Media 5: MOV (388 KB)     
» Media 6: MOV (103 KB)     
» Media 7: MOV (202 KB)     
» Media 8: MOV (107 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Setup used for the moving phantom experiments. (a) Schematic of the entire imaging system, consisting of the laser, beam-steering mirror, detector tank (side-view and perspective), graphite rod mounted to the rotating motor shaft, electronic filter/amplifier box, data acquisition system and PC for image reconstruction and display. (b) The light-scattering phantom consisting of a cylindrical agar gel at 1% w/v mixed with light-scattering IntralipidTM at 1% v/v. The graphite rod was inserted into the gel ~10 mm from the bottom surface. Once inserted, the rod could not be visually detected, as shown in the picture on the right.

Fig. 2.
Fig. 2.

(a) Representative frames from a 2-D PA movie of a point source scanned horizontally in the x direction at a speed of 4.5 mm/s. Click on any of the frames to watch (Movie 1), which shows the entire 50 frame sequence. (b) (Movie 2), showing a 3-D rendering of the same moving target as in (a). (c) Point source scanned horizontally in the y direction at a speed of 4.5 mm/s. Click on any of the frames to watch (Movie 3), which shows the entire 50 frame sequence. (d) (Movie 4), showing a 3-D rendering of the same moving target as in (c). Volume size is 20×20×20 mm3. Each voxel is 1×1×1 mm3. Axes origin and direction indicated by the arrows. Each tick mark represents 5 mm. Grey scale is linear and common to all frames in each movie.

Fig. 3.
Fig. 3.

(a) Representative frames from a 2-D PA movie of a 0.9 mm graphite rod, rotating counter clockwise at a velocity of 120 °/s. Click on any of the frames to watch (Movie 5), which shows the entire 50 frame sequence. (b) (Movie 6), showing a 3-D rendering of the same moving target as in (a). Volume size is 25×25×25 mm3. Each voxel is 1×1×1 mm3. Axes origin and direction indicated by the arrows. Each tick mark represents 5 mm. Grey scale is linear and common to all frames in each movie.

Fig. 4.
Fig. 4.

Rotation angle of the 0.9 mm diameter graphite rod estimated from the PA images (symbols). Linear regression, indicated by the solid line, produced a slope of 12.8 °/frame, corresponding to an estimated angular velocity of 128 °/s.

Fig. 5.
Fig. 5.

(a) Representative frames from a 2-D PA movie of a 0.9 mm graphite rod embedded in a light-scattering gel phantom, rotating at a velocity of 100 °/s. As the rod was positioned in the gel at an angle to the z axis, the frames represent an oblique section through the rod, resulting in the oblong shape precessing through the x-y plane. Note the high similarity between frames 5 and 41, indicating the rod completed full rotation in 36 frames. Click on any of the frames to watch (Movie 7), which shows the entire 50 frame sequence. (b) (Movie 8), showing a 3-D rendering of the same moving target as in (a). The true movement of the rod can be observed, revealing a complex motion. Volume size is 25×25×25 mm3. Each voxel is 1×1×1 mm3. Axes origin and direction indicated by the arrows. Each tick mark represents 5 mm. Grey scale is linear and common to all frames in each movie.

Metrics