Abstract

We demonstrate a new approach of photonically assisted radio-frequency (RF) waveform generation using a spectrally incoherent light source. The system is based on the so-called generalized frequency-to-time mapping operation. In this work, external modulation of the source is done by concatenating two electro-optic Mach-Zehnder modulators properly biased to achieve short pulse gates which allow for broad bandwidth electrical signals. Also, the spectral shaping stage is performed prior to O/E conversion. A detailed theoretical analysis demonstrates that even in this case the frequency-to-time mapping is preserved. The key is that the noise level is greatly reduced because the amplitude filter serves as noise rejecter. Experimental results show up to ~20 GHz electrical bandwidth signals using 10 Gb/s standard telecommunication equipment with the nice feature of repetition rate control on the generated electrical waveform.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, "Microwave Photonics combines two worlds," Nature Photon. 1, 319-330 (2007).
    [CrossRef]
  2. R. A. Minasian, "Photonic signal processing of microwave signals," IEEE Trans. Microwave Theory Tech. 54, 832-846 (2006).
    [CrossRef]
  3. J. D. McKinney, D. E. Leaird, and A. M. Weiner, "Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper," Opt. Lett. 27, 1345-1347 (2002).
    [CrossRef]
  4. J. Chou, Y. Han, and B. Jalali, "Adaptive RF-photonic arbitrary waveform generator," IEEE Photon. Technol. Lett. 15, 581-583 (2003).
    [CrossRef]
  5. I. S. Lin, J. D. McKinney, and A. M. Weiner, "Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication," IEEE Microwave Wirel. Compon. Lett 15, 226-228 (2005).
    [CrossRef]
  6. V. Torres-Company, J. Lancis, and P. Andrés, "Arbitrary waveform generator based on all-incoherent pulse shaping," IEEE Photon. Technol. Lett 18, 2626-2628 (2006).
    [CrossRef]
  7. J. D. McKinney, I. S. Lin, and A. M. Weiner, "Shaping the power spectrum of ultra-wideband radio-frequency signals," IEEE Trans. Microwave Theory Techn. 54, 4247-4255 (2006).
    [CrossRef]
  8. M. A. Muriel, J. Azaña, and A. Carballar, "Real-time Fourier transformer based on fiber gratings," Opt. Lett 24, 1-3 (1999).
    [CrossRef]
  9. V. Torres-Company, J. Lancis, and P. Andrés, "Incoherent frequency-to-time mapping: application to incoherent pulse shaping," J. Opt. Soc. Am. A 24, 888-894 (2007).
    [CrossRef]
  10. C. Dorrer, "Temporal van Cittert-Zernike theorem and its application to the measurement of chromatic dispersion," J. Opt. Soc. Am. B 21, 1417-1423 (2004).
    [CrossRef]
  11. V. Torres-Company, J. Lancis, P. Andrés, and L. R. Chen, "Reconfigurable RF-waveform generator based in incoherent filter design," IEEE/OSAJ. Lightwave Technol. 26, 2476 (2008).
    [CrossRef]
  12. D. Marcuse, "Pulse distortion in single-mode fibers," Appl. Opt. 19, 1653-1660 (1981).
    [CrossRef]

2008

2007

2006

V. Torres-Company, J. Lancis, and P. Andrés, "Arbitrary waveform generator based on all-incoherent pulse shaping," IEEE Photon. Technol. Lett 18, 2626-2628 (2006).
[CrossRef]

J. D. McKinney, I. S. Lin, and A. M. Weiner, "Shaping the power spectrum of ultra-wideband radio-frequency signals," IEEE Trans. Microwave Theory Techn. 54, 4247-4255 (2006).
[CrossRef]

R. A. Minasian, "Photonic signal processing of microwave signals," IEEE Trans. Microwave Theory Tech. 54, 832-846 (2006).
[CrossRef]

2005

I. S. Lin, J. D. McKinney, and A. M. Weiner, "Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication," IEEE Microwave Wirel. Compon. Lett 15, 226-228 (2005).
[CrossRef]

2004

2003

J. Chou, Y. Han, and B. Jalali, "Adaptive RF-photonic arbitrary waveform generator," IEEE Photon. Technol. Lett. 15, 581-583 (2003).
[CrossRef]

2002

1999

M. A. Muriel, J. Azaña, and A. Carballar, "Real-time Fourier transformer based on fiber gratings," Opt. Lett 24, 1-3 (1999).
[CrossRef]

1981

Andrés, P.

Azaña, J.

M. A. Muriel, J. Azaña, and A. Carballar, "Real-time Fourier transformer based on fiber gratings," Opt. Lett 24, 1-3 (1999).
[CrossRef]

Capmany, J.

J. Capmany and D. Novak, "Microwave Photonics combines two worlds," Nature Photon. 1, 319-330 (2007).
[CrossRef]

Carballar, A.

M. A. Muriel, J. Azaña, and A. Carballar, "Real-time Fourier transformer based on fiber gratings," Opt. Lett 24, 1-3 (1999).
[CrossRef]

Chen, L. R.

Chou, J.

J. Chou, Y. Han, and B. Jalali, "Adaptive RF-photonic arbitrary waveform generator," IEEE Photon. Technol. Lett. 15, 581-583 (2003).
[CrossRef]

Dorrer, C.

Han, Y.

J. Chou, Y. Han, and B. Jalali, "Adaptive RF-photonic arbitrary waveform generator," IEEE Photon. Technol. Lett. 15, 581-583 (2003).
[CrossRef]

Jalali, B.

J. Chou, Y. Han, and B. Jalali, "Adaptive RF-photonic arbitrary waveform generator," IEEE Photon. Technol. Lett. 15, 581-583 (2003).
[CrossRef]

Lancis, J.

Leaird, D. E.

Lin, I. S.

J. D. McKinney, I. S. Lin, and A. M. Weiner, "Shaping the power spectrum of ultra-wideband radio-frequency signals," IEEE Trans. Microwave Theory Techn. 54, 4247-4255 (2006).
[CrossRef]

I. S. Lin, J. D. McKinney, and A. M. Weiner, "Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication," IEEE Microwave Wirel. Compon. Lett 15, 226-228 (2005).
[CrossRef]

Marcuse, D.

McKinney, J. D.

J. D. McKinney, I. S. Lin, and A. M. Weiner, "Shaping the power spectrum of ultra-wideband radio-frequency signals," IEEE Trans. Microwave Theory Techn. 54, 4247-4255 (2006).
[CrossRef]

I. S. Lin, J. D. McKinney, and A. M. Weiner, "Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication," IEEE Microwave Wirel. Compon. Lett 15, 226-228 (2005).
[CrossRef]

J. D. McKinney, D. E. Leaird, and A. M. Weiner, "Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper," Opt. Lett. 27, 1345-1347 (2002).
[CrossRef]

Minasian, R. A.

R. A. Minasian, "Photonic signal processing of microwave signals," IEEE Trans. Microwave Theory Tech. 54, 832-846 (2006).
[CrossRef]

Muriel, M. A.

M. A. Muriel, J. Azaña, and A. Carballar, "Real-time Fourier transformer based on fiber gratings," Opt. Lett 24, 1-3 (1999).
[CrossRef]

Novak, D.

J. Capmany and D. Novak, "Microwave Photonics combines two worlds," Nature Photon. 1, 319-330 (2007).
[CrossRef]

Torres-Company, V.

Weiner, A. M.

J. D. McKinney, I. S. Lin, and A. M. Weiner, "Shaping the power spectrum of ultra-wideband radio-frequency signals," IEEE Trans. Microwave Theory Techn. 54, 4247-4255 (2006).
[CrossRef]

I. S. Lin, J. D. McKinney, and A. M. Weiner, "Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication," IEEE Microwave Wirel. Compon. Lett 15, 226-228 (2005).
[CrossRef]

J. D. McKinney, D. E. Leaird, and A. M. Weiner, "Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper," Opt. Lett. 27, 1345-1347 (2002).
[CrossRef]

Appl. Opt.

IEEE Microwave Wirel. Compon. Lett

I. S. Lin, J. D. McKinney, and A. M. Weiner, "Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication," IEEE Microwave Wirel. Compon. Lett 15, 226-228 (2005).
[CrossRef]

IEEE Photon. Technol. Lett

V. Torres-Company, J. Lancis, and P. Andrés, "Arbitrary waveform generator based on all-incoherent pulse shaping," IEEE Photon. Technol. Lett 18, 2626-2628 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Chou, Y. Han, and B. Jalali, "Adaptive RF-photonic arbitrary waveform generator," IEEE Photon. Technol. Lett. 15, 581-583 (2003).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

R. A. Minasian, "Photonic signal processing of microwave signals," IEEE Trans. Microwave Theory Tech. 54, 832-846 (2006).
[CrossRef]

IEEE Trans. Microwave Theory Techn.

J. D. McKinney, I. S. Lin, and A. M. Weiner, "Shaping the power spectrum of ultra-wideband radio-frequency signals," IEEE Trans. Microwave Theory Techn. 54, 4247-4255 (2006).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Nature Photon.

J. Capmany and D. Novak, "Microwave Photonics combines two worlds," Nature Photon. 1, 319-330 (2007).
[CrossRef]

Opt. Lett

M. A. Muriel, J. Azaña, and A. Carballar, "Real-time Fourier transformer based on fiber gratings," Opt. Lett 24, 1-3 (1999).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Proposed experimental setup

Fig. 2.
Fig. 2.

Generation of two different signals with minimum temporal feature. (a) and (d) show the synthesized optical spectrum, the time domain acquisition is shown in (b) and (e), and their corresponding RF spectra in (b) and (d). See text for setting parameters.

Fig. 3.
Fig. 3.

Comparative of the chirped sinusoidal signal displayed in Fig. 2 (a) for the different configurations that are schematically sketched in the upper part. Case (a) corresponds to Fig. 1, and (b) to the original configuration of incoherent pulse shaping. A 10 times reduction of the floor level is measured.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ ω σ ω , and
Φ 2 ( 2 π σ ω Δ ω ) 1
I out ( t ) = d ω S ( ω ) F ( ω ) 2 d ω M ( ω ω ) exp ( i Φ 2 ω 2 2 ) exp ( t ) 2 ,
I out ( t ) S ( t Φ 2 ) F ( t Φ 2 ) 2 ,
I out ( t ) = d ω S ( ω ) d ω M ( ω ω ) F ( ω ω ) exp ( i Φ 2 ω 2 2 ) exp ( t ) 2 ,

Metrics