Abstract

A new UV-writing technique is proposed for fabricating custom fiber Bragg gratings (FBGs). A continuously moving fringe pattern is generated by use of two electro-optical UV modulators and synchronized with a moving fiber. This scheme potentially enables the fabrication of infinitely long FBGs with arbitrary profiles and chirp without any mechanical perturbation of the writing interferometer. Preliminary results of this technique are presented and discussed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K.O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, "Photosensitivity in optical fiber waveguides: application to reflection filter fabrication," Appl. Phys. Lett. 32, 647-649 (1978).
    [CrossRef]
  2. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, "Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask," Appl. Phys. Lett. 62, 1035-1037 (1993).
    [CrossRef]
  3. D. Z. Anderson, V. Mizrahi, T. Erdogan and A. E. White, "Production of in-fibre gratings using a diffractive optical element," Electron. Lett. 29, 566-568 (1993).
    [CrossRef]
  4. J. D. Prohaska, E. Snitzer, S. Rishton, and V. Boegli, "Magnification of mask fabricated fibre Bragg gratings," Electron Lett. 29. 1614-1615 (1993).
    [CrossRef]
  5. R. Kashyap, J. R. Armitage, R. J. Campbell, G. D. Maxwell, D. L. Williams, B. J. Ainslie, and C. A. Millar "Light sensitive fibres and planar waveguides," Br. Telecom. Technol. J. 11, 150-160 (1993).
  6. G. Meltz, W. W. Morey, and W. H. Glenn, "Formation of Bragg gratings in optical fibers by a transverse holographic method," Opt. Lett. 14, 823-825 (1989).
    [CrossRef] [PubMed]
  7. R. Kashyap, H.-G. Froehlich, A. Swanton, and D. J. Armes, "1.3m long super-step-chirped fibre Bragg grating with a continuous delay of 13.5ns and bandwidth 10nm for broadband dispersion compensation," Electron. Lett. 32, 1807-1808 (1996).
    [CrossRef]
  8. R. Kashyap, A. Swanton, and D. J. Armes, "A simple technique for apodising chirped and unchirped fibre Bragg gratings," Electron. Lett. 32, 1227-1229 (1996).
    [CrossRef]
  9. M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, "Moving fibre phase mask scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask," Electron. Lett. 31, 1488-1490 (1995).
    [CrossRef]
  10. A. Asseh, H. Storøy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, "A writing technique for long fiber Bragg gratings with complex reflectivity profiles," J. Lightwave Technol. 15, 1419-1423 (1997).
    [CrossRef]
  11. K.-C. Hsu, L.-G. Sheu, K.-P. Chuang, S.-H. Chang, and Y. Lai, "Fiber Bragg grating sequential UV-writing method with real-time interferometric side-diffraction position monitoring," Opt. Express 13, 3795-3801 (2005).
    [CrossRef] [PubMed]
  12. Y. Liu, J. J. Pan, C. Gu, and L. Dong, "Novel fiber Bragg grating fabrication method with high-precision phase control," Opt. Eng. 43, 1916-1922 (2004).
    [CrossRef]
  13. I. Petermann, B. Sahlgren, S. Helmfrid, A. T. Friberg, and P.-Y. Fonjallaz, "Fabrication of advanced fiber Bragg gratings by use of sequential writing with a continuous-wave ultraviolet laser source," Appl. Opt. 41,1051-1056 (2002).
    [CrossRef] [PubMed]
  14. Y. Liu, L. Dong, J. J. Pan, and C. Gu, ‘‘Strong phase-controlled fiber Bragg gratings for dispersion compensation,’’Opt. Lett. 28, 786-788 (2003).
    [CrossRef] [PubMed]
  15. E. Choi, J. Na, S. Ryu, G. Mudhana, and B. Lee, "All-fiber variable optical delay line for applications in optical coherence tomography: feasibility study for a novel delay line," Opt. Express 13, 1334-1345 (2005).
    [CrossRef] [PubMed]
  16. V. Perlin and H. Winful, "Distributed feedback fiber Raman laser," IEEE J. Quantum Electron. 37, 38-47 (2001).
    [CrossRef]
  17. T. Komukai, K. Tamura, and M. Nakazawa, "An efficient 0.04-nm apodized fiber Bragg grating and its application to narrow-band spectral filtering," IEEE Photon. Technol. Lett. 9,934-936 (1997).
    [CrossRef]
  18. P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, ‘‘Rectangularpulse generation based on pulse reshaping using a superstructured fiber Bragg grating,’’J. Lightwave Technol. 19, 746-752 (2001).
    [CrossRef]
  19. A. Rosenthal and M. Horowitz, "Reconstruction of a fiber Bragg grating from noisy reflection data," J. Opt. Soc. Am. A 22, 84-92 (2005).
    [CrossRef]
  20. V. O. Belai, L. L. Frumin, E. V. Podivilov, and D. A. Shapiro, "Efficient numerical method of the fiber Bragg grating synthesis," J. Opt. Soc. Am. B 24, 1451-1457 (2007).
    [CrossRef]
  21. R. Kashyap, "Assessment of tuning the wavelength of chirped and unchirped fibre Bragg grating with single phase-masks," Electron. Lett. 34, 2025-2027 (1998).
    [CrossRef]
  22. C. Pruche, "A Study of EO modulation," École Polytechnique de Montréal report, (2003).
  23. T. Erdogan and V. Mizrahi, "Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers," J. Opt. Soc. Am. B 11, 2100-2105 (1994).
    [CrossRef]

2007 (1)

2005 (3)

2004 (1)

Y. Liu, J. J. Pan, C. Gu, and L. Dong, "Novel fiber Bragg grating fabrication method with high-precision phase control," Opt. Eng. 43, 1916-1922 (2004).
[CrossRef]

2003 (1)

2002 (1)

2001 (2)

1998 (1)

R. Kashyap, "Assessment of tuning the wavelength of chirped and unchirped fibre Bragg grating with single phase-masks," Electron. Lett. 34, 2025-2027 (1998).
[CrossRef]

1997 (2)

T. Komukai, K. Tamura, and M. Nakazawa, "An efficient 0.04-nm apodized fiber Bragg grating and its application to narrow-band spectral filtering," IEEE Photon. Technol. Lett. 9,934-936 (1997).
[CrossRef]

A. Asseh, H. Storøy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, "A writing technique for long fiber Bragg gratings with complex reflectivity profiles," J. Lightwave Technol. 15, 1419-1423 (1997).
[CrossRef]

1996 (2)

R. Kashyap, H.-G. Froehlich, A. Swanton, and D. J. Armes, "1.3m long super-step-chirped fibre Bragg grating with a continuous delay of 13.5ns and bandwidth 10nm for broadband dispersion compensation," Electron. Lett. 32, 1807-1808 (1996).
[CrossRef]

R. Kashyap, A. Swanton, and D. J. Armes, "A simple technique for apodising chirped and unchirped fibre Bragg gratings," Electron. Lett. 32, 1227-1229 (1996).
[CrossRef]

1995 (1)

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, "Moving fibre phase mask scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask," Electron. Lett. 31, 1488-1490 (1995).
[CrossRef]

1994 (1)

1993 (4)

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, "Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask," Appl. Phys. Lett. 62, 1035-1037 (1993).
[CrossRef]

D. Z. Anderson, V. Mizrahi, T. Erdogan and A. E. White, "Production of in-fibre gratings using a diffractive optical element," Electron. Lett. 29, 566-568 (1993).
[CrossRef]

J. D. Prohaska, E. Snitzer, S. Rishton, and V. Boegli, "Magnification of mask fabricated fibre Bragg gratings," Electron Lett. 29. 1614-1615 (1993).
[CrossRef]

R. Kashyap, J. R. Armitage, R. J. Campbell, G. D. Maxwell, D. L. Williams, B. J. Ainslie, and C. A. Millar "Light sensitive fibres and planar waveguides," Br. Telecom. Technol. J. 11, 150-160 (1993).

1989 (1)

1978 (1)

K.O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, "Photosensitivity in optical fiber waveguides: application to reflection filter fabrication," Appl. Phys. Lett. 32, 647-649 (1978).
[CrossRef]

Ainslie, B. J.

R. Kashyap, J. R. Armitage, R. J. Campbell, G. D. Maxwell, D. L. Williams, B. J. Ainslie, and C. A. Millar "Light sensitive fibres and planar waveguides," Br. Telecom. Technol. J. 11, 150-160 (1993).

Albert, J.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, "Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask," Appl. Phys. Lett. 62, 1035-1037 (1993).
[CrossRef]

Anderson, D. Z.

D. Z. Anderson, V. Mizrahi, T. Erdogan and A. E. White, "Production of in-fibre gratings using a diffractive optical element," Electron. Lett. 29, 566-568 (1993).
[CrossRef]

Armes, D. J.

R. Kashyap, H.-G. Froehlich, A. Swanton, and D. J. Armes, "1.3m long super-step-chirped fibre Bragg grating with a continuous delay of 13.5ns and bandwidth 10nm for broadband dispersion compensation," Electron. Lett. 32, 1807-1808 (1996).
[CrossRef]

R. Kashyap, A. Swanton, and D. J. Armes, "A simple technique for apodising chirped and unchirped fibre Bragg gratings," Electron. Lett. 32, 1227-1229 (1996).
[CrossRef]

Armitage, J. R.

R. Kashyap, J. R. Armitage, R. J. Campbell, G. D. Maxwell, D. L. Williams, B. J. Ainslie, and C. A. Millar "Light sensitive fibres and planar waveguides," Br. Telecom. Technol. J. 11, 150-160 (1993).

Asseh, A.

A. Asseh, H. Storøy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, "A writing technique for long fiber Bragg gratings with complex reflectivity profiles," J. Lightwave Technol. 15, 1419-1423 (1997).
[CrossRef]

Barcelos, S.

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, "Moving fibre phase mask scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask," Electron. Lett. 31, 1488-1490 (1995).
[CrossRef]

Belai, V. O.

Bilodeau, F.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, "Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask," Appl. Phys. Lett. 62, 1035-1037 (1993).
[CrossRef]

Boegli, V.

J. D. Prohaska, E. Snitzer, S. Rishton, and V. Boegli, "Magnification of mask fabricated fibre Bragg gratings," Electron Lett. 29. 1614-1615 (1993).
[CrossRef]

Campbell, R. J.

R. Kashyap, J. R. Armitage, R. J. Campbell, G. D. Maxwell, D. L. Williams, B. J. Ainslie, and C. A. Millar "Light sensitive fibres and planar waveguides," Br. Telecom. Technol. J. 11, 150-160 (1993).

Chang, S.-H.

Choi, E.

Chuang, K.-P.

Cole, M. J.

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, "Moving fibre phase mask scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask," Electron. Lett. 31, 1488-1490 (1995).
[CrossRef]

Dong, L.

Y. Liu, J. J. Pan, C. Gu, and L. Dong, "Novel fiber Bragg grating fabrication method with high-precision phase control," Opt. Eng. 43, 1916-1922 (2004).
[CrossRef]

Y. Liu, L. Dong, J. J. Pan, and C. Gu, ‘‘Strong phase-controlled fiber Bragg gratings for dispersion compensation,’’Opt. Lett. 28, 786-788 (2003).
[CrossRef] [PubMed]

Ellis, A. D.

Erdogan, T.

T. Erdogan and V. Mizrahi, "Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers," J. Opt. Soc. Am. B 11, 2100-2105 (1994).
[CrossRef]

D. Z. Anderson, V. Mizrahi, T. Erdogan and A. E. White, "Production of in-fibre gratings using a diffractive optical element," Electron. Lett. 29, 566-568 (1993).
[CrossRef]

Fonjallaz, P.-Y.

Friberg, A. T.

Froehlich, H.-G.

R. Kashyap, H.-G. Froehlich, A. Swanton, and D. J. Armes, "1.3m long super-step-chirped fibre Bragg grating with a continuous delay of 13.5ns and bandwidth 10nm for broadband dispersion compensation," Electron. Lett. 32, 1807-1808 (1996).
[CrossRef]

Frumin, L. L.

Fujii, Y.

K.O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, "Photosensitivity in optical fiber waveguides: application to reflection filter fabrication," Appl. Phys. Lett. 32, 647-649 (1978).
[CrossRef]

Glenn, W. H.

Gu, C.

Y. Liu, J. J. Pan, C. Gu, and L. Dong, "Novel fiber Bragg grating fabrication method with high-precision phase control," Opt. Eng. 43, 1916-1922 (2004).
[CrossRef]

Y. Liu, L. Dong, J. J. Pan, and C. Gu, ‘‘Strong phase-controlled fiber Bragg gratings for dispersion compensation,’’Opt. Lett. 28, 786-788 (2003).
[CrossRef] [PubMed]

Helmfrid, S.

Hill, K. O.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, "Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask," Appl. Phys. Lett. 62, 1035-1037 (1993).
[CrossRef]

Hill, K.O.

K.O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, "Photosensitivity in optical fiber waveguides: application to reflection filter fabrication," Appl. Phys. Lett. 32, 647-649 (1978).
[CrossRef]

Horowitz, M.

Hsu, K.-C.

Ibsen, M.

Johnson, D. C.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, "Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask," Appl. Phys. Lett. 62, 1035-1037 (1993).
[CrossRef]

K.O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, "Photosensitivity in optical fiber waveguides: application to reflection filter fabrication," Appl. Phys. Lett. 32, 647-649 (1978).
[CrossRef]

Kashyap, R.

R. Kashyap, "Assessment of tuning the wavelength of chirped and unchirped fibre Bragg grating with single phase-masks," Electron. Lett. 34, 2025-2027 (1998).
[CrossRef]

R. Kashyap, H.-G. Froehlich, A. Swanton, and D. J. Armes, "1.3m long super-step-chirped fibre Bragg grating with a continuous delay of 13.5ns and bandwidth 10nm for broadband dispersion compensation," Electron. Lett. 32, 1807-1808 (1996).
[CrossRef]

R. Kashyap, A. Swanton, and D. J. Armes, "A simple technique for apodising chirped and unchirped fibre Bragg gratings," Electron. Lett. 32, 1227-1229 (1996).
[CrossRef]

R. Kashyap, J. R. Armitage, R. J. Campbell, G. D. Maxwell, D. L. Williams, B. J. Ainslie, and C. A. Millar "Light sensitive fibres and planar waveguides," Br. Telecom. Technol. J. 11, 150-160 (1993).

Kawasaki, B. S.

K.O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, "Photosensitivity in optical fiber waveguides: application to reflection filter fabrication," Appl. Phys. Lett. 32, 647-649 (1978).
[CrossRef]

Komukai, T.

T. Komukai, K. Tamura, and M. Nakazawa, "An efficient 0.04-nm apodized fiber Bragg grating and its application to narrow-band spectral filtering," IEEE Photon. Technol. Lett. 9,934-936 (1997).
[CrossRef]

Lai, Y.

Laming, R. I.

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, "Moving fibre phase mask scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask," Electron. Lett. 31, 1488-1490 (1995).
[CrossRef]

Lee, B.

Liu, Y.

Y. Liu, J. J. Pan, C. Gu, and L. Dong, "Novel fiber Bragg grating fabrication method with high-precision phase control," Opt. Eng. 43, 1916-1922 (2004).
[CrossRef]

Y. Liu, L. Dong, J. J. Pan, and C. Gu, ‘‘Strong phase-controlled fiber Bragg gratings for dispersion compensation,’’Opt. Lett. 28, 786-788 (2003).
[CrossRef] [PubMed]

Loh, W. H.

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, "Moving fibre phase mask scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask," Electron. Lett. 31, 1488-1490 (1995).
[CrossRef]

Malo, B.

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, "Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask," Appl. Phys. Lett. 62, 1035-1037 (1993).
[CrossRef]

Maxwell, G. D.

R. Kashyap, J. R. Armitage, R. J. Campbell, G. D. Maxwell, D. L. Williams, B. J. Ainslie, and C. A. Millar "Light sensitive fibres and planar waveguides," Br. Telecom. Technol. J. 11, 150-160 (1993).

Meltz, G.

Millar, C. A.

R. Kashyap, J. R. Armitage, R. J. Campbell, G. D. Maxwell, D. L. Williams, B. J. Ainslie, and C. A. Millar "Light sensitive fibres and planar waveguides," Br. Telecom. Technol. J. 11, 150-160 (1993).

Mizrahi, V.

T. Erdogan and V. Mizrahi, "Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers," J. Opt. Soc. Am. B 11, 2100-2105 (1994).
[CrossRef]

D. Z. Anderson, V. Mizrahi, T. Erdogan and A. E. White, "Production of in-fibre gratings using a diffractive optical element," Electron. Lett. 29, 566-568 (1993).
[CrossRef]

Morey, W. W.

Mudhana, G.

Na, J.

Nakazawa, M.

T. Komukai, K. Tamura, and M. Nakazawa, "An efficient 0.04-nm apodized fiber Bragg grating and its application to narrow-band spectral filtering," IEEE Photon. Technol. Lett. 9,934-936 (1997).
[CrossRef]

Pan, J. J.

Y. Liu, J. J. Pan, C. Gu, and L. Dong, "Novel fiber Bragg grating fabrication method with high-precision phase control," Opt. Eng. 43, 1916-1922 (2004).
[CrossRef]

Y. Liu, L. Dong, J. J. Pan, and C. Gu, ‘‘Strong phase-controlled fiber Bragg gratings for dispersion compensation,’’Opt. Lett. 28, 786-788 (2003).
[CrossRef] [PubMed]

Perlin, V.

V. Perlin and H. Winful, "Distributed feedback fiber Raman laser," IEEE J. Quantum Electron. 37, 38-47 (2001).
[CrossRef]

Petermann, I.

Petropoulos, P.

Podivilov, E. V.

Prohaska, J. D.

J. D. Prohaska, E. Snitzer, S. Rishton, and V. Boegli, "Magnification of mask fabricated fibre Bragg gratings," Electron Lett. 29. 1614-1615 (1993).
[CrossRef]

Richardson, D. J.

Rishton, S.

J. D. Prohaska, E. Snitzer, S. Rishton, and V. Boegli, "Magnification of mask fabricated fibre Bragg gratings," Electron Lett. 29. 1614-1615 (1993).
[CrossRef]

Rosenthal, A.

Ryu, S.

Sahlgren, B.

Sahlgren, B. E.

A. Asseh, H. Storøy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, "A writing technique for long fiber Bragg gratings with complex reflectivity profiles," J. Lightwave Technol. 15, 1419-1423 (1997).
[CrossRef]

Sandgren, S.

A. Asseh, H. Storøy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, "A writing technique for long fiber Bragg gratings with complex reflectivity profiles," J. Lightwave Technol. 15, 1419-1423 (1997).
[CrossRef]

Shapiro, D. A.

Sheu, L.-G.

Snitzer, E.

J. D. Prohaska, E. Snitzer, S. Rishton, and V. Boegli, "Magnification of mask fabricated fibre Bragg gratings," Electron Lett. 29. 1614-1615 (1993).
[CrossRef]

Storøy, H.

A. Asseh, H. Storøy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, "A writing technique for long fiber Bragg gratings with complex reflectivity profiles," J. Lightwave Technol. 15, 1419-1423 (1997).
[CrossRef]

Stubbe, R. A. H.

A. Asseh, H. Storøy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, "A writing technique for long fiber Bragg gratings with complex reflectivity profiles," J. Lightwave Technol. 15, 1419-1423 (1997).
[CrossRef]

Swanton, A.

R. Kashyap, A. Swanton, and D. J. Armes, "A simple technique for apodising chirped and unchirped fibre Bragg gratings," Electron. Lett. 32, 1227-1229 (1996).
[CrossRef]

R. Kashyap, H.-G. Froehlich, A. Swanton, and D. J. Armes, "1.3m long super-step-chirped fibre Bragg grating with a continuous delay of 13.5ns and bandwidth 10nm for broadband dispersion compensation," Electron. Lett. 32, 1807-1808 (1996).
[CrossRef]

Tamura, K.

T. Komukai, K. Tamura, and M. Nakazawa, "An efficient 0.04-nm apodized fiber Bragg grating and its application to narrow-band spectral filtering," IEEE Photon. Technol. Lett. 9,934-936 (1997).
[CrossRef]

White, A. E.

D. Z. Anderson, V. Mizrahi, T. Erdogan and A. E. White, "Production of in-fibre gratings using a diffractive optical element," Electron. Lett. 29, 566-568 (1993).
[CrossRef]

Williams, D. L.

R. Kashyap, J. R. Armitage, R. J. Campbell, G. D. Maxwell, D. L. Williams, B. J. Ainslie, and C. A. Millar "Light sensitive fibres and planar waveguides," Br. Telecom. Technol. J. 11, 150-160 (1993).

Winful, H.

V. Perlin and H. Winful, "Distributed feedback fiber Raman laser," IEEE J. Quantum Electron. 37, 38-47 (2001).
[CrossRef]

Zervas, M. N.

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, "Moving fibre phase mask scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask," Electron. Lett. 31, 1488-1490 (1995).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

K.O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, "Photosensitivity in optical fiber waveguides: application to reflection filter fabrication," Appl. Phys. Lett. 32, 647-649 (1978).
[CrossRef]

K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, "Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask," Appl. Phys. Lett. 62, 1035-1037 (1993).
[CrossRef]

Br. Telecom. Technol. J. (1)

R. Kashyap, J. R. Armitage, R. J. Campbell, G. D. Maxwell, D. L. Williams, B. J. Ainslie, and C. A. Millar "Light sensitive fibres and planar waveguides," Br. Telecom. Technol. J. 11, 150-160 (1993).

Electron Lett. (1)

J. D. Prohaska, E. Snitzer, S. Rishton, and V. Boegli, "Magnification of mask fabricated fibre Bragg gratings," Electron Lett. 29. 1614-1615 (1993).
[CrossRef]

Electron. Lett. (5)

D. Z. Anderson, V. Mizrahi, T. Erdogan and A. E. White, "Production of in-fibre gratings using a diffractive optical element," Electron. Lett. 29, 566-568 (1993).
[CrossRef]

R. Kashyap, H.-G. Froehlich, A. Swanton, and D. J. Armes, "1.3m long super-step-chirped fibre Bragg grating with a continuous delay of 13.5ns and bandwidth 10nm for broadband dispersion compensation," Electron. Lett. 32, 1807-1808 (1996).
[CrossRef]

R. Kashyap, A. Swanton, and D. J. Armes, "A simple technique for apodising chirped and unchirped fibre Bragg gratings," Electron. Lett. 32, 1227-1229 (1996).
[CrossRef]

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas, and S. Barcelos, "Moving fibre phase mask scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask," Electron. Lett. 31, 1488-1490 (1995).
[CrossRef]

R. Kashyap, "Assessment of tuning the wavelength of chirped and unchirped fibre Bragg grating with single phase-masks," Electron. Lett. 34, 2025-2027 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

V. Perlin and H. Winful, "Distributed feedback fiber Raman laser," IEEE J. Quantum Electron. 37, 38-47 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Komukai, K. Tamura, and M. Nakazawa, "An efficient 0.04-nm apodized fiber Bragg grating and its application to narrow-band spectral filtering," IEEE Photon. Technol. Lett. 9,934-936 (1997).
[CrossRef]

J. Lightwave Technol. (2)

P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, ‘‘Rectangularpulse generation based on pulse reshaping using a superstructured fiber Bragg grating,’’J. Lightwave Technol. 19, 746-752 (2001).
[CrossRef]

A. Asseh, H. Storøy, B. E. Sahlgren, S. Sandgren, and R. A. H. Stubbe, "A writing technique for long fiber Bragg gratings with complex reflectivity profiles," J. Lightwave Technol. 15, 1419-1423 (1997).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Opt. Eng. (1)

Y. Liu, J. J. Pan, C. Gu, and L. Dong, "Novel fiber Bragg grating fabrication method with high-precision phase control," Opt. Eng. 43, 1916-1922 (2004).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Other (1)

C. Pruche, "A Study of EO modulation," École Polytechnique de Montréal report, (2003).

Supplementary Material (1)

» Media 1: MOV (1694 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental setup. SL: spherical lens; PM: phase mask; EOPM: electro-optical phase modulators.

Fig. 2.
Fig. 2.

(a). The Michelson interferometer used to observe the moving fringes. PD: photodiode; EOPM: electro-optical phase modulators, PM: phase mask; BS: beam splitter. (b). Movie caption of the fringe shift as a function of the orientation and relative displacement of the two beams of the homodyne signal from the Michelson interferometer (Media 1).

Fig. 3.
Fig. 3.

Second scheme for moving fiber using a rotary motorised stage instead of a linear translation stage. VC: vacuum clamps.

Fig. 4.
Fig. 4.

Bragg wavelength shift as a function of the frequency for a center frequency of 500Hz.

Fig. 5.
Fig. 5.

(a) Visibility as a function of the frequency for a velocity-matching frequency of 500Hz for different ratio e=V/Vπ (b) Visibility as a function of the ratio e=V/Vπ for a velocity-matching frequency of 500Hz for different applied frequencies.

Fig. 6.
Fig. 6.

Reflection spectrum of a 14 mm FBG after a single passage of the writing beam on a non-hydrogenated fiber. The experimental results are shown by the solid line and the simulation results are shown by the dashed line.

Fig. 7.
Fig. 7.

Reflection spectrum of a 5 cm chirped FBG after a single passage of the writing beam on a non-hydrogenated fiber. The ramp frequency was swept by 1 Hz.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

f meas = 1 2 π d ϕ meas dt = V applied 2 V π f ' applied ( t )
ν = M λ Bragg f 2 n eff
Δ n 0 1 f ' ( 1 cos ( 2 π x Λ ' + 2 π Λ ( ( Λ + δ x ) f ' Λ f ) t ) ) dt

Metrics