Abstract

We propose a line defect waveguide structure along the Γ-? direction in two-dimensional triangular lattice silicon photonic crystal slabs. The modal dispersion relation and the transmission spectra of this waveguide are studied. The results show that by perturbing the width of the line defect and the diameter of the air holes adjacent to the waveguide core, one can control the width of the single mode transmission window and make it far broader than the original one. The proposed Γ-? waveguide will help to build a more flexible network of interconnection channel of light in two-dimensional photonic crystal slabs.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, "How to be truly photonic," Science 289, 557-559 (2000).
  2. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, "Guided modes in Photonic crystal slabs," Phys. Rev. B 60, 5751-5758 (1999).
    [CrossRef]
  3. S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608-610 (2000).
    [CrossRef] [PubMed]
  4. H. Takano, B. S. Song, T. Asano, and S. Noda, "Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal," Appl. Phys. Lett. 86, 241101 (2005).
    [CrossRef]
  5. A. Shinya, S. Mitsugi, E. Kuramochi, and M. Notomi, "Ultrasmall multi-channel resonant-tunneling filter using mode gap of width-tuned photonic-crystal waveguide," Opt. Express 13, 4202-4208 (2005).
    [CrossRef] [PubMed]
  6. B. S. Song, T. Asano, Y. Akahane, Y. Tanaka and S. Noda, "Multichannel add/drop filter based on in-plane hetero photonic crystals," IEEE J. Lightwave Technol. 23, 1449-1455 (2005).
    [CrossRef]
  7. H. Takano, B. S. Song, T. Asano, S. Noda, "Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,"Opt. Express 14, 3491-3496 (2006).
    [CrossRef] [PubMed]
  8. C. Ren, J. Tian, S. Feng, H. H. Tao, Y. Z. Liu, K. Ren, Z. Y. Li, B. Y. Cheng, and D. Z. Zhang, "High resolution three-port filter in two dimensional photonic crystal slabs," Opt. Express 14, 10014-10020 (2006).
    [CrossRef] [PubMed]
  9. Y. Akahane, T. Asano, B. S. Song and S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214 (2005).
    [CrossRef] [PubMed]
  10. B. S. Song, S. Noda, T. Asano and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mater. 4, 207-210 (2005).
    [CrossRef]
  11. T. Asano, B. S. Song, and S. Noda, "Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities," Opt. Express 14, 1996-2002 (2006).
    [CrossRef] [PubMed]
  12. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
    [CrossRef] [PubMed]
  13. M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi and I. Yokohama, "Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates," Electron. Lett. 37, 293-295 (2001).
    [CrossRef]
  14. K. Yamada, H. Morita, A. Shinya and M. Notomi, "Improved line-defect structures for photonic crystal waveguides with high group velocity," Opt. Commun. 198, 395-402 (2001).
    [CrossRef]
  15. M. Notomi, A. Shinya, K. Yamada, J. I. Takahashi, C. Takahashi, and I. Yokohama, "Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs," IEEE J. Quantum Electron 38, 736-742 (2002).
    [CrossRef]
  16. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and I. Borel, " Photonic crystal waveguides with semi-slow light and tailored dispersion properties," Opt. Express 14, 9444-9450 (2006).
    [CrossRef] [PubMed]
  17. B.-S. Song, T. Asano and S. Noda, "Heterostructures in two-dimensional photonic-crystal slabs and their application to nanocavities," J. Phys. D 40, 2629-2634 (2007).
    [CrossRef]
  18. Y. Z. Liu, S. Feng, J. Tian, C. Ren, H. H. Tao, Z. Y. Li, B.Y. Cheng, and D. Z. Zhang, "Mulitchannel filters with shape designing in two-dimensional photonic crystal slabs," J. Appl. Phys. 102, 043102 (2007).
    [CrossRef]
  19. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton University Press, Princeton, (1995).
  20. D. Gerace and L. C. Andreani, "Low-loss guided modes in photonic crystal waveguides," Opt. Express 13, 4939 (2005).
    [CrossRef] [PubMed]

2007

B.-S. Song, T. Asano and S. Noda, "Heterostructures in two-dimensional photonic-crystal slabs and their application to nanocavities," J. Phys. D 40, 2629-2634 (2007).
[CrossRef]

Y. Z. Liu, S. Feng, J. Tian, C. Ren, H. H. Tao, Z. Y. Li, B.Y. Cheng, and D. Z. Zhang, "Mulitchannel filters with shape designing in two-dimensional photonic crystal slabs," J. Appl. Phys. 102, 043102 (2007).
[CrossRef]

2006

2005

Y. Akahane, T. Asano, B. S. Song and S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214 (2005).
[CrossRef] [PubMed]

A. Shinya, S. Mitsugi, E. Kuramochi, and M. Notomi, "Ultrasmall multi-channel resonant-tunneling filter using mode gap of width-tuned photonic-crystal waveguide," Opt. Express 13, 4202-4208 (2005).
[CrossRef] [PubMed]

D. Gerace and L. C. Andreani, "Low-loss guided modes in photonic crystal waveguides," Opt. Express 13, 4939 (2005).
[CrossRef] [PubMed]

H. Takano, B. S. Song, T. Asano, and S. Noda, "Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal," Appl. Phys. Lett. 86, 241101 (2005).
[CrossRef]

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka and S. Noda, "Multichannel add/drop filter based on in-plane hetero photonic crystals," IEEE J. Lightwave Technol. 23, 1449-1455 (2005).
[CrossRef]

B. S. Song, S. Noda, T. Asano and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mater. 4, 207-210 (2005).
[CrossRef]

2002

M. Notomi, A. Shinya, K. Yamada, J. I. Takahashi, C. Takahashi, and I. Yokohama, "Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs," IEEE J. Quantum Electron 38, 736-742 (2002).
[CrossRef]

2001

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi and I. Yokohama, "Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates," Electron. Lett. 37, 293-295 (2001).
[CrossRef]

K. Yamada, H. Morita, A. Shinya and M. Notomi, "Improved line-defect structures for photonic crystal waveguides with high group velocity," Opt. Commun. 198, 395-402 (2001).
[CrossRef]

2000

S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608-610 (2000).
[CrossRef] [PubMed]

E. Yablonovitch, "How to be truly photonic," Science 289, 557-559 (2000).

1999

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, "Guided modes in Photonic crystal slabs," Phys. Rev. B 60, 5751-5758 (1999).
[CrossRef]

Akahane, Y.

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka and S. Noda, "Multichannel add/drop filter based on in-plane hetero photonic crystals," IEEE J. Lightwave Technol. 23, 1449-1455 (2005).
[CrossRef]

B. S. Song, S. Noda, T. Asano and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mater. 4, 207-210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song and S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214 (2005).
[CrossRef] [PubMed]

Andreani, L. C.

Asano, T.

B.-S. Song, T. Asano and S. Noda, "Heterostructures in two-dimensional photonic-crystal slabs and their application to nanocavities," J. Phys. D 40, 2629-2634 (2007).
[CrossRef]

T. Asano, B. S. Song, and S. Noda, "Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities," Opt. Express 14, 1996-2002 (2006).
[CrossRef] [PubMed]

H. Takano, B. S. Song, T. Asano, S. Noda, "Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,"Opt. Express 14, 3491-3496 (2006).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song and S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214 (2005).
[CrossRef] [PubMed]

B. S. Song, S. Noda, T. Asano and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mater. 4, 207-210 (2005).
[CrossRef]

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka and S. Noda, "Multichannel add/drop filter based on in-plane hetero photonic crystals," IEEE J. Lightwave Technol. 23, 1449-1455 (2005).
[CrossRef]

H. Takano, B. S. Song, T. Asano, and S. Noda, "Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal," Appl. Phys. Lett. 86, 241101 (2005).
[CrossRef]

Borel, I.

Cheng, B. Y.

Cheng, B.Y.

Y. Z. Liu, S. Feng, J. Tian, C. Ren, H. H. Tao, Z. Y. Li, B.Y. Cheng, and D. Z. Zhang, "Mulitchannel filters with shape designing in two-dimensional photonic crystal slabs," J. Appl. Phys. 102, 043102 (2007).
[CrossRef]

Chutinan, A.

S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608-610 (2000).
[CrossRef] [PubMed]

Fage-Pedersen, J.

Fan, S.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, "Guided modes in Photonic crystal slabs," Phys. Rev. B 60, 5751-5758 (1999).
[CrossRef]

Feng, S.

Y. Z. Liu, S. Feng, J. Tian, C. Ren, H. H. Tao, Z. Y. Li, B.Y. Cheng, and D. Z. Zhang, "Mulitchannel filters with shape designing in two-dimensional photonic crystal slabs," J. Appl. Phys. 102, 043102 (2007).
[CrossRef]

C. Ren, J. Tian, S. Feng, H. H. Tao, Y. Z. Liu, K. Ren, Z. Y. Li, B. Y. Cheng, and D. Z. Zhang, "High resolution three-port filter in two dimensional photonic crystal slabs," Opt. Express 14, 10014-10020 (2006).
[CrossRef] [PubMed]

Frandsen, L. H.

Gerace, D.

Imada, M.

S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608-610 (2000).
[CrossRef] [PubMed]

Joannopoulos, J. D.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, "Guided modes in Photonic crystal slabs," Phys. Rev. B 60, 5751-5758 (1999).
[CrossRef]

Johnson, S. G.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, "Guided modes in Photonic crystal slabs," Phys. Rev. B 60, 5751-5758 (1999).
[CrossRef]

Kolodziejski, L. A.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, "Guided modes in Photonic crystal slabs," Phys. Rev. B 60, 5751-5758 (1999).
[CrossRef]

Kuramochi, E.

Lavrinenko, A. V.

Li, Z. Y.

Y. Z. Liu, S. Feng, J. Tian, C. Ren, H. H. Tao, Z. Y. Li, B.Y. Cheng, and D. Z. Zhang, "Mulitchannel filters with shape designing in two-dimensional photonic crystal slabs," J. Appl. Phys. 102, 043102 (2007).
[CrossRef]

C. Ren, J. Tian, S. Feng, H. H. Tao, Y. Z. Liu, K. Ren, Z. Y. Li, B. Y. Cheng, and D. Z. Zhang, "High resolution three-port filter in two dimensional photonic crystal slabs," Opt. Express 14, 10014-10020 (2006).
[CrossRef] [PubMed]

Liu, Y. Z.

Y. Z. Liu, S. Feng, J. Tian, C. Ren, H. H. Tao, Z. Y. Li, B.Y. Cheng, and D. Z. Zhang, "Mulitchannel filters with shape designing in two-dimensional photonic crystal slabs," J. Appl. Phys. 102, 043102 (2007).
[CrossRef]

C. Ren, J. Tian, S. Feng, H. H. Tao, Y. Z. Liu, K. Ren, Z. Y. Li, B. Y. Cheng, and D. Z. Zhang, "High resolution three-port filter in two dimensional photonic crystal slabs," Opt. Express 14, 10014-10020 (2006).
[CrossRef] [PubMed]

Mitsugi, S.

Morita, H.

K. Yamada, H. Morita, A. Shinya and M. Notomi, "Improved line-defect structures for photonic crystal waveguides with high group velocity," Opt. Commun. 198, 395-402 (2001).
[CrossRef]

Noda, S.

B.-S. Song, T. Asano and S. Noda, "Heterostructures in two-dimensional photonic-crystal slabs and their application to nanocavities," J. Phys. D 40, 2629-2634 (2007).
[CrossRef]

H. Takano, B. S. Song, T. Asano, S. Noda, "Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,"Opt. Express 14, 3491-3496 (2006).
[CrossRef] [PubMed]

T. Asano, B. S. Song, and S. Noda, "Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities," Opt. Express 14, 1996-2002 (2006).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song and S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214 (2005).
[CrossRef] [PubMed]

B. S. Song, S. Noda, T. Asano and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mater. 4, 207-210 (2005).
[CrossRef]

H. Takano, B. S. Song, T. Asano, and S. Noda, "Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal," Appl. Phys. Lett. 86, 241101 (2005).
[CrossRef]

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka and S. Noda, "Multichannel add/drop filter based on in-plane hetero photonic crystals," IEEE J. Lightwave Technol. 23, 1449-1455 (2005).
[CrossRef]

S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608-610 (2000).
[CrossRef] [PubMed]

Notomi, M.

A. Shinya, S. Mitsugi, E. Kuramochi, and M. Notomi, "Ultrasmall multi-channel resonant-tunneling filter using mode gap of width-tuned photonic-crystal waveguide," Opt. Express 13, 4202-4208 (2005).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, K. Yamada, J. I. Takahashi, C. Takahashi, and I. Yokohama, "Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs," IEEE J. Quantum Electron 38, 736-742 (2002).
[CrossRef]

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi and I. Yokohama, "Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates," Electron. Lett. 37, 293-295 (2001).
[CrossRef]

K. Yamada, H. Morita, A. Shinya and M. Notomi, "Improved line-defect structures for photonic crystal waveguides with high group velocity," Opt. Commun. 198, 395-402 (2001).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Ren, C.

Y. Z. Liu, S. Feng, J. Tian, C. Ren, H. H. Tao, Z. Y. Li, B.Y. Cheng, and D. Z. Zhang, "Mulitchannel filters with shape designing in two-dimensional photonic crystal slabs," J. Appl. Phys. 102, 043102 (2007).
[CrossRef]

C. Ren, J. Tian, S. Feng, H. H. Tao, Y. Z. Liu, K. Ren, Z. Y. Li, B. Y. Cheng, and D. Z. Zhang, "High resolution three-port filter in two dimensional photonic crystal slabs," Opt. Express 14, 10014-10020 (2006).
[CrossRef] [PubMed]

Ren, K.

Shinya, A.

A. Shinya, S. Mitsugi, E. Kuramochi, and M. Notomi, "Ultrasmall multi-channel resonant-tunneling filter using mode gap of width-tuned photonic-crystal waveguide," Opt. Express 13, 4202-4208 (2005).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, K. Yamada, J. I. Takahashi, C. Takahashi, and I. Yokohama, "Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs," IEEE J. Quantum Electron 38, 736-742 (2002).
[CrossRef]

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi and I. Yokohama, "Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates," Electron. Lett. 37, 293-295 (2001).
[CrossRef]

K. Yamada, H. Morita, A. Shinya and M. Notomi, "Improved line-defect structures for photonic crystal waveguides with high group velocity," Opt. Commun. 198, 395-402 (2001).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Song, B. S.

H. Takano, B. S. Song, T. Asano, S. Noda, "Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,"Opt. Express 14, 3491-3496 (2006).
[CrossRef] [PubMed]

T. Asano, B. S. Song, and S. Noda, "Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities," Opt. Express 14, 1996-2002 (2006).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song and S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214 (2005).
[CrossRef] [PubMed]

B. S. Song, S. Noda, T. Asano and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mater. 4, 207-210 (2005).
[CrossRef]

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka and S. Noda, "Multichannel add/drop filter based on in-plane hetero photonic crystals," IEEE J. Lightwave Technol. 23, 1449-1455 (2005).
[CrossRef]

H. Takano, B. S. Song, T. Asano, and S. Noda, "Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal," Appl. Phys. Lett. 86, 241101 (2005).
[CrossRef]

Song, B.-S.

B.-S. Song, T. Asano and S. Noda, "Heterostructures in two-dimensional photonic-crystal slabs and their application to nanocavities," J. Phys. D 40, 2629-2634 (2007).
[CrossRef]

Takahashi, C.

M. Notomi, A. Shinya, K. Yamada, J. I. Takahashi, C. Takahashi, and I. Yokohama, "Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs," IEEE J. Quantum Electron 38, 736-742 (2002).
[CrossRef]

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi and I. Yokohama, "Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates," Electron. Lett. 37, 293-295 (2001).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi and I. Yokohama, "Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates," Electron. Lett. 37, 293-295 (2001).
[CrossRef]

Takahashi, J. I.

M. Notomi, A. Shinya, K. Yamada, J. I. Takahashi, C. Takahashi, and I. Yokohama, "Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs," IEEE J. Quantum Electron 38, 736-742 (2002).
[CrossRef]

Takano, H.

H. Takano, B. S. Song, T. Asano, S. Noda, "Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,"Opt. Express 14, 3491-3496 (2006).
[CrossRef] [PubMed]

H. Takano, B. S. Song, T. Asano, and S. Noda, "Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal," Appl. Phys. Lett. 86, 241101 (2005).
[CrossRef]

Tanaka, Y.

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka and S. Noda, "Multichannel add/drop filter based on in-plane hetero photonic crystals," IEEE J. Lightwave Technol. 23, 1449-1455 (2005).
[CrossRef]

Tao, H. H.

Y. Z. Liu, S. Feng, J. Tian, C. Ren, H. H. Tao, Z. Y. Li, B.Y. Cheng, and D. Z. Zhang, "Mulitchannel filters with shape designing in two-dimensional photonic crystal slabs," J. Appl. Phys. 102, 043102 (2007).
[CrossRef]

C. Ren, J. Tian, S. Feng, H. H. Tao, Y. Z. Liu, K. Ren, Z. Y. Li, B. Y. Cheng, and D. Z. Zhang, "High resolution three-port filter in two dimensional photonic crystal slabs," Opt. Express 14, 10014-10020 (2006).
[CrossRef] [PubMed]

Tian, J.

Y. Z. Liu, S. Feng, J. Tian, C. Ren, H. H. Tao, Z. Y. Li, B.Y. Cheng, and D. Z. Zhang, "Mulitchannel filters with shape designing in two-dimensional photonic crystal slabs," J. Appl. Phys. 102, 043102 (2007).
[CrossRef]

C. Ren, J. Tian, S. Feng, H. H. Tao, Y. Z. Liu, K. Ren, Z. Y. Li, B. Y. Cheng, and D. Z. Zhang, "High resolution three-port filter in two dimensional photonic crystal slabs," Opt. Express 14, 10014-10020 (2006).
[CrossRef] [PubMed]

Villeneuve, P. R.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, "Guided modes in Photonic crystal slabs," Phys. Rev. B 60, 5751-5758 (1999).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, "How to be truly photonic," Science 289, 557-559 (2000).

Yamada, K.

M. Notomi, A. Shinya, K. Yamada, J. I. Takahashi, C. Takahashi, and I. Yokohama, "Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs," IEEE J. Quantum Electron 38, 736-742 (2002).
[CrossRef]

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi and I. Yokohama, "Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates," Electron. Lett. 37, 293-295 (2001).
[CrossRef]

K. Yamada, H. Morita, A. Shinya and M. Notomi, "Improved line-defect structures for photonic crystal waveguides with high group velocity," Opt. Commun. 198, 395-402 (2001).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Yokohama, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Yokohama, I.

M. Notomi, A. Shinya, K. Yamada, J. I. Takahashi, C. Takahashi, and I. Yokohama, "Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs," IEEE J. Quantum Electron 38, 736-742 (2002).
[CrossRef]

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi and I. Yokohama, "Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates," Electron. Lett. 37, 293-295 (2001).
[CrossRef]

Zhang, D. Z.

Y. Z. Liu, S. Feng, J. Tian, C. Ren, H. H. Tao, Z. Y. Li, B.Y. Cheng, and D. Z. Zhang, "Mulitchannel filters with shape designing in two-dimensional photonic crystal slabs," J. Appl. Phys. 102, 043102 (2007).
[CrossRef]

C. Ren, J. Tian, S. Feng, H. H. Tao, Y. Z. Liu, K. Ren, Z. Y. Li, B. Y. Cheng, and D. Z. Zhang, "High resolution three-port filter in two dimensional photonic crystal slabs," Opt. Express 14, 10014-10020 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett.

H. Takano, B. S. Song, T. Asano, and S. Noda, "Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal," Appl. Phys. Lett. 86, 241101 (2005).
[CrossRef]

Electron. Lett.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi and I. Yokohama, "Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates," Electron. Lett. 37, 293-295 (2001).
[CrossRef]

IEEE J. Lightwave Technol.

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka and S. Noda, "Multichannel add/drop filter based on in-plane hetero photonic crystals," IEEE J. Lightwave Technol. 23, 1449-1455 (2005).
[CrossRef]

IEEE J. Quantum Electron

M. Notomi, A. Shinya, K. Yamada, J. I. Takahashi, C. Takahashi, and I. Yokohama, "Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs," IEEE J. Quantum Electron 38, 736-742 (2002).
[CrossRef]

J. Appl. Phys.

Y. Z. Liu, S. Feng, J. Tian, C. Ren, H. H. Tao, Z. Y. Li, B.Y. Cheng, and D. Z. Zhang, "Mulitchannel filters with shape designing in two-dimensional photonic crystal slabs," J. Appl. Phys. 102, 043102 (2007).
[CrossRef]

J. Phys. D

B.-S. Song, T. Asano and S. Noda, "Heterostructures in two-dimensional photonic-crystal slabs and their application to nanocavities," J. Phys. D 40, 2629-2634 (2007).
[CrossRef]

Nature

S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407, 608-610 (2000).
[CrossRef] [PubMed]

Nature Mater.

B. S. Song, S. Noda, T. Asano and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mater. 4, 207-210 (2005).
[CrossRef]

Opt. Commun.

K. Yamada, H. Morita, A. Shinya and M. Notomi, "Improved line-defect structures for photonic crystal waveguides with high group velocity," Opt. Commun. 198, 395-402 (2001).
[CrossRef]

Opt. Express

Phys. Rev. B

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, "Guided modes in Photonic crystal slabs," Phys. Rev. B 60, 5751-5758 (1999).
[CrossRef]

Phys. Rev. Lett.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Science

E. Yablonovitch, "How to be truly photonic," Science 289, 557-559 (2000).

Other

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton University Press, Princeton, (1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic image of a triangular lattice photonic crystal slab with waveguides. The original Γ–M waveguide as illustrated in panel (b) is formed by removing a line of diamond pattern of lattice points as depicted in panel (a) along the Γ–M crystalline direction.

Fig. 2.
Fig. 2.

(a). Calculated dispersion relation and (b) measured transmission spectra of guided modes in the original Γ-M waveguides (with parameters of a=430nm, r 1=r 2=120nm, and w 0=2a). The width of the transmission window is 22nm. The red line in panel (a) represents the light line, and the yellow shadow region in panel (b) represents the theoretical mode band.

Fig. 3.
Fig. 3.

(a). Calculated modal field profile for the even (upper plot) and odd (lower plot) guided mode and dispersion relation of guided modes in the modified waveguide structures by varying the parameters of (b) r 1, (c) r 2, and (d) w d. In panel (b), r 2=120nm, w d=0.75 w 0, r 1 varies from 0 to 90nm. In panel (c), r 1=50nm, w d=0.75 w 0, r 2 varies from 150 to 190nm. In panel (d), r 1=50nm, r 2=170nm, w d varies from 0.65 w 0 to 0.75 w 0. The black lines in panels represent the light line.

Fig. 4.
Fig. 4.

SEM pictures of the fabricated Γ–M waveguide sample before (upper panel) and after (lower panel) optimization. The structural parameters for the two waveguides are a=430nm, r 1=r 2=r 0=120nm, w d=w 0, and a=430nm, r 1=50nm, r 2=170nm, w d=0.65 w 0.

Fig. 5.
Fig. 5.

Measured transmission spectra of several optimized Γ–M waveguides. The theoretical results of transmission windows of the entire guide modes are represented by the horizontal gray lines. Shadow areas represent the pass-band regions. In all the structures a=430nm and w d=0.65w 0.

Fig. 6.
Fig. 6.

Simulated transmission spectra of the optimized Γ–M waveguides with three different lengths. The structural parameters for the waveguide is a=430nm, r 1=50nm, r 2=170nm, w d=0.65 w 0. The transmission intensities of the waveguide mode have the peak values of -0.1, -1.2, -1.3dB and minimum values of -12.9, -13.0 and -14.4 dB respectively.

Metrics