Abstract

A cross-ring (CR-) Mach-Zehnder interferometer (MZI) interleaver structure has been proposed and fabricated. It uses an ‘8’ shaped cross-ring resonator to replace the conventional circular ring resonator. Thus, the new structure can have the function of add-signal. Furthermore, a thermo-optical fine tuning has been applied, which improves the crosstalk performance from ~-10 dB to ~-20 dB with 9 V applied on the heater of the 3-dB directional coupler.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K. Y. Wu, and P. Xie, "Interleaver technology: comparisons and applications requirements," OFC’ 03 Interleaver Workshop, pp. 1-9, http://www.neophotonics.com/down/2.pdf.
  2. H. Arai, H. Nonen, K. Ohira, and T. Chiba, "PLC wavelength splitter for dense WDM transmission system," Hitachi Cable Review 21, 11-16 (2002), http://www.hitachi-cable.co.jp/ICSFiles/afieldfile/2005/11/29/2_review03.pdf.
  3. S. G. Heris, A. Zarifkar, K. Abedi, and M. K. M. Farshi, "Interleavers/deinterleavers based on Michelson- Gires-Tournois interferometers with different structures," in Proc. Semicond. Electron., Kuala Lumpur, Malaysia (ICSE 2004) 7-9, 573-576 (2004).
  4. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis -A Signal Processing Approach (Wiley, New York, 1999).
  5. B. B. Dingel and M. Izutsu, "Multifunction optical filter with a Michelson-Gires-Tournois interferometer for wavelength-division-multiplexed network system application," Opt. Lett. 23, 1099-1101 (1998).
    [CrossRef]
  6. C. H. Hsieh, R. B. Wang, Z. Q. James Wen, I. McMichael, P. C. Yeh, C. -W. Lee, and W. H. Cheng, "Flat-top interleavers using two Gires-Tournois etalons as phase-dispersive mirrors in a Michelson interferometer," IEEE Photon. Technol. Lett. 15, 242-244 (2003).
    [CrossRef]
  7. J. Zhang, L. R. Liu, and Y. Zhou, "Novel and simple approach for designing lattice form interleaver filter," Opt. Express 11, 2217-2224 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-18-2217.
    [CrossRef] [PubMed]
  8. C.-W. Lee, R. B. Wang, P. C. Yeh, and W.-H. Cheng, "Sagnac interferometer based flat-top birefringent interleaver," Opt. Express 14, 4636-4643 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-11-4636.
    [CrossRef] [PubMed]
  9. Y. Zhang, Q. J. Wang, and T. C. Soh, "Optical interleaver," US Patent #2005/0271323A1.
  10. Q. J. Wang, Y. Zhang, and Y. C. Soh, "Efficient structure for optical interleavers using superimposed chirped fiber Bragg gratings," IEEE Photon. Technol. Lett. 17, 387-389 (2005).
    [CrossRef]
  11. Q. J. Wang, Y. Zhang, and Y. C. Soh, "All-fiber 3 x 3 interleaver design with flat-top passband," IEEE Photon. Technol. Lett. 16, 168-170 (2004).
    [CrossRef]
  12. K. Jinguji and M. Kawachi, "Synthesis of coherent two-port lattice-form optical delay-line circuit," J. Lightwave Technol. 13, 73-82 (1995).
    [CrossRef]
  13. K. Jinguji, "Synthesis of coherent two-port optical delay-line circuit with ring waveguides," J. Lightwave Technol. 14, 1882-1884 (1996).
    [CrossRef]
  14. M. Oguma, T. Kitoh, K. Jinguji, T. Shibata, A. Himeno, and Y. Hibino, "Passband-width broadening design for WDM filter with lattice-form interleave filter and arrayed-waveguide gratings," IEEE Photon. Technol. Lett. 14, 328-330 (2002).
    [CrossRef]
  15. S. Bidnyk, A. Balakrishnan, A. Delâge, M. Gao, P. A. Krug, P. Muthukumaran, and M. Pearson, "Novel architecture for design of planar lightwave interleavers," J. Lightwave Technol. 23, 1435-1440 (2005).
    [CrossRef]
  16. C. G. H. Roeloffzen, R. M. de Ridder, G. Sengo, K. Wörhoff, and A. Driessen "Passband flattened interleaver using a Mach-Zehnder interferometer with ring resonator fabricated in SiON waveguide technology," in Proceedings Symposium of IEEE/LEOS (IEEE, 2002) 32-35, http://leosbenelux.org/symp02/s02p10.pdf.
  17. K. Wörhoff, C. G. H. Roeloffzen, R. M. de Ridder, G. Sengo, L. T. H. Hilderink, P. V. Lambeck, and A. Driessen, "Tolerance and application of polarization independent waveguide for communication devices," in Proceedings Symposium of IEEE/LEOS (IEEE, 2004) 107-110, http://leosbenelux.org/symp04/s04p107.pdf.
  18. Z. P. Wang, S. J. Chang, C. Y. Ni, and Y. J. Chen "A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer," IEEE Photon. Technol. Lett. 19, 1072-1074 (2007).
    [CrossRef]
  19. J. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, "Passive ring-assisted Mach-Zehnder interleaver on silicon-on-insulator," Opt. Express 16,8359-8365 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-8359.
    [CrossRef] [PubMed]
  20. J. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, "Proposed silicon wire interleaver structure," Opt. Express 16,7849-7859 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-11-7849.
    [CrossRef] [PubMed]
  21. J. Chon, A. Zeng, P. Peters, B. Jian, A. Luo, and K. Sullivan, "Integrated interleaves technology enables high performance in DWDM systems," in Proc. Nat. Fiber Optic Eng. Conf., Baltimore, MD, 1410-1420, (2001), http://www.wavesplitter.com/news/articles_pdf/NFOEC01Interleaver.pdf.
  22. W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, "Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides," Opt. Lett. 32,2801-2803 (2007)
    [CrossRef] [PubMed]
  23. H. Yamda, T. Chu, S. Ishida, and Y. Arakawa, "Si Photonic wire waveguide devices," IEEE J. Sel. Topics Quantum Electron. 12, 1371-1379 (2006).
    [CrossRef]

2008 (2)

2007 (2)

W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, "Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides," Opt. Lett. 32,2801-2803 (2007)
[CrossRef] [PubMed]

Z. P. Wang, S. J. Chang, C. Y. Ni, and Y. J. Chen "A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer," IEEE Photon. Technol. Lett. 19, 1072-1074 (2007).
[CrossRef]

2006 (2)

2005 (2)

Q. J. Wang, Y. Zhang, and Y. C. Soh, "Efficient structure for optical interleavers using superimposed chirped fiber Bragg gratings," IEEE Photon. Technol. Lett. 17, 387-389 (2005).
[CrossRef]

S. Bidnyk, A. Balakrishnan, A. Delâge, M. Gao, P. A. Krug, P. Muthukumaran, and M. Pearson, "Novel architecture for design of planar lightwave interleavers," J. Lightwave Technol. 23, 1435-1440 (2005).
[CrossRef]

2004 (1)

Q. J. Wang, Y. Zhang, and Y. C. Soh, "All-fiber 3 x 3 interleaver design with flat-top passband," IEEE Photon. Technol. Lett. 16, 168-170 (2004).
[CrossRef]

2003 (2)

C. H. Hsieh, R. B. Wang, Z. Q. James Wen, I. McMichael, P. C. Yeh, C. -W. Lee, and W. H. Cheng, "Flat-top interleavers using two Gires-Tournois etalons as phase-dispersive mirrors in a Michelson interferometer," IEEE Photon. Technol. Lett. 15, 242-244 (2003).
[CrossRef]

J. Zhang, L. R. Liu, and Y. Zhou, "Novel and simple approach for designing lattice form interleaver filter," Opt. Express 11, 2217-2224 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-18-2217.
[CrossRef] [PubMed]

2002 (1)

M. Oguma, T. Kitoh, K. Jinguji, T. Shibata, A. Himeno, and Y. Hibino, "Passband-width broadening design for WDM filter with lattice-form interleave filter and arrayed-waveguide gratings," IEEE Photon. Technol. Lett. 14, 328-330 (2002).
[CrossRef]

1998 (1)

1996 (1)

K. Jinguji, "Synthesis of coherent two-port optical delay-line circuit with ring waveguides," J. Lightwave Technol. 14, 1882-1884 (1996).
[CrossRef]

1995 (1)

K. Jinguji and M. Kawachi, "Synthesis of coherent two-port lattice-form optical delay-line circuit," J. Lightwave Technol. 13, 73-82 (1995).
[CrossRef]

Arakawa, Y.

H. Yamda, T. Chu, S. Ishida, and Y. Arakawa, "Si Photonic wire waveguide devices," IEEE J. Sel. Topics Quantum Electron. 12, 1371-1379 (2006).
[CrossRef]

Baets, R.

Balakrishnan, A.

Bidnyk, S.

Bogaerts, W.

Chang, S. J.

Z. P. Wang, S. J. Chang, C. Y. Ni, and Y. J. Chen "A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer," IEEE Photon. Technol. Lett. 19, 1072-1074 (2007).
[CrossRef]

Chen, Y. J.

Z. P. Wang, S. J. Chang, C. Y. Ni, and Y. J. Chen "A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer," IEEE Photon. Technol. Lett. 19, 1072-1074 (2007).
[CrossRef]

Cheng, W. H.

C. H. Hsieh, R. B. Wang, Z. Q. James Wen, I. McMichael, P. C. Yeh, C. -W. Lee, and W. H. Cheng, "Flat-top interleavers using two Gires-Tournois etalons as phase-dispersive mirrors in a Michelson interferometer," IEEE Photon. Technol. Lett. 15, 242-244 (2003).
[CrossRef]

Cheng, W.-H.

Chu, T.

H. Yamda, T. Chu, S. Ishida, and Y. Arakawa, "Si Photonic wire waveguide devices," IEEE J. Sel. Topics Quantum Electron. 12, 1371-1379 (2006).
[CrossRef]

Delâge, A.

Dingel, B. B.

Dumon, P.

Fang, Q.

Gao, M.

Hibino, Y.

M. Oguma, T. Kitoh, K. Jinguji, T. Shibata, A. Himeno, and Y. Hibino, "Passband-width broadening design for WDM filter with lattice-form interleave filter and arrayed-waveguide gratings," IEEE Photon. Technol. Lett. 14, 328-330 (2002).
[CrossRef]

Himeno, A.

M. Oguma, T. Kitoh, K. Jinguji, T. Shibata, A. Himeno, and Y. Hibino, "Passband-width broadening design for WDM filter with lattice-form interleave filter and arrayed-waveguide gratings," IEEE Photon. Technol. Lett. 14, 328-330 (2002).
[CrossRef]

Hsieh, C. H.

C. H. Hsieh, R. B. Wang, Z. Q. James Wen, I. McMichael, P. C. Yeh, C. -W. Lee, and W. H. Cheng, "Flat-top interleavers using two Gires-Tournois etalons as phase-dispersive mirrors in a Michelson interferometer," IEEE Photon. Technol. Lett. 15, 242-244 (2003).
[CrossRef]

Ishida, S.

H. Yamda, T. Chu, S. Ishida, and Y. Arakawa, "Si Photonic wire waveguide devices," IEEE J. Sel. Topics Quantum Electron. 12, 1371-1379 (2006).
[CrossRef]

Izutsu, M.

James Wen, Z. Q.

C. H. Hsieh, R. B. Wang, Z. Q. James Wen, I. McMichael, P. C. Yeh, C. -W. Lee, and W. H. Cheng, "Flat-top interleavers using two Gires-Tournois etalons as phase-dispersive mirrors in a Michelson interferometer," IEEE Photon. Technol. Lett. 15, 242-244 (2003).
[CrossRef]

Jinguji, K.

M. Oguma, T. Kitoh, K. Jinguji, T. Shibata, A. Himeno, and Y. Hibino, "Passband-width broadening design for WDM filter with lattice-form interleave filter and arrayed-waveguide gratings," IEEE Photon. Technol. Lett. 14, 328-330 (2002).
[CrossRef]

K. Jinguji, "Synthesis of coherent two-port optical delay-line circuit with ring waveguides," J. Lightwave Technol. 14, 1882-1884 (1996).
[CrossRef]

K. Jinguji and M. Kawachi, "Synthesis of coherent two-port lattice-form optical delay-line circuit," J. Lightwave Technol. 13, 73-82 (1995).
[CrossRef]

Kawachi, M.

K. Jinguji and M. Kawachi, "Synthesis of coherent two-port lattice-form optical delay-line circuit," J. Lightwave Technol. 13, 73-82 (1995).
[CrossRef]

Kitoh, T.

M. Oguma, T. Kitoh, K. Jinguji, T. Shibata, A. Himeno, and Y. Hibino, "Passband-width broadening design for WDM filter with lattice-form interleave filter and arrayed-waveguide gratings," IEEE Photon. Technol. Lett. 14, 328-330 (2002).
[CrossRef]

Krug, P. A.

Kwong, D. L.

Lee, C. -W.

C. H. Hsieh, R. B. Wang, Z. Q. James Wen, I. McMichael, P. C. Yeh, C. -W. Lee, and W. H. Cheng, "Flat-top interleavers using two Gires-Tournois etalons as phase-dispersive mirrors in a Michelson interferometer," IEEE Photon. Technol. Lett. 15, 242-244 (2003).
[CrossRef]

Lee, C.-W.

Liu, L. R.

Lo, G. Q.

McMichael, I.

C. H. Hsieh, R. B. Wang, Z. Q. James Wen, I. McMichael, P. C. Yeh, C. -W. Lee, and W. H. Cheng, "Flat-top interleavers using two Gires-Tournois etalons as phase-dispersive mirrors in a Michelson interferometer," IEEE Photon. Technol. Lett. 15, 242-244 (2003).
[CrossRef]

Muthukumaran, P.

Ni, C. Y.

Z. P. Wang, S. J. Chang, C. Y. Ni, and Y. J. Chen "A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer," IEEE Photon. Technol. Lett. 19, 1072-1074 (2007).
[CrossRef]

Oguma, M.

M. Oguma, T. Kitoh, K. Jinguji, T. Shibata, A. Himeno, and Y. Hibino, "Passband-width broadening design for WDM filter with lattice-form interleave filter and arrayed-waveguide gratings," IEEE Photon. Technol. Lett. 14, 328-330 (2002).
[CrossRef]

Pearson, M.

Shibata, T.

M. Oguma, T. Kitoh, K. Jinguji, T. Shibata, A. Himeno, and Y. Hibino, "Passband-width broadening design for WDM filter with lattice-form interleave filter and arrayed-waveguide gratings," IEEE Photon. Technol. Lett. 14, 328-330 (2002).
[CrossRef]

Soh, Y. C.

Q. J. Wang, Y. Zhang, and Y. C. Soh, "Efficient structure for optical interleavers using superimposed chirped fiber Bragg gratings," IEEE Photon. Technol. Lett. 17, 387-389 (2005).
[CrossRef]

Q. J. Wang, Y. Zhang, and Y. C. Soh, "All-fiber 3 x 3 interleaver design with flat-top passband," IEEE Photon. Technol. Lett. 16, 168-170 (2004).
[CrossRef]

Song, J.

Tao, S. H.

Thourhout, D. V.

Wang, Q. J.

Q. J. Wang, Y. Zhang, and Y. C. Soh, "Efficient structure for optical interleavers using superimposed chirped fiber Bragg gratings," IEEE Photon. Technol. Lett. 17, 387-389 (2005).
[CrossRef]

Q. J. Wang, Y. Zhang, and Y. C. Soh, "All-fiber 3 x 3 interleaver design with flat-top passband," IEEE Photon. Technol. Lett. 16, 168-170 (2004).
[CrossRef]

Wang, R. B.

C.-W. Lee, R. B. Wang, P. C. Yeh, and W.-H. Cheng, "Sagnac interferometer based flat-top birefringent interleaver," Opt. Express 14, 4636-4643 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-11-4636.
[CrossRef] [PubMed]

C. H. Hsieh, R. B. Wang, Z. Q. James Wen, I. McMichael, P. C. Yeh, C. -W. Lee, and W. H. Cheng, "Flat-top interleavers using two Gires-Tournois etalons as phase-dispersive mirrors in a Michelson interferometer," IEEE Photon. Technol. Lett. 15, 242-244 (2003).
[CrossRef]

Wang, Z. P.

Z. P. Wang, S. J. Chang, C. Y. Ni, and Y. J. Chen "A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer," IEEE Photon. Technol. Lett. 19, 1072-1074 (2007).
[CrossRef]

Yamda, H.

H. Yamda, T. Chu, S. Ishida, and Y. Arakawa, "Si Photonic wire waveguide devices," IEEE J. Sel. Topics Quantum Electron. 12, 1371-1379 (2006).
[CrossRef]

Yeh, P. C.

C.-W. Lee, R. B. Wang, P. C. Yeh, and W.-H. Cheng, "Sagnac interferometer based flat-top birefringent interleaver," Opt. Express 14, 4636-4643 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-11-4636.
[CrossRef] [PubMed]

C. H. Hsieh, R. B. Wang, Z. Q. James Wen, I. McMichael, P. C. Yeh, C. -W. Lee, and W. H. Cheng, "Flat-top interleavers using two Gires-Tournois etalons as phase-dispersive mirrors in a Michelson interferometer," IEEE Photon. Technol. Lett. 15, 242-244 (2003).
[CrossRef]

Yu, M. B.

Zhang, J.

Zhang, Y.

Q. J. Wang, Y. Zhang, and Y. C. Soh, "Efficient structure for optical interleavers using superimposed chirped fiber Bragg gratings," IEEE Photon. Technol. Lett. 17, 387-389 (2005).
[CrossRef]

Q. J. Wang, Y. Zhang, and Y. C. Soh, "All-fiber 3 x 3 interleaver design with flat-top passband," IEEE Photon. Technol. Lett. 16, 168-170 (2004).
[CrossRef]

Zhou, Y.

IEEE J. Sel. Topics Quantum Electron. (1)

H. Yamda, T. Chu, S. Ishida, and Y. Arakawa, "Si Photonic wire waveguide devices," IEEE J. Sel. Topics Quantum Electron. 12, 1371-1379 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

Z. P. Wang, S. J. Chang, C. Y. Ni, and Y. J. Chen "A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer," IEEE Photon. Technol. Lett. 19, 1072-1074 (2007).
[CrossRef]

C. H. Hsieh, R. B. Wang, Z. Q. James Wen, I. McMichael, P. C. Yeh, C. -W. Lee, and W. H. Cheng, "Flat-top interleavers using two Gires-Tournois etalons as phase-dispersive mirrors in a Michelson interferometer," IEEE Photon. Technol. Lett. 15, 242-244 (2003).
[CrossRef]

Q. J. Wang, Y. Zhang, and Y. C. Soh, "Efficient structure for optical interleavers using superimposed chirped fiber Bragg gratings," IEEE Photon. Technol. Lett. 17, 387-389 (2005).
[CrossRef]

Q. J. Wang, Y. Zhang, and Y. C. Soh, "All-fiber 3 x 3 interleaver design with flat-top passband," IEEE Photon. Technol. Lett. 16, 168-170 (2004).
[CrossRef]

M. Oguma, T. Kitoh, K. Jinguji, T. Shibata, A. Himeno, and Y. Hibino, "Passband-width broadening design for WDM filter with lattice-form interleave filter and arrayed-waveguide gratings," IEEE Photon. Technol. Lett. 14, 328-330 (2002).
[CrossRef]

J. Lightwave Technol. (3)

S. Bidnyk, A. Balakrishnan, A. Delâge, M. Gao, P. A. Krug, P. Muthukumaran, and M. Pearson, "Novel architecture for design of planar lightwave interleavers," J. Lightwave Technol. 23, 1435-1440 (2005).
[CrossRef]

K. Jinguji and M. Kawachi, "Synthesis of coherent two-port lattice-form optical delay-line circuit," J. Lightwave Technol. 13, 73-82 (1995).
[CrossRef]

K. Jinguji, "Synthesis of coherent two-port optical delay-line circuit with ring waveguides," J. Lightwave Technol. 14, 1882-1884 (1996).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Other (8)

J. Chon, A. Zeng, P. Peters, B. Jian, A. Luo, and K. Sullivan, "Integrated interleaves technology enables high performance in DWDM systems," in Proc. Nat. Fiber Optic Eng. Conf., Baltimore, MD, 1410-1420, (2001), http://www.wavesplitter.com/news/articles_pdf/NFOEC01Interleaver.pdf.

Y. Zhang, Q. J. Wang, and T. C. Soh, "Optical interleaver," US Patent #2005/0271323A1.

S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K. Y. Wu, and P. Xie, "Interleaver technology: comparisons and applications requirements," OFC’ 03 Interleaver Workshop, pp. 1-9, http://www.neophotonics.com/down/2.pdf.

H. Arai, H. Nonen, K. Ohira, and T. Chiba, "PLC wavelength splitter for dense WDM transmission system," Hitachi Cable Review 21, 11-16 (2002), http://www.hitachi-cable.co.jp/ICSFiles/afieldfile/2005/11/29/2_review03.pdf.

S. G. Heris, A. Zarifkar, K. Abedi, and M. K. M. Farshi, "Interleavers/deinterleavers based on Michelson- Gires-Tournois interferometers with different structures," in Proc. Semicond. Electron., Kuala Lumpur, Malaysia (ICSE 2004) 7-9, 573-576 (2004).

C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis -A Signal Processing Approach (Wiley, New York, 1999).

C. G. H. Roeloffzen, R. M. de Ridder, G. Sengo, K. Wörhoff, and A. Driessen "Passband flattened interleaver using a Mach-Zehnder interferometer with ring resonator fabricated in SiON waveguide technology," in Proceedings Symposium of IEEE/LEOS (IEEE, 2002) 32-35, http://leosbenelux.org/symp02/s02p10.pdf.

K. Wörhoff, C. G. H. Roeloffzen, R. M. de Ridder, G. Sengo, L. T. H. Hilderink, P. V. Lambeck, and A. Driessen, "Tolerance and application of polarization independent waveguide for communication devices," in Proceedings Symposium of IEEE/LEOS (IEEE, 2004) 107-110, http://leosbenelux.org/symp04/s04p107.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematics of the RR-MZI interleaver structures: (a) 1 × 2 RR-MZI structure in [20], and (b) The 2 × 2 cross-ring RR-MZI structure. CR: cross-ring. (c) The sketch map of addsignal function.

Fig. 2.
Fig. 2.

(a) The SEM of a full ridge crossing waveguide structure after silicon etching. The two orthogonal ellipses are 60 nm high with long axis 6 µm and short axis 2.5 µm. The waveguide width is 0.4 µm and is expanded to 0.8 µm in the center of the cross. The waveguide thickness is 200 nm. (b) TEM picture of the ridge waveguide cross-section. The thickness of the ridge is 60 nm, and the width of the waveguide tip is 0.61 µm. (c) Full SEM picture of the cross-ring interleaver. (d) SEM of the heater on the 3-DB DC. (e) TEM of the cross-section of the 3-dB DC and heaters. The position of the cross-section is denoted by red line in (d). 1 µm silicon dioxide layers are sandwiched by waveguide and heater, and heater and air, respectively. (f) TEM of double waveguides of the 3-dB DC. The waveguide width is 400 nm, and the gap is 300 nm. (g) The SEM picture of the input terminal, where an SSC is buried in silicon dioxide and 3 µm away from the coupling facet. (h) The microscope picture of a full cross-ring interleaver structure.

Fig. 3.
Fig. 3.

Light filed distribution for ridge thickness of 0.06 µm;

Fig. 4.
Fig. 4.

Spectra of the interleaver transmission with varying losses of the cross ring.

Fig. 5.
Fig. 5.

Spectra of the CR-MZI without thermo-optical fine tuning.

Fig. 6.
Fig. 6.

(a) Spectra for the RR-DC with coupling loss. (b) Spectra for the RR-DC without coupling loss. (a) and (b) compose of three plots in the top, middle and bottom, which are corresponding to the cases of θ DC=π/4-π/18, π/4, π/4+π/18, respectively.

Fig. 7.
Fig. 7.

Spectra of the CR-MZI. (a) The spectra of the bar and waveguide cross of the CR-MZI with 9 V applied. (b) Comparison of the experimental and fitting results.

Metrics