Abstract

Phase-sensitive amplification of picosecond optical pulses was demonstrated using an SOA as the nonlinear medium inside a Sagnac interferometer. Ratios of maximum to minimum gain of more than 3:1 were experimentally measured. Numerical simulations using a semiconductor amplifier model are consistent with experiments.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D 26, 1817–1839 (1982).
    [Crossref]
  2. W. Imajuku, A. Tokada, and Y. Yamabayashi, “Low-loss dispersion-flattened hybrid transmission lines consisting of low-nonlinearity pure silica core fibres and dispersion compensating fibres,” Electron. Lett. 36, 64 (2000).
    [Crossref]
  3. M. Matsumoto, “Regeneration of RZ-DPSK signals by fiber-based all-optical regenerators,” IEEE Photon. Technol. Lett. 17, 1055–1057 (2005).
    [Crossref]
  4. K. Croussore, I. Kim, C. Kim, Y. Han, and G. Li, “Phase-and-amplitude regeneration of differential phase-shift keyed signals using a phase-sensitive amplifier,” Opt. Express 14, 2085–2094 (2006).
    [Crossref] [PubMed]
  5. J.-M. Jeong, “All-Optical Switching with a Weak Control Signal in a Nonlinear Interferometer,” Jpn. J. Appl. Phys. 41, 5581–5584 (2002).
    [Crossref]
  6. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-Based Optical Parametric Amplifiers and Their Applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
    [Crossref]
  7. R. W. Boyd, Nonlinear Optics2nd edition, (Academic Press), p. 99.
  8. S.-K. Choi, R.-D. Li, C. Kim, and Kumar, “Traveling-wave optical parametric amplifier: investigation of its phase-sensitive and phase-insensitive gain response,” J. Opt. Soc. Am. B14, 1564–1575 (1997).
  9. C. J. McKinstrie and S. Radic, “Phase-sensitive amplification in a fiber,” Opt. Express 12, 4973–4979 (2004)
    [Crossref] [PubMed]
  10. M. E. Marhic, C. H. Hsia, and J. M. Jeong, “Optical amplification in a nonlinear interferometer,” Electron. Lett. 27, 210–211 (1991)
    [Crossref]
  11. W. Imajuku and A. Takada, “Noise figure of phase-sensitive parametric amplifier using a Mach-Zehnder interferometer with lossy Kerr media and noisy pump,” IEEE J. Quantum Electron. 39, 799–812, (2003).
    [Crossref]
  12. J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5, 787–790 (1993).
    [Crossref]
  13. K. I. Kang, T. G. Chang, I. Glesk, and P. R. Prucnal, “Comparison of Sagnac and Mach-Zehnder ultrafast all-optical interferometric switches based on a semiconductor resonant optical nonlinearity,” Appl. Opt. 35, 417–426 (1996).
    [Crossref] [PubMed]
  14. L. Xu, V. Baby, I. Glesk, and P. R. Prucnal, “New description of transmission of an SOA-based Sagnac loop and its application for NRZ wavelength conversion,” Opt. Commun. 244, 199–208 (2005).
    [Crossref]
  15. V. M Menon, W. Tong, F. Xia, C. Li, and S. R. Forrest, “Nonreciprocity of counterpropagating signals in a monolithically integrated Sagnac interferometer,” Opt. Lett. 29, 513–515 (2004).
    [Crossref] [PubMed]
  16. I. D. Phillips, A. Gloag, P. N. Kean, N. J. Doran, I. Bennion, and A. D. Ellis, “Simultaneous demultiplexing, data regeneration, and clock recovery with a single semiconductor optical amplifier-based nonlinear-optical loop mirror,” Opt. Lett. 22, 1326–1328 (1997).
    [Crossref]
  17. E. S. Awad, C. J. K. Richardson, P. S. Cho, N. Moulton, and J. Goldhar, “Optical clock recovery using SOA for relative timing extraction between counterpropagating short picosecond pulses,” IEEE Photon. Tech. Lett. 14, 396–398 (2002).
    [Crossref]
  18. Burdge, Geoff, S. Alam, A. Grudinin, M. Durkin, M. Ibsen, I. Khrushchev, and I. White, “Ultrafast intensity modulation by Raman gain for all-optical in-fiber processing,” Opt. Lett. 23, 606–608 (1998).
    [Crossref]
  19. V. S. Grigoryan, M. Shin, P. S. Devgan, J. Lasri, and P. Kumar, “SOA-based regenerative amplification of phase-noise-degraded DPSK signals: dynamic analysis and demonstration,” IEEE J. Lightwave Technol. 24, 135–142 (2006).
    [Crossref]
  20. G. P. Agrawal and N. A. Olsson, “Self-Phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor Laser Amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
    [Crossref]
  21. W. W. Chow and S. W. Koch, Semiconductor-Laser Fundamentals: Physics of the Gain Materials (Springer, New York, 1999).
  22. Y. Hsiao-Yun, D. Mahgerefteh, P. S. Cho, and J. Goldhar, “Optimization of the frequency response of a semiconductor optical amplifier wavelength converter using a fiber Bragg grating,” J. Lightwave Technol. 17, 308–15(1999).
    [Crossref]
  23. Y. Hsiao-Yun, D. Mahgerefteh, P. S. Cho, and J. Goldhar, “Improved transmission of chirped signals from semiconductor optical devices by pulse reshaping using a fiber Bragg grating filter,” J Lightwave Technol. 17, 898–903 (1999).
    [Crossref]

2006 (2)

K. Croussore, I. Kim, C. Kim, Y. Han, and G. Li, “Phase-and-amplitude regeneration of differential phase-shift keyed signals using a phase-sensitive amplifier,” Opt. Express 14, 2085–2094 (2006).
[Crossref] [PubMed]

V. S. Grigoryan, M. Shin, P. S. Devgan, J. Lasri, and P. Kumar, “SOA-based regenerative amplification of phase-noise-degraded DPSK signals: dynamic analysis and demonstration,” IEEE J. Lightwave Technol. 24, 135–142 (2006).
[Crossref]

2005 (2)

M. Matsumoto, “Regeneration of RZ-DPSK signals by fiber-based all-optical regenerators,” IEEE Photon. Technol. Lett. 17, 1055–1057 (2005).
[Crossref]

L. Xu, V. Baby, I. Glesk, and P. R. Prucnal, “New description of transmission of an SOA-based Sagnac loop and its application for NRZ wavelength conversion,” Opt. Commun. 244, 199–208 (2005).
[Crossref]

2004 (2)

2003 (1)

W. Imajuku and A. Takada, “Noise figure of phase-sensitive parametric amplifier using a Mach-Zehnder interferometer with lossy Kerr media and noisy pump,” IEEE J. Quantum Electron. 39, 799–812, (2003).
[Crossref]

2002 (3)

E. S. Awad, C. J. K. Richardson, P. S. Cho, N. Moulton, and J. Goldhar, “Optical clock recovery using SOA for relative timing extraction between counterpropagating short picosecond pulses,” IEEE Photon. Tech. Lett. 14, 396–398 (2002).
[Crossref]

J.-M. Jeong, “All-Optical Switching with a Weak Control Signal in a Nonlinear Interferometer,” Jpn. J. Appl. Phys. 41, 5581–5584 (2002).
[Crossref]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-Based Optical Parametric Amplifiers and Their Applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[Crossref]

2000 (1)

W. Imajuku, A. Tokada, and Y. Yamabayashi, “Low-loss dispersion-flattened hybrid transmission lines consisting of low-nonlinearity pure silica core fibres and dispersion compensating fibres,” Electron. Lett. 36, 64 (2000).
[Crossref]

1999 (2)

Y. Hsiao-Yun, D. Mahgerefteh, P. S. Cho, and J. Goldhar, “Optimization of the frequency response of a semiconductor optical amplifier wavelength converter using a fiber Bragg grating,” J. Lightwave Technol. 17, 308–15(1999).
[Crossref]

Y. Hsiao-Yun, D. Mahgerefteh, P. S. Cho, and J. Goldhar, “Improved transmission of chirped signals from semiconductor optical devices by pulse reshaping using a fiber Bragg grating filter,” J Lightwave Technol. 17, 898–903 (1999).
[Crossref]

1998 (1)

1997 (2)

I. D. Phillips, A. Gloag, P. N. Kean, N. J. Doran, I. Bennion, and A. D. Ellis, “Simultaneous demultiplexing, data regeneration, and clock recovery with a single semiconductor optical amplifier-based nonlinear-optical loop mirror,” Opt. Lett. 22, 1326–1328 (1997).
[Crossref]

S.-K. Choi, R.-D. Li, C. Kim, and Kumar, “Traveling-wave optical parametric amplifier: investigation of its phase-sensitive and phase-insensitive gain response,” J. Opt. Soc. Am. B14, 1564–1575 (1997).

1996 (1)

1993 (1)

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5, 787–790 (1993).
[Crossref]

1991 (1)

M. E. Marhic, C. H. Hsia, and J. M. Jeong, “Optical amplification in a nonlinear interferometer,” Electron. Lett. 27, 210–211 (1991)
[Crossref]

1989 (1)

G. P. Agrawal and N. A. Olsson, “Self-Phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor Laser Amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
[Crossref]

1982 (1)

C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D 26, 1817–1839 (1982).
[Crossref]

Agrawal, G. P.

G. P. Agrawal and N. A. Olsson, “Self-Phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor Laser Amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
[Crossref]

Alam, S.

Andrekson, P. A.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-Based Optical Parametric Amplifiers and Their Applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[Crossref]

Awad, E. S.

E. S. Awad, C. J. K. Richardson, P. S. Cho, N. Moulton, and J. Goldhar, “Optical clock recovery using SOA for relative timing extraction between counterpropagating short picosecond pulses,” IEEE Photon. Tech. Lett. 14, 396–398 (2002).
[Crossref]

Baby, V.

L. Xu, V. Baby, I. Glesk, and P. R. Prucnal, “New description of transmission of an SOA-based Sagnac loop and its application for NRZ wavelength conversion,” Opt. Commun. 244, 199–208 (2005).
[Crossref]

Bennion, I.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics2nd edition, (Academic Press), p. 99.

Burdge,

Caves, C. M.

C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D 26, 1817–1839 (1982).
[Crossref]

Chang, T. G.

Cho, P. S.

E. S. Awad, C. J. K. Richardson, P. S. Cho, N. Moulton, and J. Goldhar, “Optical clock recovery using SOA for relative timing extraction between counterpropagating short picosecond pulses,” IEEE Photon. Tech. Lett. 14, 396–398 (2002).
[Crossref]

Y. Hsiao-Yun, D. Mahgerefteh, P. S. Cho, and J. Goldhar, “Optimization of the frequency response of a semiconductor optical amplifier wavelength converter using a fiber Bragg grating,” J. Lightwave Technol. 17, 308–15(1999).
[Crossref]

Y. Hsiao-Yun, D. Mahgerefteh, P. S. Cho, and J. Goldhar, “Improved transmission of chirped signals from semiconductor optical devices by pulse reshaping using a fiber Bragg grating filter,” J Lightwave Technol. 17, 898–903 (1999).
[Crossref]

Choi, S.-K.

S.-K. Choi, R.-D. Li, C. Kim, and Kumar, “Traveling-wave optical parametric amplifier: investigation of its phase-sensitive and phase-insensitive gain response,” J. Opt. Soc. Am. B14, 1564–1575 (1997).

Chow, W. W.

W. W. Chow and S. W. Koch, Semiconductor-Laser Fundamentals: Physics of the Gain Materials (Springer, New York, 1999).

Croussore, K.

Devgan, P. S.

V. S. Grigoryan, M. Shin, P. S. Devgan, J. Lasri, and P. Kumar, “SOA-based regenerative amplification of phase-noise-degraded DPSK signals: dynamic analysis and demonstration,” IEEE J. Lightwave Technol. 24, 135–142 (2006).
[Crossref]

Doran, N. J.

Durkin, M.

Ellis, A. D.

Forrest, S. R.

Geoff,

Glesk, I.

L. Xu, V. Baby, I. Glesk, and P. R. Prucnal, “New description of transmission of an SOA-based Sagnac loop and its application for NRZ wavelength conversion,” Opt. Commun. 244, 199–208 (2005).
[Crossref]

K. I. Kang, T. G. Chang, I. Glesk, and P. R. Prucnal, “Comparison of Sagnac and Mach-Zehnder ultrafast all-optical interferometric switches based on a semiconductor resonant optical nonlinearity,” Appl. Opt. 35, 417–426 (1996).
[Crossref] [PubMed]

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5, 787–790 (1993).
[Crossref]

Gloag, A.

Goldhar, J.

E. S. Awad, C. J. K. Richardson, P. S. Cho, N. Moulton, and J. Goldhar, “Optical clock recovery using SOA for relative timing extraction between counterpropagating short picosecond pulses,” IEEE Photon. Tech. Lett. 14, 396–398 (2002).
[Crossref]

Y. Hsiao-Yun, D. Mahgerefteh, P. S. Cho, and J. Goldhar, “Improved transmission of chirped signals from semiconductor optical devices by pulse reshaping using a fiber Bragg grating filter,” J Lightwave Technol. 17, 898–903 (1999).
[Crossref]

Y. Hsiao-Yun, D. Mahgerefteh, P. S. Cho, and J. Goldhar, “Optimization of the frequency response of a semiconductor optical amplifier wavelength converter using a fiber Bragg grating,” J. Lightwave Technol. 17, 308–15(1999).
[Crossref]

Grigoryan, V. S.

V. S. Grigoryan, M. Shin, P. S. Devgan, J. Lasri, and P. Kumar, “SOA-based regenerative amplification of phase-noise-degraded DPSK signals: dynamic analysis and demonstration,” IEEE J. Lightwave Technol. 24, 135–142 (2006).
[Crossref]

Grudinin, A.

Han, Y.

Hansryd, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-Based Optical Parametric Amplifiers and Their Applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[Crossref]

Hedekvist, P.-O.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-Based Optical Parametric Amplifiers and Their Applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[Crossref]

Hsia, C. H.

M. E. Marhic, C. H. Hsia, and J. M. Jeong, “Optical amplification in a nonlinear interferometer,” Electron. Lett. 27, 210–211 (1991)
[Crossref]

Hsiao-Yun, Y.

Y. Hsiao-Yun, D. Mahgerefteh, P. S. Cho, and J. Goldhar, “Optimization of the frequency response of a semiconductor optical amplifier wavelength converter using a fiber Bragg grating,” J. Lightwave Technol. 17, 308–15(1999).
[Crossref]

Y. Hsiao-Yun, D. Mahgerefteh, P. S. Cho, and J. Goldhar, “Improved transmission of chirped signals from semiconductor optical devices by pulse reshaping using a fiber Bragg grating filter,” J Lightwave Technol. 17, 898–903 (1999).
[Crossref]

Ibsen, M.

Imajuku, W.

W. Imajuku and A. Takada, “Noise figure of phase-sensitive parametric amplifier using a Mach-Zehnder interferometer with lossy Kerr media and noisy pump,” IEEE J. Quantum Electron. 39, 799–812, (2003).
[Crossref]

W. Imajuku, A. Tokada, and Y. Yamabayashi, “Low-loss dispersion-flattened hybrid transmission lines consisting of low-nonlinearity pure silica core fibres and dispersion compensating fibres,” Electron. Lett. 36, 64 (2000).
[Crossref]

Jeong, J. M.

M. E. Marhic, C. H. Hsia, and J. M. Jeong, “Optical amplification in a nonlinear interferometer,” Electron. Lett. 27, 210–211 (1991)
[Crossref]

Jeong, J.-M.

J.-M. Jeong, “All-Optical Switching with a Weak Control Signal in a Nonlinear Interferometer,” Jpn. J. Appl. Phys. 41, 5581–5584 (2002).
[Crossref]

Kane, M.

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5, 787–790 (1993).
[Crossref]

Kang, K. I.

Kean, P. N.

Khrushchev, I.

Kim, C.

K. Croussore, I. Kim, C. Kim, Y. Han, and G. Li, “Phase-and-amplitude regeneration of differential phase-shift keyed signals using a phase-sensitive amplifier,” Opt. Express 14, 2085–2094 (2006).
[Crossref] [PubMed]

S.-K. Choi, R.-D. Li, C. Kim, and Kumar, “Traveling-wave optical parametric amplifier: investigation of its phase-sensitive and phase-insensitive gain response,” J. Opt. Soc. Am. B14, 1564–1575 (1997).

Kim, I.

Koch, S. W.

W. W. Chow and S. W. Koch, Semiconductor-Laser Fundamentals: Physics of the Gain Materials (Springer, New York, 1999).

Kumar,

S.-K. Choi, R.-D. Li, C. Kim, and Kumar, “Traveling-wave optical parametric amplifier: investigation of its phase-sensitive and phase-insensitive gain response,” J. Opt. Soc. Am. B14, 1564–1575 (1997).

Kumar, P.

V. S. Grigoryan, M. Shin, P. S. Devgan, J. Lasri, and P. Kumar, “SOA-based regenerative amplification of phase-noise-degraded DPSK signals: dynamic analysis and demonstration,” IEEE J. Lightwave Technol. 24, 135–142 (2006).
[Crossref]

Lasri, J.

V. S. Grigoryan, M. Shin, P. S. Devgan, J. Lasri, and P. Kumar, “SOA-based regenerative amplification of phase-noise-degraded DPSK signals: dynamic analysis and demonstration,” IEEE J. Lightwave Technol. 24, 135–142 (2006).
[Crossref]

Li, C.

Li, G.

Li, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-Based Optical Parametric Amplifiers and Their Applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[Crossref]

Li, R.-D.

S.-K. Choi, R.-D. Li, C. Kim, and Kumar, “Traveling-wave optical parametric amplifier: investigation of its phase-sensitive and phase-insensitive gain response,” J. Opt. Soc. Am. B14, 1564–1575 (1997).

Mahgerefteh, D.

Y. Hsiao-Yun, D. Mahgerefteh, P. S. Cho, and J. Goldhar, “Improved transmission of chirped signals from semiconductor optical devices by pulse reshaping using a fiber Bragg grating filter,” J Lightwave Technol. 17, 898–903 (1999).
[Crossref]

Y. Hsiao-Yun, D. Mahgerefteh, P. S. Cho, and J. Goldhar, “Optimization of the frequency response of a semiconductor optical amplifier wavelength converter using a fiber Bragg grating,” J. Lightwave Technol. 17, 308–15(1999).
[Crossref]

Marhic, M. E.

M. E. Marhic, C. H. Hsia, and J. M. Jeong, “Optical amplification in a nonlinear interferometer,” Electron. Lett. 27, 210–211 (1991)
[Crossref]

Matsumoto, M.

M. Matsumoto, “Regeneration of RZ-DPSK signals by fiber-based all-optical regenerators,” IEEE Photon. Technol. Lett. 17, 1055–1057 (2005).
[Crossref]

McKinstrie, C. J.

Menon, V. M

Moulton, N.

E. S. Awad, C. J. K. Richardson, P. S. Cho, N. Moulton, and J. Goldhar, “Optical clock recovery using SOA for relative timing extraction between counterpropagating short picosecond pulses,” IEEE Photon. Tech. Lett. 14, 396–398 (2002).
[Crossref]

Olsson, N. A.

G. P. Agrawal and N. A. Olsson, “Self-Phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor Laser Amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
[Crossref]

Phillips, I. D.

Prucnal, P. R.

L. Xu, V. Baby, I. Glesk, and P. R. Prucnal, “New description of transmission of an SOA-based Sagnac loop and its application for NRZ wavelength conversion,” Opt. Commun. 244, 199–208 (2005).
[Crossref]

K. I. Kang, T. G. Chang, I. Glesk, and P. R. Prucnal, “Comparison of Sagnac and Mach-Zehnder ultrafast all-optical interferometric switches based on a semiconductor resonant optical nonlinearity,” Appl. Opt. 35, 417–426 (1996).
[Crossref] [PubMed]

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5, 787–790 (1993).
[Crossref]

Radic, S.

Richardson, C. J. K.

E. S. Awad, C. J. K. Richardson, P. S. Cho, N. Moulton, and J. Goldhar, “Optical clock recovery using SOA for relative timing extraction between counterpropagating short picosecond pulses,” IEEE Photon. Tech. Lett. 14, 396–398 (2002).
[Crossref]

Shin, M.

V. S. Grigoryan, M. Shin, P. S. Devgan, J. Lasri, and P. Kumar, “SOA-based regenerative amplification of phase-noise-degraded DPSK signals: dynamic analysis and demonstration,” IEEE J. Lightwave Technol. 24, 135–142 (2006).
[Crossref]

Sokoloff, J. P.

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5, 787–790 (1993).
[Crossref]

Takada, A.

W. Imajuku and A. Takada, “Noise figure of phase-sensitive parametric amplifier using a Mach-Zehnder interferometer with lossy Kerr media and noisy pump,” IEEE J. Quantum Electron. 39, 799–812, (2003).
[Crossref]

Tokada, A.

W. Imajuku, A. Tokada, and Y. Yamabayashi, “Low-loss dispersion-flattened hybrid transmission lines consisting of low-nonlinearity pure silica core fibres and dispersion compensating fibres,” Electron. Lett. 36, 64 (2000).
[Crossref]

Tong, W.

Westlund, M.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-Based Optical Parametric Amplifiers and Their Applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[Crossref]

White, I.

Xia, F.

Xu, L.

L. Xu, V. Baby, I. Glesk, and P. R. Prucnal, “New description of transmission of an SOA-based Sagnac loop and its application for NRZ wavelength conversion,” Opt. Commun. 244, 199–208 (2005).
[Crossref]

Yamabayashi, Y.

W. Imajuku, A. Tokada, and Y. Yamabayashi, “Low-loss dispersion-flattened hybrid transmission lines consisting of low-nonlinearity pure silica core fibres and dispersion compensating fibres,” Electron. Lett. 36, 64 (2000).
[Crossref]

Appl. Opt. (1)

Electron. Lett. (2)

W. Imajuku, A. Tokada, and Y. Yamabayashi, “Low-loss dispersion-flattened hybrid transmission lines consisting of low-nonlinearity pure silica core fibres and dispersion compensating fibres,” Electron. Lett. 36, 64 (2000).
[Crossref]

M. E. Marhic, C. H. Hsia, and J. M. Jeong, “Optical amplification in a nonlinear interferometer,” Electron. Lett. 27, 210–211 (1991)
[Crossref]

IEEE J. Lightwave Technol. (1)

V. S. Grigoryan, M. Shin, P. S. Devgan, J. Lasri, and P. Kumar, “SOA-based regenerative amplification of phase-noise-degraded DPSK signals: dynamic analysis and demonstration,” IEEE J. Lightwave Technol. 24, 135–142 (2006).
[Crossref]

IEEE J. Quantum Electron. (2)

G. P. Agrawal and N. A. Olsson, “Self-Phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor Laser Amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
[Crossref]

W. Imajuku and A. Takada, “Noise figure of phase-sensitive parametric amplifier using a Mach-Zehnder interferometer with lossy Kerr media and noisy pump,” IEEE J. Quantum Electron. 39, 799–812, (2003).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-Based Optical Parametric Amplifiers and Their Applications,” IEEE J. Sel. Top. Quantum Electron. 8, 506–520 (2002).
[Crossref]

IEEE Photon. Tech. Lett. (1)

E. S. Awad, C. J. K. Richardson, P. S. Cho, N. Moulton, and J. Goldhar, “Optical clock recovery using SOA for relative timing extraction between counterpropagating short picosecond pulses,” IEEE Photon. Tech. Lett. 14, 396–398 (2002).
[Crossref]

IEEE Photon. Technol. Lett. (2)

M. Matsumoto, “Regeneration of RZ-DPSK signals by fiber-based all-optical regenerators,” IEEE Photon. Technol. Lett. 17, 1055–1057 (2005).
[Crossref]

J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5, 787–790 (1993).
[Crossref]

J Lightwave Technol. (1)

Y. Hsiao-Yun, D. Mahgerefteh, P. S. Cho, and J. Goldhar, “Improved transmission of chirped signals from semiconductor optical devices by pulse reshaping using a fiber Bragg grating filter,” J Lightwave Technol. 17, 898–903 (1999).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

S.-K. Choi, R.-D. Li, C. Kim, and Kumar, “Traveling-wave optical parametric amplifier: investigation of its phase-sensitive and phase-insensitive gain response,” J. Opt. Soc. Am. B14, 1564–1575 (1997).

Jpn. J. Appl. Phys. (1)

J.-M. Jeong, “All-Optical Switching with a Weak Control Signal in a Nonlinear Interferometer,” Jpn. J. Appl. Phys. 41, 5581–5584 (2002).
[Crossref]

Opt. Commun. (1)

L. Xu, V. Baby, I. Glesk, and P. R. Prucnal, “New description of transmission of an SOA-based Sagnac loop and its application for NRZ wavelength conversion,” Opt. Commun. 244, 199–208 (2005).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. D (1)

C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D 26, 1817–1839 (1982).
[Crossref]

Other (2)

W. W. Chow and S. W. Koch, Semiconductor-Laser Fundamentals: Physics of the Gain Materials (Springer, New York, 1999).

R. W. Boyd, Nonlinear Optics2nd edition, (Academic Press), p. 99.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig.1. .
Fig.1. .

chematic of the nonlinear interferometer. Electric field strengths and devices are labeled to describe components of the simulation.

Fig. 2.
Fig. 2.

Simulated output of the interferometer with only the pump pulses present. The labeled points correspond to the symmetric location of the SOA (A), a non-symmetric geometry (B), and the symmetry point where the pulses arrive at equal and alternating intervals at the SOA (C).

Fig. 3.
Fig. 3.

Pulse energy of the clockwise solid (blue) and counter-clockwise dashed (red) propagating pulses in the simulation region. There are clearly three regions: flat regions outside of the SOA, region of exponential gain associated with unsaturated gain, and a region of linear gain associated with saturated gain in the SOA.

Fig. 4.
Fig. 4.

Simulated phase-sensitive gain (G) as a function of phase (φ) of the nonlinear Sagnac interferometer.

Fig. 5.
Fig. 5.

Plot of the contrast ratio (dashed-circles) and gain (solid-squares) at the optimal input phase as a function of input energy for an (a) unsaturated gain of 35 dB and (b) unsaturated gain of 69 dB.

Fig. 6.
Fig. 6.

Experimental setup of the nonlinear interferometer comprising of a narrow band pass filter (BPF), optical power monitoring ports (D1-D4), polarization controllers (PC), the SOA and optical delay lines. Splitters are labeled by power ratios.

Fig. 7.
Fig. 7.

Measured output power of the nonlinear interferometer with only the pump pulses present. The labeled points correspond to the symmetric location of the SOA (A), a nonsymmetric geometry (B), and the symmetry point where the pulses arrive at equal and alternating intervals at the SOA (C).

Fig. 8.
Fig. 8.

Measured input (D2) and output of the nonlinear interferometer with both the pump and signal beams. The optical delay line is set to the symmetry point A. The amplitude of lower trace #1 was multiplied by a factor of four to make it appear bigger.

Fig. 9.
Fig. 9.

Plots of the gain vs. relative phase from the experimental data and simulated data for the symmetry points A, B and C. Cartoons at the tops of the figures show relative timing of both pulse train relative to the SOA. Phase sensitive gain is quantified by the non-circular shape of these plots.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E ( z , w , t ) = E ± ( z , t ) e i ( ω t ± k z ) .
E + ( z , t ) z n c E + ( z , t ) t = g ( z , t ) 2 ( 1 + i α H ) ,
E ( z , t ) z + n c E ( z , t ) t = g ( z , t ) 2 ( 1 + i α H ) ,
t g ( z , t ) = g 0 g ( z , t ) τ c 1 U sat ( E + ( z , t ) 2 + E ( z , t ) 2 ) .
E + ( 0 , t ) = 1 2 ( i E p ( t ) + E s ( t ) ) ,
E ( L , t ) = 1 2 ( E p ( t ) + iE s ( t ) ) .
E out ( t ) = 1 2 ( i E + ( L , t ) + E ( 0 , t ) ) .

Metrics