Abstract

To effectively investigate the fundamental characteristics of two-dimensional (2D) photonic crystals (PCs) with arbitrary 3D material anisotropy under the out-of-plane wave propagation, we establish a full-vectorial finite element method based eigenvalue algorithm to perform related analysis correctly. The band edge diagrams can be conveniently constructed from the band structures of varied propagation constants obtained from the algorithm, which is helpful for the analysis and design of photonic band gap (PBG) fibers. Several PCs are analyzed to demonstrate the correctness of this numerical model. Our analysis results for simple PCs are checked with others’ ones using different methods, including the transfer matrix method, the finite-difference frequency-domain (FDFD) method, and the plane-wave expansion method. And the validity of those for the most complex PC with arbitrary 3D anisotropy is supported by related liquid-crystal-filled PBG fiber mode analysis, which demonstrates the dependence of transmission properties on the PBGs, employing a full-vectorial finite element beam propagation method (FE-BPM).

© 2008 Optical Society of America

Full Article  |  PDF Article
Related Articles
Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals

Chin-ping Yu and Hung-chun Chang
Opt. Express 12(7) 1397-1408 (2004)

Loss and dispersion analysis of microstructured fibers by finite-difference method

Shangping Guo, Feng Wu, Sacharia Albin, Hsiang Tai, and Robert S. Rogowski
Opt. Express 12(15) 3341-3352 (2004)

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [Crossref] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [Crossref] [PubMed]
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, NJ, 1995).
  4. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
    [Crossref] [PubMed]
  5. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
    [Crossref]
  6. P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B 54, 7837–7842 (1996).
    [Crossref]
  7. M. Qiu and S. He, “A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions,” J. Appl. Phys. 87, 8268–8275 (2000).
    [Crossref]
  8. L. Zhang, N. G. Alexopoulos, D. Sievenpiper, and E. Yablonovitch, “An efficient finite-element method for the analysis of photonic band-gap materials,” in 1999 IEEE MTT-S Dig. 4, 1703–1706 (1999).
  9. C. P. Yu and H. C. Chang, “Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals,” Opt. Express 12, 1397–1408 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-7-1397.
    [Crossref] [PubMed]
  10. P. J. Chiang, C. P. Yu, and H. C. Chang, “Analysis of two-dimensional photonic crystals using a multidomain pseudospectral method,” Phys. Rev. E 75, 026703 (2007).
    [Crossref]
  11. I. H. H. Zabel and D. Stroud, “Photonic band structures of optically anisotropic periodic arrays,” Phys. Rev. B 48, 5004–5012 (1993).
    [Crossref]
  12. Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. Lett. 81, 2574–2577 (1998).
    [Crossref]
  13. C. Y. Liu and L. W. Chen, “Tunable band gap in a photonic crystal modulated by a nematic liquid crystal,” Phys. Rev. B 72, 045133 (2005).
    [Crossref]
  14. S. M. Hsu, M. M. Chen, H. C. Chang, and 5430 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-9-5416.
  15. G. Alagappan, X. W. Sun, P. Shum, M. B. Yu, and D. den Engelsen, “Symmetry properties of two-dimensional anisotropic photonic crystals,” J. Opt. Soc. Am. A  23, 2002–2013 (2006).
    [Crossref]
  16. S. M. Hsu and H. C. Chang, “Full-vectorial finite element method based eigenvalue algorithm for the analysis of 2D photonic crystals with arbitrary 3D anisotropy,” Opt. Express 15, 15797–15811 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-24-15797.
    [Crossref] [PubMed]
  17. A. A. Maradudin and A. R. McGurn, “Out of plane propagation of electromagnetic waves in a two-dimensional periodic dielectric medium,” J. Modern Opt. 41, 275–284 (1994).
    [Crossref]
  18. T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
    [Crossref]
  19. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
    [Crossref] [PubMed]
  20. K. Saitoh and M. Koshiba, “Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides,” J. Lightwave Technol. 19, 405–413 (2001).
    [Crossref]
  21. J. Jin, The Finite Element Method in Electromagnetics (John Wiley and Sons, Inc., New York, 2002).
  22. M. Koshiba and Y. Tsuji, “Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems,” J. Lightwave Technol. 18, 737–743 (2000).
    [Crossref]
  23. C. P. Yu and H. C. Chang, “Applications of the finite difference frequency domain mode solution method to photonic crystal structures,” in Electromagnetic Theory and Applications for Photonic Crystals, K. Yasumoto, Ed. 351–400 (Marcel Dekker/CRC Press, Inc., Boca Raton, Florida, 2006).
  24. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley and Sons, Inc., New York, 1999).
  25. G. Ren, P. Shum, J. Hu, X Yu, and Y. Gong, “Study of polarization-dependent bandgap formation in liquid crystal filled photonic crystal fibers,” IEEE Photonics Technol. Lett. 20, 602–604 (2008).
    [Crossref]
  26. J. Le Person, F. Smektala, T. Chartier, L. Brilland, T. Jouan, J. Troles, and D. Bosc, “Light guidance in new chalcogenide holey fibres from GeGaSbS glass,” Mater. Res. Bull. 41, 1303–1309 (2006).
    [Crossref]
  27. K. Saitoh and M. Koshiba, “Leakage loss and group velocity dispersion in air-core photonic bandgap fibers,” Opt. Express 11, 3100–3109 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-23-3100.
    [Crossref] [PubMed]

2008 (1)

G. Ren, P. Shum, J. Hu, X Yu, and Y. Gong, “Study of polarization-dependent bandgap formation in liquid crystal filled photonic crystal fibers,” IEEE Photonics Technol. Lett. 20, 602–604 (2008).
[Crossref]

2007 (3)

P. J. Chiang, C. P. Yu, and H. C. Chang, “Analysis of two-dimensional photonic crystals using a multidomain pseudospectral method,” Phys. Rev. E 75, 026703 (2007).
[Crossref]

S. M. Hsu, M. M. Chen, H. C. Chang, and 5430 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-9-5416.

S. M. Hsu and H. C. Chang, “Full-vectorial finite element method based eigenvalue algorithm for the analysis of 2D photonic crystals with arbitrary 3D anisotropy,” Opt. Express 15, 15797–15811 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-24-15797.
[Crossref] [PubMed]

2006 (2)

G. Alagappan, X. W. Sun, P. Shum, M. B. Yu, and D. den Engelsen, “Symmetry properties of two-dimensional anisotropic photonic crystals,” J. Opt. Soc. Am. A  23, 2002–2013 (2006).
[Crossref]

J. Le Person, F. Smektala, T. Chartier, L. Brilland, T. Jouan, J. Troles, and D. Bosc, “Light guidance in new chalcogenide holey fibres from GeGaSbS glass,” Mater. Res. Bull. 41, 1303–1309 (2006).
[Crossref]

2005 (1)

C. Y. Liu and L. W. Chen, “Tunable band gap in a photonic crystal modulated by a nematic liquid crystal,” Phys. Rev. B 72, 045133 (2005).
[Crossref]

2004 (1)

2003 (1)

2001 (1)

2000 (2)

M. Koshiba and Y. Tsuji, “Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems,” J. Lightwave Technol. 18, 737–743 (2000).
[Crossref]

M. Qiu and S. He, “A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions,” J. Appl. Phys. 87, 8268–8275 (2000).
[Crossref]

1999 (2)

L. Zhang, N. G. Alexopoulos, D. Sievenpiper, and E. Yablonovitch, “An efficient finite-element method for the analysis of photonic band-gap materials,” in 1999 IEEE MTT-S Dig. 4, 1703–1706 (1999).

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

1998 (2)

Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. Lett. 81, 2574–2577 (1998).
[Crossref]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[Crossref] [PubMed]

1996 (2)

P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B 54, 7837–7842 (1996).
[Crossref]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[Crossref] [PubMed]

1995 (1)

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[Crossref]

1994 (1)

A. A. Maradudin and A. R. McGurn, “Out of plane propagation of electromagnetic waves in a two-dimensional periodic dielectric medium,” J. Modern Opt. 41, 275–284 (1994).
[Crossref]

1993 (1)

I. H. H. Zabel and D. Stroud, “Photonic band structures of optically anisotropic periodic arrays,” Phys. Rev. B 48, 5004–5012 (1993).
[Crossref]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref] [PubMed]

5430,

S. M. Hsu, M. M. Chen, H. C. Chang, and 5430 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-9-5416.

Alagappan, G.

Alexopoulos, N. G.

L. Zhang, N. G. Alexopoulos, D. Sievenpiper, and E. Yablonovitch, “An efficient finite-element method for the analysis of photonic band-gap materials,” in 1999 IEEE MTT-S Dig. 4, 1703–1706 (1999).

Atkin, D. M.

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[Crossref] [PubMed]

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[Crossref]

Birks, T. A.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[Crossref] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[Crossref] [PubMed]

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[Crossref]

Bosc, D.

J. Le Person, F. Smektala, T. Chartier, L. Brilland, T. Jouan, J. Troles, and D. Bosc, “Light guidance in new chalcogenide holey fibres from GeGaSbS glass,” Mater. Res. Bull. 41, 1303–1309 (2006).
[Crossref]

Brilland, L.

J. Le Person, F. Smektala, T. Chartier, L. Brilland, T. Jouan, J. Troles, and D. Bosc, “Light guidance in new chalcogenide holey fibres from GeGaSbS glass,” Mater. Res. Bull. 41, 1303–1309 (2006).
[Crossref]

Broeng, J.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[Crossref] [PubMed]

Chang, H. C.

S. M. Hsu, M. M. Chen, H. C. Chang, and 5430 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-9-5416.

P. J. Chiang, C. P. Yu, and H. C. Chang, “Analysis of two-dimensional photonic crystals using a multidomain pseudospectral method,” Phys. Rev. E 75, 026703 (2007).
[Crossref]

S. M. Hsu and H. C. Chang, “Full-vectorial finite element method based eigenvalue algorithm for the analysis of 2D photonic crystals with arbitrary 3D anisotropy,” Opt. Express 15, 15797–15811 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-24-15797.
[Crossref] [PubMed]

C. P. Yu and H. C. Chang, “Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals,” Opt. Express 12, 1397–1408 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-7-1397.
[Crossref] [PubMed]

C. P. Yu and H. C. Chang, “Applications of the finite difference frequency domain mode solution method to photonic crystal structures,” in Electromagnetic Theory and Applications for Photonic Crystals, K. Yasumoto, Ed. 351–400 (Marcel Dekker/CRC Press, Inc., Boca Raton, Florida, 2006).

Chartier, T.

J. Le Person, F. Smektala, T. Chartier, L. Brilland, T. Jouan, J. Troles, and D. Bosc, “Light guidance in new chalcogenide holey fibres from GeGaSbS glass,” Mater. Res. Bull. 41, 1303–1309 (2006).
[Crossref]

Chen, L. W.

C. Y. Liu and L. W. Chen, “Tunable band gap in a photonic crystal modulated by a nematic liquid crystal,” Phys. Rev. B 72, 045133 (2005).
[Crossref]

Chen, M. M.

S. M. Hsu, M. M. Chen, H. C. Chang, and 5430 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-9-5416.

Chiang, P. J.

P. J. Chiang, C. P. Yu, and H. C. Chang, “Analysis of two-dimensional photonic crystals using a multidomain pseudospectral method,” Phys. Rev. E 75, 026703 (2007).
[Crossref]

den Engelsen, D.

Fan, S.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B 54, 7837–7842 (1996).
[Crossref]

Gong, Y.

G. Ren, P. Shum, J. Hu, X Yu, and Y. Gong, “Study of polarization-dependent bandgap formation in liquid crystal filled photonic crystal fibers,” IEEE Photonics Technol. Lett. 20, 602–604 (2008).
[Crossref]

Gu, B. Y.

Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. Lett. 81, 2574–2577 (1998).
[Crossref]

Gu, C.

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley and Sons, Inc., New York, 1999).

He, S.

M. Qiu and S. He, “A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions,” J. Appl. Phys. 87, 8268–8275 (2000).
[Crossref]

Hsu, S. M.

Hu, J.

G. Ren, P. Shum, J. Hu, X Yu, and Y. Gong, “Study of polarization-dependent bandgap formation in liquid crystal filled photonic crystal fibers,” IEEE Photonics Technol. Lett. 20, 602–604 (2008).
[Crossref]

Jin, J.

J. Jin, The Finite Element Method in Electromagnetics (John Wiley and Sons, Inc., New York, 2002).

Joannopoulos, J. D.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B 54, 7837–7842 (1996).
[Crossref]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, NJ, 1995).

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref] [PubMed]

Johnson, S. G.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

Jouan, T.

J. Le Person, F. Smektala, T. Chartier, L. Brilland, T. Jouan, J. Troles, and D. Bosc, “Light guidance in new chalcogenide holey fibres from GeGaSbS glass,” Mater. Res. Bull. 41, 1303–1309 (2006).
[Crossref]

Knight, J. C.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[Crossref] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[Crossref] [PubMed]

Kolodziejski, L. A.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

Koshiba, M.

Le Person, J.

J. Le Person, F. Smektala, T. Chartier, L. Brilland, T. Jouan, J. Troles, and D. Bosc, “Light guidance in new chalcogenide holey fibres from GeGaSbS glass,” Mater. Res. Bull. 41, 1303–1309 (2006).
[Crossref]

Li, Z. Y.

Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. Lett. 81, 2574–2577 (1998).
[Crossref]

Liu, C. Y.

C. Y. Liu and L. W. Chen, “Tunable band gap in a photonic crystal modulated by a nematic liquid crystal,” Phys. Rev. B 72, 045133 (2005).
[Crossref]

Maradudin, A. A.

A. A. Maradudin and A. R. McGurn, “Out of plane propagation of electromagnetic waves in a two-dimensional periodic dielectric medium,” J. Modern Opt. 41, 275–284 (1994).
[Crossref]

McGurn, A. R.

A. A. Maradudin and A. R. McGurn, “Out of plane propagation of electromagnetic waves in a two-dimensional periodic dielectric medium,” J. Modern Opt. 41, 275–284 (1994).
[Crossref]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, NJ, 1995).

Qiu, M.

M. Qiu and S. He, “A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions,” J. Appl. Phys. 87, 8268–8275 (2000).
[Crossref]

Ren, G.

G. Ren, P. Shum, J. Hu, X Yu, and Y. Gong, “Study of polarization-dependent bandgap formation in liquid crystal filled photonic crystal fibers,” IEEE Photonics Technol. Lett. 20, 602–604 (2008).
[Crossref]

Roberts, P. J.

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[Crossref]

Russell, P. St. J.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[Crossref] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
[Crossref] [PubMed]

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[Crossref]

Saitoh, K.

Shepherd, T. J.

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[Crossref]

Shum, P.

G. Ren, P. Shum, J. Hu, X Yu, and Y. Gong, “Study of polarization-dependent bandgap formation in liquid crystal filled photonic crystal fibers,” IEEE Photonics Technol. Lett. 20, 602–604 (2008).
[Crossref]

G. Alagappan, X. W. Sun, P. Shum, M. B. Yu, and D. den Engelsen, “Symmetry properties of two-dimensional anisotropic photonic crystals,” J. Opt. Soc. Am. A  23, 2002–2013 (2006).
[Crossref]

Sievenpiper, D.

L. Zhang, N. G. Alexopoulos, D. Sievenpiper, and E. Yablonovitch, “An efficient finite-element method for the analysis of photonic band-gap materials,” in 1999 IEEE MTT-S Dig. 4, 1703–1706 (1999).

Smektala, F.

J. Le Person, F. Smektala, T. Chartier, L. Brilland, T. Jouan, J. Troles, and D. Bosc, “Light guidance in new chalcogenide holey fibres from GeGaSbS glass,” Mater. Res. Bull. 41, 1303–1309 (2006).
[Crossref]

Stroud, D.

I. H. H. Zabel and D. Stroud, “Photonic band structures of optically anisotropic periodic arrays,” Phys. Rev. B 48, 5004–5012 (1993).
[Crossref]

Sun, X. W.

Troles, J.

J. Le Person, F. Smektala, T. Chartier, L. Brilland, T. Jouan, J. Troles, and D. Bosc, “Light guidance in new chalcogenide holey fibres from GeGaSbS glass,” Mater. Res. Bull. 41, 1303–1309 (2006).
[Crossref]

Tsuji, Y.

Villeneuve, P. R.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B 54, 7837–7842 (1996).
[Crossref]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, NJ, 1995).

Yablonovitch, E.

L. Zhang, N. G. Alexopoulos, D. Sievenpiper, and E. Yablonovitch, “An efficient finite-element method for the analysis of photonic band-gap materials,” in 1999 IEEE MTT-S Dig. 4, 1703–1706 (1999).

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

Yang, G. Z.

Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. Lett. 81, 2574–2577 (1998).
[Crossref]

Yeh, P.

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley and Sons, Inc., New York, 1999).

Yu, C. P.

P. J. Chiang, C. P. Yu, and H. C. Chang, “Analysis of two-dimensional photonic crystals using a multidomain pseudospectral method,” Phys. Rev. E 75, 026703 (2007).
[Crossref]

C. P. Yu and H. C. Chang, “Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals,” Opt. Express 12, 1397–1408 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-7-1397.
[Crossref] [PubMed]

C. P. Yu and H. C. Chang, “Applications of the finite difference frequency domain mode solution method to photonic crystal structures,” in Electromagnetic Theory and Applications for Photonic Crystals, K. Yasumoto, Ed. 351–400 (Marcel Dekker/CRC Press, Inc., Boca Raton, Florida, 2006).

Yu, M. B.

Yu, X

G. Ren, P. Shum, J. Hu, X Yu, and Y. Gong, “Study of polarization-dependent bandgap formation in liquid crystal filled photonic crystal fibers,” IEEE Photonics Technol. Lett. 20, 602–604 (2008).
[Crossref]

Zabel, I. H. H.

I. H. H. Zabel and D. Stroud, “Photonic band structures of optically anisotropic periodic arrays,” Phys. Rev. B 48, 5004–5012 (1993).
[Crossref]

Zhang, L.

L. Zhang, N. G. Alexopoulos, D. Sievenpiper, and E. Yablonovitch, “An efficient finite-element method for the analysis of photonic band-gap materials,” in 1999 IEEE MTT-S Dig. 4, 1703–1706 (1999).

Electron. Lett. (1)

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[Crossref]

IEEE Photonics Technol. Lett. (1)

G. Ren, P. Shum, J. Hu, X Yu, and Y. Gong, “Study of polarization-dependent bandgap formation in liquid crystal filled photonic crystal fibers,” IEEE Photonics Technol. Lett. 20, 602–604 (2008).
[Crossref]

in 1999 IEEE MTT-S Dig. (1)

L. Zhang, N. G. Alexopoulos, D. Sievenpiper, and E. Yablonovitch, “An efficient finite-element method for the analysis of photonic band-gap materials,” in 1999 IEEE MTT-S Dig. 4, 1703–1706 (1999).

J. Appl. Phys. (1)

M. Qiu and S. He, “A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions,” J. Appl. Phys. 87, 8268–8275 (2000).
[Crossref]

J. Lightwave Technol. (2)

J. Modern Opt. (1)

A. A. Maradudin and A. R. McGurn, “Out of plane propagation of electromagnetic waves in a two-dimensional periodic dielectric medium,” J. Modern Opt. 41, 275–284 (1994).
[Crossref]

J. Opt. Soc. Am. A (1)

Mater. Res. Bull. (1)

J. Le Person, F. Smektala, T. Chartier, L. Brilland, T. Jouan, J. Troles, and D. Bosc, “Light guidance in new chalcogenide holey fibres from GeGaSbS glass,” Mater. Res. Bull. 41, 1303–1309 (2006).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (4)

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B 54, 7837–7842 (1996).
[Crossref]

I. H. H. Zabel and D. Stroud, “Photonic band structures of optically anisotropic periodic arrays,” Phys. Rev. B 48, 5004–5012 (1993).
[Crossref]

C. Y. Liu and L. W. Chen, “Tunable band gap in a photonic crystal modulated by a nematic liquid crystal,” Phys. Rev. B 72, 045133 (2005).
[Crossref]

Phys. Rev. E (1)

P. J. Chiang, C. P. Yu, and H. C. Chang, “Analysis of two-dimensional photonic crystals using a multidomain pseudospectral method,” Phys. Rev. E 75, 026703 (2007).
[Crossref]

Phys. Rev. Lett. (3)

Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev. Lett. 81, 2574–2577 (1998).
[Crossref]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref] [PubMed]

Science (1)

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[Crossref] [PubMed]

Other (5)

S. M. Hsu, M. M. Chen, H. C. Chang, and 5430 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-9-5416.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, NJ, 1995).

C. P. Yu and H. C. Chang, “Applications of the finite difference frequency domain mode solution method to photonic crystal structures,” in Electromagnetic Theory and Applications for Photonic Crystals, K. Yasumoto, Ed. 351–400 (Marcel Dekker/CRC Press, Inc., Boca Raton, Florida, 2006).

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley and Sons, Inc., New York, 1999).

J. Jin, The Finite Element Method in Electromagnetics (John Wiley and Sons, Inc., New York, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

(a) The unit cell of a 2D triangle-arranged air-hole PC. (b) The first BZ of a 2D PC with triangular lattice.

Fig. 2.
Fig. 2.

The band structures of the 2D triangle-arranged air-hole PC with f=0.45 for (a) βa=8 and (b) βa=10.

Fig. 3.
Fig. 3.

The band edge diagrams of the 2D triangle-arranged air-hole PC with (a) f=0.45 and (b) f=0.7.

Fig. 4.
Fig. 4.

(a) The unit cell of a 2D PC with triangle-arranged LC-filled holes in the silica. (b) Schematic definition of rotation angles for the LC molecule.

Fig. 5.
Fig. 5.

(a) The band edge diagram and (b) the band gap map of the 2D PC with triangle-arranged LC-filled holes in the silica.

Fig. 6.
Fig. 6.

The band edge diagrams of the 2D PC with triangle-arranged LC-filled holes in the chalcogenide glass of (a) θc =0° and ϕc =30°, (b) θc =10° and ϕc =30°, (c) θc =20° and ϕc =30°, and (d) θc =90° and ϕc =30°.

Fig. 7.
Fig. 7.

(a) The cross-section of an LC-core PCF. (b) The schematic geometry of the core region for (a).

Fig. 8.
Fig. 8.

(a) The effective index and (b) the confinement loss for the LC-core PCF of a=2.26 µm with four rings of LC-filled holes.

Fig. 9.
Fig. 9.

(a) The effective index and (b) the confinement loss for the LC-core PCF of a=2.26 µm with six rings of LC-filled holes.

Fig. 10.
Fig. 10.

Ey field distribution of the y-polarized fundamental mode for the LC-core PCF of θc =0° and ϕc =30° with a=2.26µm and six rings of LC-filled holes. (a) λ=1.55µm. (b) λ=1.571µm.

Fig. 11.
Fig. 11.

(a) The effective index and (b) the confinement loss for the LC-core PCF of a=1.90 µm with six rings of LC-filled holes.

Equations (49)

Equations on this page are rendered with MathJax. Learn more.

× E = j ω μ 0 [ μ r ] H
× H = j ω ε 0 [ ε r ] E
[ μ r ] = [ μ xx μ xy μ xz μ yx μ yy μ yz μ zx μ zy μ zz ] , [ ε r ] = [ ε xx ε xy ε xz ε yx ε yy ε yz ε zx ε zy ε zz ] .
× ( [ p ] × Φ ) k 0 2 [ q ] Φ = 0
[ p ] = [ p xx p xy p xz p yx p yy p yz p zx p zy p zz ] = [ μ xx μ xy μ xz μ yx μ yy μ yz μ zx μ zy μ zz ] 1
[ q ] = [ q xx q xy q xz q yx q yy q yz q zx q zy q zz ] = [ ε xx ε xy ε xz ε yx ε yy ε yz ε zx ε zy ε zz ]
[ p ] = [ p xx p xy p xz p yx p yy p yz p zx p zy p zz ] = [ ε xx ε xy ε xz ε yx ε yy ε yz ε zx ε zy ε zz ] 1
[ q ] = [ q xx q xy q xz q yx q yy q yz q zx q zy q zz ] = [ μ xx μ xy μ xz μ yx μ yy μ yz μ zx μ zy μ zz ]
Φ ( x , y , z ) = Φ t ( x , y ) e j β z + z ̂ Φ z ( x , y ) e j β z
= t + z
t × ( [ 0 0 0 0 0 0 0 0 p zz ] t × Φ t + [ 0 0 0 0 0 0 p zx p zy 0 ] ( t × z ̂ Φ z j β z ̂ × Φ t ) )
+ z ̂ × ( [ 0 0 p xz 0 0 p yz 0 0 0 ] ( j β t × Φ t ) + [ p xx p xy 0 p yx p yy 0 0 0 0 ] ( j β t × z ̂ Φ z β 2 z ̂ × Φ t ) )
k 0 2 ( [ q xx q xy 0 q yx q yy 0 0 0 0 ] Φ t + [ 0 0 q xz 0 0 q yz 0 0 0 ] Φ z ) = 0
t × ( [ 0 0 p xz 0 0 p yz 0 0 0 ] t × Φ t + [ p xx p xy 0 p yx p yy 0 0 0 0 ] ( t × z ̂ Φ z j β z ̂ × Φ t ) )
k 0 2 ( [ 0 0 0 0 0 0 q zx q zy 0 ] Φ t + [ 0 0 0 0 0 0 0 0 q zz ] Φ z ) = 0 .
Φ = Φ t e j β z + z ̂ Φ z e j β z = [ { U } T { ϕ t e } { V } T { ϕ t e } { N } T { ϕ z e } ] e j β z
[ K ] { ϕ } k 0 2 [ M ] { ϕ } = { ψ }
{ ϕ } = [ { ϕ t } { ϕ z } ] , { ψ } = [ { ψ t } { ψ z } ]
[ K ] = [ [ K tt ] [ K tz ] [ K zt ] [ K zz ] ] , [ M ] = [ [ M tt ] [ M tz ] [ M zt ] [ M zz ] ]
[ K tt ] = e [ p zz { V } x { V } T x p zz { V } x { U } T y p zz { U } y { V } T x + p zz { U } y { U } T y
+ j β p zx { V } x { V } T j β p zy { V } x { U } T j β p zx { U } y { V } T + j β p zy { U } y { U } T
+ j β p yz { U } { V } T x j β p yz { U } { U } T y j β p xz { V } { V } T x + j β p xz { V } { U } T y
β 2 p xy { U } { V } T + β 2 p yy { U } { U } T + β 2 p xx { V } { V } T β 2 p xy { V } { U } T ] d x d y
[ K tz ] = e [ p zx { V } x { N } T y p zy { V } x { N } T x p zx { U } y { N } T y
+ p zy { U } y { N } T x + j β p yx { U } { N } T y j β p yy { U } { N } T x
j β p xx { V } { N } T y + j β p xy { V } { N } T x ] dx dy
[ K zt ] = e [ p xz { N } y { V } T x p xz { N } y { U } T y p yz { N } x { V } T x
+ p yz { N } x { U } T y + j β p xx { N } y { V } j β p xy { N } y { U }
j β p yx { N } x { V } + j β p yy { N } x { U } ] dx dy
[ K zz ] = e [ p xx { N } y { N } T y p xy { N } y { N } T x
p yx { N } x { N } T y + p yy { N } x { N } T x ] dx dy
[ M tt ] = e [ q xx { U } { U } T + q xy { U } { V } T + q yx { V } { U } T + q yy { V } { V } T ] dx dy
[ M tz ] = e [ q xz { U } { N } T + q yz { V } { N } T ] dx dy
[ M zt ] = e [ q zx { N } { U } T + q zy { N } { V } T ] dx dy
[ M zz ] = e [ q zz { N } { N } T ] dx dy
{ ψ t } = e [ x ̂ ( p zz { V } { V } T x { ϕ t } p zz { V } { U } T y { ϕ t } + p zx { V } { N } T y { ϕ z }
p zy { V } { N } T x { ϕ z } + j β p zx { V } { V } T { ϕ t } j β p zy { V } { U } T { ϕ t } )
+ y ̂ ( p zz { U } { V } T x { ϕ t } + p zz { U } { U } T y { ϕ t } p zx { U } { N } T y { ϕ z }
+ p zy { U } { N } T x { ϕ z } j β p zx { U } { V } T { ϕ t } + j β p zy { U } { U } T { ϕ t } ) ] · n ̂ dl
{ ψ z } = e [ x ̂ ( p yz { N } { V } T x { ϕ t } + p yz { N } { U } T y { ϕ t } p yx { N } { N } T y { ϕ z }
+ p yy { N } { N } T x { ϕ z } j β p yx { N } { V } T { ϕ t } + j β p yy { N } { U } T { ϕ t } )
+ y ̂ ( p xz { N } { V } T x { ϕ t } p xz { N } { U } T y { ϕ t } + p xx { N } { N } T y { ϕ z }
p xy { N } { N } T x { ϕ z } + j β p xx { N } { V } T { ϕ t } j β p xy { N } { U } T { ϕ t } ) ] · n ̂ dl
ε xx = n o 2 + ( n e 2 n o 2 ) sin 2 θ c cos 2 ϕ c
ε xy = ε yx = ( n e 2 n o 2 ) sin 2 θ c sin θ c cos ϕ c
ε xz = ε zx = ( n e 2 n o 2 ) sin θ c cos θ c cos ϕ c
ε yy = n o 2 + ( n e 2 n o 2 ) sin 2 θ c sin 2 ϕ c
ε yz = ε zy = ( n e 2 n o 2 ) sin θ c cos θ c sin ϕ c
ε zz = n o 2 + ( n e 2 n o 2 ) cos 2 θ c

Metrics