Abstract

We present analysis and simulation of novel silicon-on-insulator (SOI) heterogeneous waveguides with thermo-optic phase shifters. New structure design contains a p-n junction on both sides of SOI ridge waveguide with 220 nm×35 µm silicon core. Strongly mode-dependent optical losses (by additional free charge absorption) provide quasi-singe-mode behavior of wide waveguide with mode size ~10 µm. Local heater produces an efficient phase shifting by small temperature increase (ΔT~2K), switching power (<40 mW) and switching time (<10 µs). Mode optical losses are significantly decreased at high heating (ΔT~120 K).

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed, Silicon Photonics. State of the art (John Wiley & Sons, Ltd, 2008).
  2. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, "Nanophotonic waveguides in silicon-on-insulator fabricated CMOS technology," J. Lightwave Technol. 23, 401-412 (2005).
    [CrossRef]
  3. D. Taillaert, H. Chong, P. Borel, L. Frandsen, R. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
    [CrossRef]
  4. W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, and R. Baets, "A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires," Opt. Express 15, 1567-1578 (2007).
    [CrossRef] [PubMed]
  5. A. V. Tsarev, "New type of heterogeneous nanophotonic silicon-on-insulator optical waveguides," Quantum Electron. 37, 775-776 (2007).
    [CrossRef]
  6. A. V. Tsarev, F. De Leonardis, and V. M. N. Passaro, "Thin heterogeneous SOI waveguides for thermo-optical tuning and filtering," Opt. Express 16, 3101-3113 (2008).
    [CrossRef] [PubMed]
  7. A. V. Tsarev, "Thin heterogeneous optical silicon-on-insulator waveguides structures and their application in reconfigurable optical multiplexers," Quantum Electron. 38, 445-451 (2008).
    [CrossRef]
  8. A. V. Tsarev, V. M. N. Passaro, and F. Magno, "Widely Tunable Reconfigurable Optical Add/Drop Multiplexers in Silicon-on-Insulator Technology: a New Approach," in Silicon Photonics, V.M.N. Passaro Ed., Research Signpost Publ., Trivandrum, Kerala, India: ISBN: 81-308-0077-2, 47-77 (2006).
  9. A. V. Tsarev, "Tunable optical filters," United States Patent No 6,999,639, February 14, 2006.
  10. A. V. Tsarev, "Beam-expanding device," United States Patent No 6,836,601, December 28, 2004.
  11. Comsol Multiphysics by COMSOL ©, ver. 3.2, single license (2005).
  12. www.rsoftdesign.com, Rsoft Photonic CAD Suite, ver. 8.0, single license (2007).
  13. R. A. Soref and B. R. Bennett, "Electrooptical Effects in Silicon," IEEE J. Quantum Electron. QE-23, 123-129 (1987).
    [CrossRef]

2008

A. V. Tsarev, "Thin heterogeneous optical silicon-on-insulator waveguides structures and their application in reconfigurable optical multiplexers," Quantum Electron. 38, 445-451 (2008).
[CrossRef]

A. V. Tsarev, F. De Leonardis, and V. M. N. Passaro, "Thin heterogeneous SOI waveguides for thermo-optical tuning and filtering," Opt. Express 16, 3101-3113 (2008).
[CrossRef] [PubMed]

2007

2005

2003

D. Taillaert, H. Chong, P. Borel, L. Frandsen, R. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

1987

R. A. Soref and B. R. Bennett, "Electrooptical Effects in Silicon," IEEE J. Quantum Electron. QE-23, 123-129 (1987).
[CrossRef]

Baets, R.

Beckx, S.

Bennett, B. R.

R. A. Soref and B. R. Bennett, "Electrooptical Effects in Silicon," IEEE J. Quantum Electron. QE-23, 123-129 (1987).
[CrossRef]

Bienstman, P.

Bogaerts, W.

Borel, P.

D. Taillaert, H. Chong, P. Borel, L. Frandsen, R. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

Chong, H.

D. Taillaert, H. Chong, P. Borel, L. Frandsen, R. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

De La Rue, R.

D. Taillaert, H. Chong, P. Borel, L. Frandsen, R. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

De Leonardis, F.

Dumon, P.

Frandsen, L.

D. Taillaert, H. Chong, P. Borel, L. Frandsen, R. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

Luyssaert, B.

Passaro, V. M. N.

Soref, R. A.

R. A. Soref and B. R. Bennett, "Electrooptical Effects in Silicon," IEEE J. Quantum Electron. QE-23, 123-129 (1987).
[CrossRef]

Taillaert, D.

Tsarev, A. V.

A. V. Tsarev, "Thin heterogeneous optical silicon-on-insulator waveguides structures and their application in reconfigurable optical multiplexers," Quantum Electron. 38, 445-451 (2008).
[CrossRef]

A. V. Tsarev, F. De Leonardis, and V. M. N. Passaro, "Thin heterogeneous SOI waveguides for thermo-optical tuning and filtering," Opt. Express 16, 3101-3113 (2008).
[CrossRef] [PubMed]

A. V. Tsarev, "New type of heterogeneous nanophotonic silicon-on-insulator optical waveguides," Quantum Electron. 37, 775-776 (2007).
[CrossRef]

Van Campenhout, J.

Van Thourhout, D.

Wiaux, V.

IEEE J. Quantum Electron.

R. A. Soref and B. R. Bennett, "Electrooptical Effects in Silicon," IEEE J. Quantum Electron. QE-23, 123-129 (1987).
[CrossRef]

IEEE Photon. Technol. Lett.

D. Taillaert, H. Chong, P. Borel, L. Frandsen, R. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Quantum Electron.

A. V. Tsarev, "New type of heterogeneous nanophotonic silicon-on-insulator optical waveguides," Quantum Electron. 37, 775-776 (2007).
[CrossRef]

A. V. Tsarev, "Thin heterogeneous optical silicon-on-insulator waveguides structures and their application in reconfigurable optical multiplexers," Quantum Electron. 38, 445-451 (2008).
[CrossRef]

Other

A. V. Tsarev, V. M. N. Passaro, and F. Magno, "Widely Tunable Reconfigurable Optical Add/Drop Multiplexers in Silicon-on-Insulator Technology: a New Approach," in Silicon Photonics, V.M.N. Passaro Ed., Research Signpost Publ., Trivandrum, Kerala, India: ISBN: 81-308-0077-2, 47-77 (2006).

A. V. Tsarev, "Tunable optical filters," United States Patent No 6,999,639, February 14, 2006.

A. V. Tsarev, "Beam-expanding device," United States Patent No 6,836,601, December 28, 2004.

Comsol Multiphysics by COMSOL ©, ver. 3.2, single license (2005).

www.rsoftdesign.com, Rsoft Photonic CAD Suite, ver. 8.0, single license (2007).

G. T. Reed, Silicon Photonics. State of the art (John Wiley & Sons, Ltd, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Heterogeneous SOI waveguide. (a) General view; (b) Refractive index distribution across heterogeneous waveguide for different temperature change (ΔTh ) in the center of waveguide core. h=220 nm, Hb =4 µm, w=8 µm, W=10 µm, W0 =35 µm, H=0.1 µm, HT =0.2 µm. Joint 2D BPM and FEM (for ΔTh >0) simulations.

Fig. 2.
Fig. 2.

Optical field distribution of fundamental (a) and first order (b) modes at different temperature increase in the center of heterogeneous waveguide core. h=220 nm, Hb =4 µm, w=8 µm, W=10 µm, W0 =35 µm, H=0.1 µm, HT =0.2 µm. Joint 2D BPM and FEM simulations.

Fig. 3.
Fig. 3.

Optical properties of heterogeneous waveguide. (a) Optical losses for different modes as a function of width W, for different Δnh ; (b) Additional optical losses for different modes of heterogeneous waveguide of the characteristic length L0 as a function of Δnh , for different center widths W. 2D BPM simulations.

Fig. 4.
Fig. 4.

Dynamic analysis by FEM of thermo-optic phase shifter in heterogeneous waveguide with aluminum heater (placed inside the silica on the top of silicon core). (a) Time response of temperature in the core center for different buffer heights (in µm); (b) Temperature distribution at time t=56 µs; (c) and (d) Cross temperature distribution at various times (5 µs, 45 µs, and 55 µs). Inward heat flux has a step impulse function of 50 µs duration, with amplitude 10+7 W/m2.

Fig. 5.
Fig. 5.

Optical losses for different heater temperatures of sub-optimal heterogeneous waveguides as a function of core width W. h=220 nm, Hb =4 µm, w=8 µm, W=10 µm, W0 =35 µm, H=0.1 µm, HT =0.2 µm. Joint FEM and 2D BPM simulations.

Tables (1)

Tables Icon

Table 1. Thermo-optic simulation of heterogeneous SOI structure (q0=2·10+6 W/m2).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ α e = 0.12 Δ n e , Δ N e = 1.14 × 10 21 Δ n e
Δ α h = 0.16 Δ n h 5 4 , Δ N h = 2.18 × 10 21 Δ n h 5 4
n = Δ n h + Δ n e + Δ α λ 0 ( 4 π ) ,
L eff = λ ( 2 · n T · Δ T )
P π = q 0 w L eff

Metrics