Abstract

A novel polarimetry methodology for phase-sensitive measurements in single reflection geometry is proposed for applications in optical transduction-based biological sensing. The methodology uses altering step-like chopper-based mechanical phase modulation for orthogonal s- and p- polarizations of light reflected from the sensing interface and the extraction of phase information at different harmonics of the modulation. We show that even under a relatively simple experimental arrangement, the methodology provides the resolution of phase measurements as low as 0.007 deg. We also examine the proposed approach using Total Internal Reflection (TIR) and Surface Plasmon Resonance (SPR) geometries. For TIR geometry, the response appears to be strongly dependent on the prism material with the best values for high refractive index Si. The detection limit for Si-based TIR is estimated as 10-5 in terms Refractive Index Units (RIU) change. SPR geometry offers much stronger phase response due to a much sharper phase characteristics. With the detection limit of 3.2*10-7 RIU, the proposed methodology provides one of best sensitivities for phase-sensitive SPR devices. Advantages of the proposed method include high sensitivity, simplicity of experimental setup and noise immunity as a result of a high stability modulation.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Kabashin and P. I. Nikitin, "Interferometer based on a surface-plasmon resonance for sensor applications," Quantum. Electron. 27, 653-654 (1997).
    [CrossRef]
  2. A. V. Kabashin and P. I. Nikitin, "Surface plasmon resonance interferometer for bio- and chemical-sensors," Opt. Commun. 150, 5-8 (1998).
    [CrossRef]
  3. A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, "Phase Jumps and Interferometric Surface Plasmon Resonance Imaging," Appl. Phys. Lett. 75, 3917-3919 (1999).
    [CrossRef]
  4. S. Shen, T. Liu, and J. Guo, "Optical Phase-Shift Detection of Surface Plasmon Resonance," Appl. Opt. 37, 1747-1751 (1998);
    [CrossRef]
  5. A. G. Notcovich, V. Zhuk, and S. G. Lipson, "Surface plasmon resonance phase imaging," Appl. Phys. Lett. 76, 1665-1667 (2000).
    [CrossRef]
  6. H. P. Ho, W.W Lam, and S. Y. Wu, "Surface plasmon resonance sensor based on the measurement of differential phase," Rev. Sci. Instrum. 73, 3534-3539 (2002).
    [CrossRef]
  7. C. M. Wu, Z. C. Jian, S. F. Joe, L. B. Chang, "High-sensitivity sensor based on surface Plasmon resonance and heterodyne interferometry," Sens. Actuators B 92, 133-136 (2003).
    [CrossRef]
  8. S. Y. Wu, H. P. Ho, W. C. Law, C. Lin, and S. K. Kong, "Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration," Opt. Lett. 29, 2378-2380 (2004).
    [CrossRef] [PubMed]
  9. A. K. Sheridan, R. D. Harris, P. N. Bartlett, and J. S. Wilkinson, "Phase interrogation of an integrated optical SPR sensor," Sens. Actuators B 97, 114-121 (2004).
    [CrossRef]
  10. R. Naraoka and K. Kajikawa, "Phase detection of surface plasmon resonance using rotating analyzer method," Sens. Actuators B 107, 952-956 (2005).
    [CrossRef]
  11. H.-P. Chiang, J. Lin, R. Chang, S. Su, and P.T. Leung, "High-resolution angular measurement using surface-plasmon-resonance via phase interrogation at optimal incident wavelengths," Opt. Lett. 30, 2727-2729 (2005).
    [CrossRef] [PubMed]
  12. P. P. Markowicz, W. C. Law, A. Baev, P. Prasad, S. Patskovsky, and A. V. Kabashin, "Phase-sensitive time-modulated surface plasmon resonance polarimetry for wide dynamic range biosensing," Opt. Express 15, 1745 (2007).
    [CrossRef] [PubMed]
  13. S. Patskovsky, R. Jacquemart, M. Meunier, G. De Crescenzo, and A. V. Kabashin, "Phase-sensitive spatially-modulated SPR Polarimetry for Detection of Biomolecular Interactions, "Sens. Actuators B 133, 628-631(2008)
    [CrossRef]
  14. S. Patskovsky, M. Meunier, and A. V. Kabashin, "Phase-sensitive silicon-based total internal reflection sensor," Opt. Express 15, 12523-12528 (2007)
    [CrossRef] [PubMed]
  15. I. R. Hooper and J. R. Sambles, "Differential ellipsometric surface plasmon resonance sensors with liquid crystal polarization modulators," Appl. Phys. Lett. 85, 3017-3019 (2004).
    [CrossRef]

2008

S. Patskovsky, R. Jacquemart, M. Meunier, G. De Crescenzo, and A. V. Kabashin, "Phase-sensitive spatially-modulated SPR Polarimetry for Detection of Biomolecular Interactions, "Sens. Actuators B 133, 628-631(2008)
[CrossRef]

2007

2005

2004

A. K. Sheridan, R. D. Harris, P. N. Bartlett, and J. S. Wilkinson, "Phase interrogation of an integrated optical SPR sensor," Sens. Actuators B 97, 114-121 (2004).
[CrossRef]

S. Y. Wu, H. P. Ho, W. C. Law, C. Lin, and S. K. Kong, "Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration," Opt. Lett. 29, 2378-2380 (2004).
[CrossRef] [PubMed]

I. R. Hooper and J. R. Sambles, "Differential ellipsometric surface plasmon resonance sensors with liquid crystal polarization modulators," Appl. Phys. Lett. 85, 3017-3019 (2004).
[CrossRef]

2003

C. M. Wu, Z. C. Jian, S. F. Joe, L. B. Chang, "High-sensitivity sensor based on surface Plasmon resonance and heterodyne interferometry," Sens. Actuators B 92, 133-136 (2003).
[CrossRef]

2002

H. P. Ho, W.W Lam, and S. Y. Wu, "Surface plasmon resonance sensor based on the measurement of differential phase," Rev. Sci. Instrum. 73, 3534-3539 (2002).
[CrossRef]

2000

A. G. Notcovich, V. Zhuk, and S. G. Lipson, "Surface plasmon resonance phase imaging," Appl. Phys. Lett. 76, 1665-1667 (2000).
[CrossRef]

1999

A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, "Phase Jumps and Interferometric Surface Plasmon Resonance Imaging," Appl. Phys. Lett. 75, 3917-3919 (1999).
[CrossRef]

1998

A. V. Kabashin and P. I. Nikitin, "Surface plasmon resonance interferometer for bio- and chemical-sensors," Opt. Commun. 150, 5-8 (1998).
[CrossRef]

S. Shen, T. Liu, and J. Guo, "Optical Phase-Shift Detection of Surface Plasmon Resonance," Appl. Opt. 37, 1747-1751 (1998);
[CrossRef]

1997

A. V. Kabashin and P. I. Nikitin, "Interferometer based on a surface-plasmon resonance for sensor applications," Quantum. Electron. 27, 653-654 (1997).
[CrossRef]

Baev, A.

Bartlett, P. N.

A. K. Sheridan, R. D. Harris, P. N. Bartlett, and J. S. Wilkinson, "Phase interrogation of an integrated optical SPR sensor," Sens. Actuators B 97, 114-121 (2004).
[CrossRef]

Chang, L. B.

C. M. Wu, Z. C. Jian, S. F. Joe, L. B. Chang, "High-sensitivity sensor based on surface Plasmon resonance and heterodyne interferometry," Sens. Actuators B 92, 133-136 (2003).
[CrossRef]

Chang, R.

Chiang, H.-P.

De Crescenzo, G.

S. Patskovsky, R. Jacquemart, M. Meunier, G. De Crescenzo, and A. V. Kabashin, "Phase-sensitive spatially-modulated SPR Polarimetry for Detection of Biomolecular Interactions, "Sens. Actuators B 133, 628-631(2008)
[CrossRef]

Grigorenko, A. N.

A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, "Phase Jumps and Interferometric Surface Plasmon Resonance Imaging," Appl. Phys. Lett. 75, 3917-3919 (1999).
[CrossRef]

Guo, J.

Harris, R. D.

A. K. Sheridan, R. D. Harris, P. N. Bartlett, and J. S. Wilkinson, "Phase interrogation of an integrated optical SPR sensor," Sens. Actuators B 97, 114-121 (2004).
[CrossRef]

Ho, H. P.

Hooper, I. R.

I. R. Hooper and J. R. Sambles, "Differential ellipsometric surface plasmon resonance sensors with liquid crystal polarization modulators," Appl. Phys. Lett. 85, 3017-3019 (2004).
[CrossRef]

Jacquemart, R.

S. Patskovsky, R. Jacquemart, M. Meunier, G. De Crescenzo, and A. V. Kabashin, "Phase-sensitive spatially-modulated SPR Polarimetry for Detection of Biomolecular Interactions, "Sens. Actuators B 133, 628-631(2008)
[CrossRef]

Jian, Z. C.

C. M. Wu, Z. C. Jian, S. F. Joe, L. B. Chang, "High-sensitivity sensor based on surface Plasmon resonance and heterodyne interferometry," Sens. Actuators B 92, 133-136 (2003).
[CrossRef]

Joe, S. F.

C. M. Wu, Z. C. Jian, S. F. Joe, L. B. Chang, "High-sensitivity sensor based on surface Plasmon resonance and heterodyne interferometry," Sens. Actuators B 92, 133-136 (2003).
[CrossRef]

Kabashin, A. V.

S. Patskovsky, R. Jacquemart, M. Meunier, G. De Crescenzo, and A. V. Kabashin, "Phase-sensitive spatially-modulated SPR Polarimetry for Detection of Biomolecular Interactions, "Sens. Actuators B 133, 628-631(2008)
[CrossRef]

P. P. Markowicz, W. C. Law, A. Baev, P. Prasad, S. Patskovsky, and A. V. Kabashin, "Phase-sensitive time-modulated surface plasmon resonance polarimetry for wide dynamic range biosensing," Opt. Express 15, 1745 (2007).
[CrossRef] [PubMed]

S. Patskovsky, M. Meunier, and A. V. Kabashin, "Phase-sensitive silicon-based total internal reflection sensor," Opt. Express 15, 12523-12528 (2007)
[CrossRef] [PubMed]

A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, "Phase Jumps and Interferometric Surface Plasmon Resonance Imaging," Appl. Phys. Lett. 75, 3917-3919 (1999).
[CrossRef]

A. V. Kabashin and P. I. Nikitin, "Surface plasmon resonance interferometer for bio- and chemical-sensors," Opt. Commun. 150, 5-8 (1998).
[CrossRef]

A. V. Kabashin and P. I. Nikitin, "Interferometer based on a surface-plasmon resonance for sensor applications," Quantum. Electron. 27, 653-654 (1997).
[CrossRef]

Kajikawa, K.

R. Naraoka and K. Kajikawa, "Phase detection of surface plasmon resonance using rotating analyzer method," Sens. Actuators B 107, 952-956 (2005).
[CrossRef]

Kong, S. K.

Lam, W.W

H. P. Ho, W.W Lam, and S. Y. Wu, "Surface plasmon resonance sensor based on the measurement of differential phase," Rev. Sci. Instrum. 73, 3534-3539 (2002).
[CrossRef]

Law, W. C.

Leung, P.T.

Lin, C.

Lin, J.

Lipson, S. G.

A. G. Notcovich, V. Zhuk, and S. G. Lipson, "Surface plasmon resonance phase imaging," Appl. Phys. Lett. 76, 1665-1667 (2000).
[CrossRef]

Liu, T.

Markowicz, P. P.

Meunier, M.

S. Patskovsky, R. Jacquemart, M. Meunier, G. De Crescenzo, and A. V. Kabashin, "Phase-sensitive spatially-modulated SPR Polarimetry for Detection of Biomolecular Interactions, "Sens. Actuators B 133, 628-631(2008)
[CrossRef]

S. Patskovsky, M. Meunier, and A. V. Kabashin, "Phase-sensitive silicon-based total internal reflection sensor," Opt. Express 15, 12523-12528 (2007)
[CrossRef] [PubMed]

Naraoka, R.

R. Naraoka and K. Kajikawa, "Phase detection of surface plasmon resonance using rotating analyzer method," Sens. Actuators B 107, 952-956 (2005).
[CrossRef]

Nikitin, P. I.

A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, "Phase Jumps and Interferometric Surface Plasmon Resonance Imaging," Appl. Phys. Lett. 75, 3917-3919 (1999).
[CrossRef]

A. V. Kabashin and P. I. Nikitin, "Surface plasmon resonance interferometer for bio- and chemical-sensors," Opt. Commun. 150, 5-8 (1998).
[CrossRef]

A. V. Kabashin and P. I. Nikitin, "Interferometer based on a surface-plasmon resonance for sensor applications," Quantum. Electron. 27, 653-654 (1997).
[CrossRef]

Notcovich, A. G.

A. G. Notcovich, V. Zhuk, and S. G. Lipson, "Surface plasmon resonance phase imaging," Appl. Phys. Lett. 76, 1665-1667 (2000).
[CrossRef]

Patskovsky, S.

Prasad, P.

Sambles, J. R.

I. R. Hooper and J. R. Sambles, "Differential ellipsometric surface plasmon resonance sensors with liquid crystal polarization modulators," Appl. Phys. Lett. 85, 3017-3019 (2004).
[CrossRef]

Shen, S.

Sheridan, A. K.

A. K. Sheridan, R. D. Harris, P. N. Bartlett, and J. S. Wilkinson, "Phase interrogation of an integrated optical SPR sensor," Sens. Actuators B 97, 114-121 (2004).
[CrossRef]

Su, S.

Wilkinson, J. S.

A. K. Sheridan, R. D. Harris, P. N. Bartlett, and J. S. Wilkinson, "Phase interrogation of an integrated optical SPR sensor," Sens. Actuators B 97, 114-121 (2004).
[CrossRef]

Wu, C. M.

C. M. Wu, Z. C. Jian, S. F. Joe, L. B. Chang, "High-sensitivity sensor based on surface Plasmon resonance and heterodyne interferometry," Sens. Actuators B 92, 133-136 (2003).
[CrossRef]

Wu, S. Y.

Zhuk, V.

A. G. Notcovich, V. Zhuk, and S. G. Lipson, "Surface plasmon resonance phase imaging," Appl. Phys. Lett. 76, 1665-1667 (2000).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

A. N. Grigorenko, P. I. Nikitin, and A. V. Kabashin, "Phase Jumps and Interferometric Surface Plasmon Resonance Imaging," Appl. Phys. Lett. 75, 3917-3919 (1999).
[CrossRef]

A. G. Notcovich, V. Zhuk, and S. G. Lipson, "Surface plasmon resonance phase imaging," Appl. Phys. Lett. 76, 1665-1667 (2000).
[CrossRef]

I. R. Hooper and J. R. Sambles, "Differential ellipsometric surface plasmon resonance sensors with liquid crystal polarization modulators," Appl. Phys. Lett. 85, 3017-3019 (2004).
[CrossRef]

Opt. Commun.

A. V. Kabashin and P. I. Nikitin, "Surface plasmon resonance interferometer for bio- and chemical-sensors," Opt. Commun. 150, 5-8 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Quantum. Electron.

A. V. Kabashin and P. I. Nikitin, "Interferometer based on a surface-plasmon resonance for sensor applications," Quantum. Electron. 27, 653-654 (1997).
[CrossRef]

Rev. Sci. Instrum.

H. P. Ho, W.W Lam, and S. Y. Wu, "Surface plasmon resonance sensor based on the measurement of differential phase," Rev. Sci. Instrum. 73, 3534-3539 (2002).
[CrossRef]

Sens. Actuators B

C. M. Wu, Z. C. Jian, S. F. Joe, L. B. Chang, "High-sensitivity sensor based on surface Plasmon resonance and heterodyne interferometry," Sens. Actuators B 92, 133-136 (2003).
[CrossRef]

A. K. Sheridan, R. D. Harris, P. N. Bartlett, and J. S. Wilkinson, "Phase interrogation of an integrated optical SPR sensor," Sens. Actuators B 97, 114-121 (2004).
[CrossRef]

R. Naraoka and K. Kajikawa, "Phase detection of surface plasmon resonance using rotating analyzer method," Sens. Actuators B 107, 952-956 (2005).
[CrossRef]

S. Patskovsky, R. Jacquemart, M. Meunier, G. De Crescenzo, and A. V. Kabashin, "Phase-sensitive spatially-modulated SPR Polarimetry for Detection of Biomolecular Interactions, "Sens. Actuators B 133, 628-631(2008)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematics of the experimental arrangement (see text for explanation)

Fig. 2.
Fig. 2.

Responses of AC, DC and phase in the TIR (a) and SPR (b) geometry using a SF11 coupling prism

Fig. 3.
Fig. 3.

Intensity of the AC component for TIR sensor equipped with Si, SF11 and BK7 prisms, and for SF11 prism-equipped SPR sensor. Solid and dashed curves correspond to air and water, respectively

Fig. 4.
Fig. 4.

Responses of AC signal and 1st, 3nd and 5rd harmonics to phase changes Δα under the modulation amplitude of π; Dependence of 1st harmonic on the instrumental 90° phase retardation.

Fig. 5.
Fig. 5.

(a). Angular dependences for the intensity of light reflected under SPR and for the intensity of the first harmonics in the proposed scheme (the curves are related to the left axis); Angular dependence for phase of light reflected under SPR (right axis); (b) Integral reflected intensity (solid lines) and the intensity of the 1st harmonic (dotted ones) as a function of the gold film thickness

Fig. 6.
Fig. 6.

Intensity, phase and first harmonics of light reflected under SPR as a function of the refractive index. The curves are obtained for the fixed incident angle of 54.6 deg. and a 35nm gold film.

Fig. 7.
Fig. 7.

(a). Intensity of the AC response in the TIR configuration for SF11 and BK7 prism in air and water. (b). Influence of the initial phase retardation on the resulting signal. Results are given for a BK7 prism in air.

Fig. 8.
Fig. 8.

Response of the TIR sensor to the variation of the ethanol concentration in water.

Fig. 9.
Fig. 9.

(a). Optimization of the SPR sensor response by introducing initial phase retardations; (b) Responses of the 1st harmonics to the replacement of Ar and N2 gases in experimental gas cell

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I = E ¯ · E where E = J P J Sensor J Mod E In
I = 1 2 ( r p 2 + r s 2 + 2 r p r s cos ( ψ + φ p φ s ) )
I 1 = 1 2 ( r p 2 + r s 2 + 2 r p r s cos ( π + φ p φ s ) ) = 1 2 ( r p 2 + r s 2 2 r p r s cos ( φ p φ s ) )
I 2 = 1 2 ( r p 2 + r s 2 + 2 r p r s cos ( 0 + φ p φ s ) ) = 1 2 ( r p 2 + r s 2 2 r p r s cos ( φ p φ s ) )
AC = I 1 I 2 = 2 r p r s cos ( φ p φ s ) , DC = ( I 1 I 2 ) 2 = r p 2 + r s 2
I ( t ) = A 0 + 4 A π k = 1 sin ( ( 2 k 1 ) 2 π v t ) 2 k 1 ; A 0 = DC ; A = AC 2 ;

Metrics