Abstract

We show that the enhanced directivity phenomenon for light passing through a subwavelength aperture in a silver film with corrugations on the exit face, is due to a leaky wave that decays exponentially from the aperture. We show quantitatively that the field along the interface of the silver film is dominated by the leaky wave, and that the radiation of the leaky wave, supported by the periodic structure, yields the directive beam. The leaky wave propagation and attenuation constants parameterize the physical radiation mechanism, and provide important design information for optimizing the structure. Maximum directivity occurs when the phase and attenuation constants are approximately equal

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
    [CrossRef] [PubMed]
  2. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen., "Theory of highly directive emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
    [CrossRef] [PubMed]
  3. F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003).
    [CrossRef]
  4. H. Caglayan, I. Bulu, and E. Ozbay, "Plasmonic structures with extraordinary transmission and highly directional beaming properties," IEEE Microwave Opt. Technol. Lett. 48, 2491 (2006).
    [CrossRef]
  5. D. R. Jackson, A. A. Oliner, T. Zhao, and J. T. Williams, "The beaming of light at broadside through a subwavelength hole: leaky-wave model and open stopband effect," Radio Sci. 40, RS6S10 (2005).
    [CrossRef]
  6. R. F. Harrington, Time Harmonic Electromagnetic Fields (Wiley/IEEE Press, 2001).
    [CrossRef]
  7. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, "Enhanced Light Transmission through a Single Subwavelength Aperture, " Opt. Lett. 261972-1974 (2001).
    [CrossRef]
  8. T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, "Giant optical transmission of sub-wavelength apertures: physics and applications," Nanotechnology 13, 429 (2002).
    [CrossRef]
  9. F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901 (2003).
    [CrossRef] [PubMed]
  10. A. Degiron and T. W. Ebbesen, "Analysis of the transmission process through single apertures surrounded by periodic corrugations," Opt. Express 12, 3694-3700 (2004).
    [CrossRef] [PubMed]
  11. H. Caglayan, I. Bulu, and E. Ozbay, "Extraordinary grating-coupled microwave transmission thorugh a subwavelength annular aperture, " Opt. Express 13, 1666-1671 (2005).
    [CrossRef] [PubMed]
  12. T. W. Ebbesen et al., Nature  391, 667 (1998).
    [CrossRef]
  13. T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, "Surface plasmon-enhanced transmission through hole arrays in Cr films," J. Opt. Soc. Am. B 16, 1743-1748, (1999).
    [CrossRef]
  14. S. Enoch, E. Popov, M. Nevière, and R. Reinisch, "Enhanced light transmission by hole arrays," J. Opt. A: Pure Appl. Opt. 4, S83-S87 (2002).
    [CrossRef]
  15. C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 44539-46 (2007).
    [CrossRef] [PubMed]
  16. M. Beruete, I. Campillo, J. S. Dolado, J. E. Rodríguez-Seco, E. Perea, and M. Sorolla, "Enhanced microwave transmission and beaming using a subwavelength slot in corrugated plane," IEEE Antennas Wirel. Propag. Lett. 3, 328-331 (2004).
    [CrossRef]
  17. A. A. Oliner and D. R. Jackson, "Leaky-Wave Antennas," Ch. 11, Antenna Engineering Handbook, J. Volakis, Ed., (McGraw Hill, 2007).
  18. T. Tamir and A. A. Oliner, "Guided Complex Waves, Part I," Proc. Inst. Electr. Eng. 110, 310 (1963).
    [CrossRef]
  19. T. Tamir and A. A. Oliner, "Guided Complex Waves, Part II," Proc. Inst. Electr. Eng. 110, 325 (1963).
    [CrossRef]
  20. F. Capolino, D. R. Jackson, and D. R. Wilton, "Fundamental properties of the field at the interface between air and a periodic artificial material excited by a line source," IEEE Trans. Antennas Propag. 53, 91 (2005).
    [CrossRef]
  21. V. Lomakin, and E. Michielssen, "Beam transmission through periodic subwavelength hole structures," IEEE Trans. Antennas Propag. 55, 1564(2007).
    [CrossRef]
  22. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 2005).
  23. A. Ip and D. R. Jackson, "Radiation from cylindrical leaky waves," IEEE Trans. Antennas Propag. 38, 482 (1990).
    [CrossRef]
  24. R. Qiang, J. Chen, F. Capolino, D. R. Jackson, and D. R. Wilton, "ASM-FDTD: A technique for calculating the field of a finite source in the presence of an infinite periodic artificial material," IEEE Microwave Wirel. Compon. Lett. 17, 271 (2007).
    [CrossRef]
  25. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt. 37, 5271 (1998).
    [CrossRef]
  26. P. Burghignoli, G. Lovat, and D. R. Jackson, "Analysis and optimization of leaky-wave radiation at broadside from a class of 1-D periodic structures," IEEE Trans. Antennas Prop. 54, 2593 (2006).
    [CrossRef]

2007 (3)

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 44539-46 (2007).
[CrossRef] [PubMed]

V. Lomakin, and E. Michielssen, "Beam transmission through periodic subwavelength hole structures," IEEE Trans. Antennas Propag. 55, 1564(2007).
[CrossRef]

R. Qiang, J. Chen, F. Capolino, D. R. Jackson, and D. R. Wilton, "ASM-FDTD: A technique for calculating the field of a finite source in the presence of an infinite periodic artificial material," IEEE Microwave Wirel. Compon. Lett. 17, 271 (2007).
[CrossRef]

2006 (2)

H. Caglayan, I. Bulu, and E. Ozbay, "Plasmonic structures with extraordinary transmission and highly directional beaming properties," IEEE Microwave Opt. Technol. Lett. 48, 2491 (2006).
[CrossRef]

P. Burghignoli, G. Lovat, and D. R. Jackson, "Analysis and optimization of leaky-wave radiation at broadside from a class of 1-D periodic structures," IEEE Trans. Antennas Prop. 54, 2593 (2006).
[CrossRef]

2005 (3)

H. Caglayan, I. Bulu, and E. Ozbay, "Extraordinary grating-coupled microwave transmission thorugh a subwavelength annular aperture, " Opt. Express 13, 1666-1671 (2005).
[CrossRef] [PubMed]

D. R. Jackson, A. A. Oliner, T. Zhao, and J. T. Williams, "The beaming of light at broadside through a subwavelength hole: leaky-wave model and open stopband effect," Radio Sci. 40, RS6S10 (2005).
[CrossRef]

F. Capolino, D. R. Jackson, and D. R. Wilton, "Fundamental properties of the field at the interface between air and a periodic artificial material excited by a line source," IEEE Trans. Antennas Propag. 53, 91 (2005).
[CrossRef]

2004 (2)

M. Beruete, I. Campillo, J. S. Dolado, J. E. Rodríguez-Seco, E. Perea, and M. Sorolla, "Enhanced microwave transmission and beaming using a subwavelength slot in corrugated plane," IEEE Antennas Wirel. Propag. Lett. 3, 328-331 (2004).
[CrossRef]

A. Degiron and T. W. Ebbesen, "Analysis of the transmission process through single apertures surrounded by periodic corrugations," Opt. Express 12, 3694-3700 (2004).
[CrossRef] [PubMed]

2003 (3)

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen., "Theory of highly directive emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003).
[CrossRef]

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

2002 (3)

S. Enoch, E. Popov, M. Nevière, and R. Reinisch, "Enhanced light transmission by hole arrays," J. Opt. A: Pure Appl. Opt. 4, S83-S87 (2002).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, "Giant optical transmission of sub-wavelength apertures: physics and applications," Nanotechnology 13, 429 (2002).
[CrossRef]

2001 (1)

1999 (1)

1998 (2)

1990 (1)

A. Ip and D. R. Jackson, "Radiation from cylindrical leaky waves," IEEE Trans. Antennas Propag. 38, 482 (1990).
[CrossRef]

1963 (2)

T. Tamir and A. A. Oliner, "Guided Complex Waves, Part I," Proc. Inst. Electr. Eng. 110, 310 (1963).
[CrossRef]

T. Tamir and A. A. Oliner, "Guided Complex Waves, Part II," Proc. Inst. Electr. Eng. 110, 325 (1963).
[CrossRef]

Beruete, M.

M. Beruete, I. Campillo, J. S. Dolado, J. E. Rodríguez-Seco, E. Perea, and M. Sorolla, "Enhanced microwave transmission and beaming using a subwavelength slot in corrugated plane," IEEE Antennas Wirel. Propag. Lett. 3, 328-331 (2004).
[CrossRef]

Bulu, I.

H. Caglayan, I. Bulu, and E. Ozbay, "Plasmonic structures with extraordinary transmission and highly directional beaming properties," IEEE Microwave Opt. Technol. Lett. 48, 2491 (2006).
[CrossRef]

H. Caglayan, I. Bulu, and E. Ozbay, "Extraordinary grating-coupled microwave transmission thorugh a subwavelength annular aperture, " Opt. Express 13, 1666-1671 (2005).
[CrossRef] [PubMed]

Burghignoli, P.

P. Burghignoli, G. Lovat, and D. R. Jackson, "Analysis and optimization of leaky-wave radiation at broadside from a class of 1-D periodic structures," IEEE Trans. Antennas Prop. 54, 2593 (2006).
[CrossRef]

Caglayan, H.

H. Caglayan, I. Bulu, and E. Ozbay, "Plasmonic structures with extraordinary transmission and highly directional beaming properties," IEEE Microwave Opt. Technol. Lett. 48, 2491 (2006).
[CrossRef]

H. Caglayan, I. Bulu, and E. Ozbay, "Extraordinary grating-coupled microwave transmission thorugh a subwavelength annular aperture, " Opt. Express 13, 1666-1671 (2005).
[CrossRef] [PubMed]

Campillo, I.

M. Beruete, I. Campillo, J. S. Dolado, J. E. Rodríguez-Seco, E. Perea, and M. Sorolla, "Enhanced microwave transmission and beaming using a subwavelength slot in corrugated plane," IEEE Antennas Wirel. Propag. Lett. 3, 328-331 (2004).
[CrossRef]

Capolino, F.

R. Qiang, J. Chen, F. Capolino, D. R. Jackson, and D. R. Wilton, "ASM-FDTD: A technique for calculating the field of a finite source in the presence of an infinite periodic artificial material," IEEE Microwave Wirel. Compon. Lett. 17, 271 (2007).
[CrossRef]

F. Capolino, D. R. Jackson, and D. R. Wilton, "Fundamental properties of the field at the interface between air and a periodic artificial material excited by a line source," IEEE Trans. Antennas Propag. 53, 91 (2005).
[CrossRef]

Chen, J.

R. Qiang, J. Chen, F. Capolino, D. R. Jackson, and D. R. Wilton, "ASM-FDTD: A technique for calculating the field of a finite source in the presence of an infinite periodic artificial material," IEEE Microwave Wirel. Compon. Lett. 17, 271 (2007).
[CrossRef]

Degiron, A.

A. Degiron and T. W. Ebbesen, "Analysis of the transmission process through single apertures surrounded by periodic corrugations," Opt. Express 12, 3694-3700 (2004).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen., "Theory of highly directive emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Djurisic, A. B.

Dolado, J. S.

M. Beruete, I. Campillo, J. S. Dolado, J. E. Rodríguez-Seco, E. Perea, and M. Sorolla, "Enhanced microwave transmission and beaming using a subwavelength slot in corrugated plane," IEEE Antennas Wirel. Propag. Lett. 3, 328-331 (2004).
[CrossRef]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 44539-46 (2007).
[CrossRef] [PubMed]

A. Degiron and T. W. Ebbesen, "Analysis of the transmission process through single apertures surrounded by periodic corrugations," Opt. Express 12, 3694-3700 (2004).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen., "Theory of highly directive emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, "Giant optical transmission of sub-wavelength apertures: physics and applications," Nanotechnology 13, 429 (2002).
[CrossRef]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, "Enhanced Light Transmission through a Single Subwavelength Aperture, " Opt. Lett. 261972-1974 (2001).
[CrossRef]

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, "Surface plasmon-enhanced transmission through hole arrays in Cr films," J. Opt. Soc. Am. B 16, 1743-1748, (1999).
[CrossRef]

T. W. Ebbesen et al., Nature  391, 667 (1998).
[CrossRef]

Elazar, J. M.

Enoch, S.

S. Enoch, E. Popov, M. Nevière, and R. Reinisch, "Enhanced light transmission by hole arrays," J. Opt. A: Pure Appl. Opt. 4, S83-S87 (2002).
[CrossRef]

Garcia-Vidal, F. J.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen., "Theory of highly directive emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Genet, C.

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 44539-46 (2007).
[CrossRef] [PubMed]

Ghaemi, H. F.

Ip, A.

A. Ip and D. R. Jackson, "Radiation from cylindrical leaky waves," IEEE Trans. Antennas Propag. 38, 482 (1990).
[CrossRef]

Jackson, D. R.

R. Qiang, J. Chen, F. Capolino, D. R. Jackson, and D. R. Wilton, "ASM-FDTD: A technique for calculating the field of a finite source in the presence of an infinite periodic artificial material," IEEE Microwave Wirel. Compon. Lett. 17, 271 (2007).
[CrossRef]

P. Burghignoli, G. Lovat, and D. R. Jackson, "Analysis and optimization of leaky-wave radiation at broadside from a class of 1-D periodic structures," IEEE Trans. Antennas Prop. 54, 2593 (2006).
[CrossRef]

D. R. Jackson, A. A. Oliner, T. Zhao, and J. T. Williams, "The beaming of light at broadside through a subwavelength hole: leaky-wave model and open stopband effect," Radio Sci. 40, RS6S10 (2005).
[CrossRef]

F. Capolino, D. R. Jackson, and D. R. Wilton, "Fundamental properties of the field at the interface between air and a periodic artificial material excited by a line source," IEEE Trans. Antennas Propag. 53, 91 (2005).
[CrossRef]

A. Ip and D. R. Jackson, "Radiation from cylindrical leaky waves," IEEE Trans. Antennas Propag. 38, 482 (1990).
[CrossRef]

Lewen, G. D.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, "Giant optical transmission of sub-wavelength apertures: physics and applications," Nanotechnology 13, 429 (2002).
[CrossRef]

Lezec, H. J.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen., "Theory of highly directive emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, "Giant optical transmission of sub-wavelength apertures: physics and applications," Nanotechnology 13, 429 (2002).
[CrossRef]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, "Enhanced Light Transmission through a Single Subwavelength Aperture, " Opt. Lett. 261972-1974 (2001).
[CrossRef]

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, "Surface plasmon-enhanced transmission through hole arrays in Cr films," J. Opt. Soc. Am. B 16, 1743-1748, (1999).
[CrossRef]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, "Giant optical transmission of sub-wavelength apertures: physics and applications," Nanotechnology 13, 429 (2002).
[CrossRef]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, "Enhanced Light Transmission through a Single Subwavelength Aperture, " Opt. Lett. 261972-1974 (2001).
[CrossRef]

Lomakin, V.

V. Lomakin, and E. Michielssen, "Beam transmission through periodic subwavelength hole structures," IEEE Trans. Antennas Propag. 55, 1564(2007).
[CrossRef]

Lovat, G.

P. Burghignoli, G. Lovat, and D. R. Jackson, "Analysis and optimization of leaky-wave radiation at broadside from a class of 1-D periodic structures," IEEE Trans. Antennas Prop. 54, 2593 (2006).
[CrossRef]

Majewski, M. L.

Martin-Moreno, L

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003).
[CrossRef]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen., "Theory of highly directive emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

Martín-Moreno, L.

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

Michielssen, E.

V. Lomakin, and E. Michielssen, "Beam transmission through periodic subwavelength hole structures," IEEE Trans. Antennas Propag. 55, 1564(2007).
[CrossRef]

Nahata, A.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, "Giant optical transmission of sub-wavelength apertures: physics and applications," Nanotechnology 13, 429 (2002).
[CrossRef]

Nevière, M.

S. Enoch, E. Popov, M. Nevière, and R. Reinisch, "Enhanced light transmission by hole arrays," J. Opt. A: Pure Appl. Opt. 4, S83-S87 (2002).
[CrossRef]

Oliner, A. A.

D. R. Jackson, A. A. Oliner, T. Zhao, and J. T. Williams, "The beaming of light at broadside through a subwavelength hole: leaky-wave model and open stopband effect," Radio Sci. 40, RS6S10 (2005).
[CrossRef]

T. Tamir and A. A. Oliner, "Guided Complex Waves, Part I," Proc. Inst. Electr. Eng. 110, 310 (1963).
[CrossRef]

T. Tamir and A. A. Oliner, "Guided Complex Waves, Part II," Proc. Inst. Electr. Eng. 110, 325 (1963).
[CrossRef]

Ozbay, E.

H. Caglayan, I. Bulu, and E. Ozbay, "Plasmonic structures with extraordinary transmission and highly directional beaming properties," IEEE Microwave Opt. Technol. Lett. 48, 2491 (2006).
[CrossRef]

H. Caglayan, I. Bulu, and E. Ozbay, "Extraordinary grating-coupled microwave transmission thorugh a subwavelength annular aperture, " Opt. Express 13, 1666-1671 (2005).
[CrossRef] [PubMed]

Pellerin, K. M.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, "Giant optical transmission of sub-wavelength apertures: physics and applications," Nanotechnology 13, 429 (2002).
[CrossRef]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, "Enhanced Light Transmission through a Single Subwavelength Aperture, " Opt. Lett. 261972-1974 (2001).
[CrossRef]

Perea, E.

M. Beruete, I. Campillo, J. S. Dolado, J. E. Rodríguez-Seco, E. Perea, and M. Sorolla, "Enhanced microwave transmission and beaming using a subwavelength slot in corrugated plane," IEEE Antennas Wirel. Propag. Lett. 3, 328-331 (2004).
[CrossRef]

Popov, E.

S. Enoch, E. Popov, M. Nevière, and R. Reinisch, "Enhanced light transmission by hole arrays," J. Opt. A: Pure Appl. Opt. 4, S83-S87 (2002).
[CrossRef]

Qiang, R.

R. Qiang, J. Chen, F. Capolino, D. R. Jackson, and D. R. Wilton, "ASM-FDTD: A technique for calculating the field of a finite source in the presence of an infinite periodic artificial material," IEEE Microwave Wirel. Compon. Lett. 17, 271 (2007).
[CrossRef]

Rakic, A. D.

Reinisch, R.

S. Enoch, E. Popov, M. Nevière, and R. Reinisch, "Enhanced light transmission by hole arrays," J. Opt. A: Pure Appl. Opt. 4, S83-S87 (2002).
[CrossRef]

Rodríguez-Seco, J. E.

M. Beruete, I. Campillo, J. S. Dolado, J. E. Rodríguez-Seco, E. Perea, and M. Sorolla, "Enhanced microwave transmission and beaming using a subwavelength slot in corrugated plane," IEEE Antennas Wirel. Propag. Lett. 3, 328-331 (2004).
[CrossRef]

Sorolla, M.

M. Beruete, I. Campillo, J. S. Dolado, J. E. Rodríguez-Seco, E. Perea, and M. Sorolla, "Enhanced microwave transmission and beaming using a subwavelength slot in corrugated plane," IEEE Antennas Wirel. Propag. Lett. 3, 328-331 (2004).
[CrossRef]

Tamir, T.

T. Tamir and A. A. Oliner, "Guided Complex Waves, Part I," Proc. Inst. Electr. Eng. 110, 310 (1963).
[CrossRef]

T. Tamir and A. A. Oliner, "Guided Complex Waves, Part II," Proc. Inst. Electr. Eng. 110, 325 (1963).
[CrossRef]

Thio, T.

Williams, J. T.

D. R. Jackson, A. A. Oliner, T. Zhao, and J. T. Williams, "The beaming of light at broadside through a subwavelength hole: leaky-wave model and open stopband effect," Radio Sci. 40, RS6S10 (2005).
[CrossRef]

Wilton, D. R.

R. Qiang, J. Chen, F. Capolino, D. R. Jackson, and D. R. Wilton, "ASM-FDTD: A technique for calculating the field of a finite source in the presence of an infinite periodic artificial material," IEEE Microwave Wirel. Compon. Lett. 17, 271 (2007).
[CrossRef]

F. Capolino, D. R. Jackson, and D. R. Wilton, "Fundamental properties of the field at the interface between air and a periodic artificial material excited by a line source," IEEE Trans. Antennas Propag. 53, 91 (2005).
[CrossRef]

Wolff, P. A.

Zhao, T.

D. R. Jackson, A. A. Oliner, T. Zhao, and J. T. Williams, "The beaming of light at broadside through a subwavelength hole: leaky-wave model and open stopband effect," Radio Sci. 40, RS6S10 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003).
[CrossRef]

IEEE Antennas Wirel. Propag. Lett. (1)

M. Beruete, I. Campillo, J. S. Dolado, J. E. Rodríguez-Seco, E. Perea, and M. Sorolla, "Enhanced microwave transmission and beaming using a subwavelength slot in corrugated plane," IEEE Antennas Wirel. Propag. Lett. 3, 328-331 (2004).
[CrossRef]

IEEE Microwave Opt. Technol. Lett. (1)

H. Caglayan, I. Bulu, and E. Ozbay, "Plasmonic structures with extraordinary transmission and highly directional beaming properties," IEEE Microwave Opt. Technol. Lett. 48, 2491 (2006).
[CrossRef]

IEEE Microwave Wirel. Compon. Lett. (1)

R. Qiang, J. Chen, F. Capolino, D. R. Jackson, and D. R. Wilton, "ASM-FDTD: A technique for calculating the field of a finite source in the presence of an infinite periodic artificial material," IEEE Microwave Wirel. Compon. Lett. 17, 271 (2007).
[CrossRef]

IEEE Trans. Antennas Prop. (1)

P. Burghignoli, G. Lovat, and D. R. Jackson, "Analysis and optimization of leaky-wave radiation at broadside from a class of 1-D periodic structures," IEEE Trans. Antennas Prop. 54, 2593 (2006).
[CrossRef]

IEEE Trans. Antennas Propag. (3)

A. Ip and D. R. Jackson, "Radiation from cylindrical leaky waves," IEEE Trans. Antennas Propag. 38, 482 (1990).
[CrossRef]

F. Capolino, D. R. Jackson, and D. R. Wilton, "Fundamental properties of the field at the interface between air and a periodic artificial material excited by a line source," IEEE Trans. Antennas Propag. 53, 91 (2005).
[CrossRef]

V. Lomakin, and E. Michielssen, "Beam transmission through periodic subwavelength hole structures," IEEE Trans. Antennas Propag. 55, 1564(2007).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

S. Enoch, E. Popov, M. Nevière, and R. Reinisch, "Enhanced light transmission by hole arrays," J. Opt. A: Pure Appl. Opt. 4, S83-S87 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nanotechnology (1)

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, "Giant optical transmission of sub-wavelength apertures: physics and applications," Nanotechnology 13, 429 (2002).
[CrossRef]

Nature (2)

C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature 44539-46 (2007).
[CrossRef] [PubMed]

T. W. Ebbesen et al., Nature  391, 667 (1998).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. Lett. (2)

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen., "Theory of highly directive emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

Proc. Inst. Electr. Eng. (2)

T. Tamir and A. A. Oliner, "Guided Complex Waves, Part I," Proc. Inst. Electr. Eng. 110, 310 (1963).
[CrossRef]

T. Tamir and A. A. Oliner, "Guided Complex Waves, Part II," Proc. Inst. Electr. Eng. 110, 325 (1963).
[CrossRef]

Radio Sci. (1)

D. R. Jackson, A. A. Oliner, T. Zhao, and J. T. Williams, "The beaming of light at broadside through a subwavelength hole: leaky-wave model and open stopband effect," Radio Sci. 40, RS6S10 (2005).
[CrossRef]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Other (3)

R. F. Harrington, Time Harmonic Electromagnetic Fields (Wiley/IEEE Press, 2001).
[CrossRef]

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 2005).

A. A. Oliner and D. R. Jackson, "Leaky-Wave Antennas," Ch. 11, Antenna Engineering Handbook, J. Volakis, Ed., (McGraw Hill, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

The structure used to obtain narrow beam radiation at broadside from a subwavelength slit in a silver film, when illuminated on the entrance (bottom) side by a plane wave.

Fig. 2.
Fig. 2.

The model used for the numerical simulation, in which a magnetic lines source excitation is used. Also shown is a pictorial illustration of the leaky plasmon wave that propagates on the structure away from the source.

Fig. 3.
Fig. 3.

The magnitude of the field component Hy along the interface, sampled at the center of each unit cell. Results are plotted versus the number of cells q from the source, for the lossless and lossy cases with h=40 nm depth grooves.

Fig. 4.
Fig. 4.

Same as in Fig. 3 except that h=30 nm for the groove depth.

Fig. 5.
Fig. 5.

Far-field radiation patterns (in dB) for the field Hy , comparing the far-field pattern of the magnetic line source on the corrugated structure with that of the same source on a smooth silver film (without corrugations).

Fig. 6.
Fig. 6.

Comparison of the normalized total and leaky-wave far-field patterns for Hy near broadside, for h=40 nm. (a) lossless case; (b) lossy case.

Fig. 7.
Fig. 7.

Comparison of the normalized total and leaky-wave far-field patterns for Hy near broadside, for h=30 nm. (a) lossless case; (b) lossy case.

Tables (1)

Tables Icon

Table 1. Optimized Wavelengths and Numerically Extracted Wavenumbers

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

k x , n = k x 0 + 2 π n d = β n + i α ,
k plasmon = k 0 ε r ε r + 1 ,
H y ( x ) = n = A n e ik xn x .
ψ q = ψ ( ( q 1 2 ) d ) = e ik x 0 ( qd d 2 ) , q > 0
ψ q = ψ ( ( q + 1 2 ) d ) = e ik x 0 ( qd + d 2 ) , q < 0 ,
AF ( θ ) = q = 1 ψ q e ik 0 sin ( θ ) ( qd d 2 ) + q = 1 ψ q e ik 0 sin ( θ ) ( qd + d 2 ) .
AF ( θ ) = ( z 1 1 2 1 z 1 ) + ( z 2 1 2 1 z 2 )
sin θ 3 dB = 2 α k 0

Metrics