Abstract

The spectral and annealing properties of a series of fiber Bragg gratings (FBGs) written in both H2-loaded and H2-free fibers by use of 800nm femtosecond laser pulse irradiation and created through a phase mask, have been investigated. It is found that type II FBGs inscribed in H2-loaded fibers exhibit superior spectral quality when compared with those written in H2-free fibers. Isochronal annealing tests shows that type II FBGs written in H2-free fibers have the highest thermal stability, followed (in order of stability) by H2-loaded type II, H2-free type I and then H2-loaded type I FBGs. The thermal stability of the H2-loaded type II FBGs can effectively be increased by using a high temperature pre-annealing treatment. After the treatment, type II FBGs written into both H2-free and H2-loaded fibers can sustain long-term annealing (for more than 12 hours) at temperatures of more than 1000 °C while their high reflectivities can still be maintained. This demonstrates the real potential of the FBGs developed and investigated in this work to be used as the ideal sensing elements for a series of high temperature measurement applications.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Othonos and K. Kalli, Fiber Bragg gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).
  2. A. D. Kersey, M. A. Davis, H. J. Patrick, M LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
    [CrossRef]
  3. K. O. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Technol. 15, 1263-1276 (1997).
    [CrossRef]
  4. B. Lee, "Review of the present status of optical fiber sensors," Opt. Fiber Technol. 9, 57-79 (2003).
    [CrossRef]
  5. S. Pal, J. Mandal, T. Sun, K. T. V. Grattan, M. Fokine, F. Carlsson, P. Y. Fonjallaz, S. A. Wade, and S. F. Collins, "Characteristics of potential fibre Bragg grating sensor-based devices at elevated temperatures," Meas. Sci. Technol. 14, 1131-1136 (2003).
    [CrossRef]
  6. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
    [CrossRef] [PubMed]
  7. J. Albert, "Permanent photoinduced refractive-index changes for Bragg gratings in silicate glass waveguides and fibers," MRS Bull. 23, 36 (1998).
  8. J. Albert, M. Fokine, and W. Margulis, "Grating formation in pure silica-core fibers," Opt. Lett. 27, 809-811 (2002).
    [CrossRef]
  9. S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, "Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation," Opt. Lett. 28, 995-997 (2003).
    [CrossRef] [PubMed]
  10. K. A. Zagorulko, P. G. Kryukov, Y. V. Laronov, A. A. Rybaltovsky, E. M. Dianov, S. V. Chekalin, Y. A. Matveets, and V. O. Konpanets, "Fabrication of fiber Bragg gratings with 267 nm femtosecond radiation," Opt. Express 12, 5996-6001 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-12-24-5996.
    [CrossRef] [PubMed]
  11. S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, "Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask," J. Lightwave Technol. 22, 94-100 (2004).
    [CrossRef]
  12. N. Groothoff, J. Canning, E. Buckley, K. Lyttikainen, and J. Zagari, "Bragg gratings in air-silica structured fibers," Opt. Lett. 28, 233-235 (2003).
    [CrossRef] [PubMed]
  13. S. J. Mihailov, D. Grobnic, H. Ding, C. W. Smelser, and J. Broeng, "Femtosecond IR Laser Fabrication of Bragg Gratings in Photonic Crystal Fibers and Taper," IEEE Photon. Technol. Lett. 18, 1837-1839 (2006).
    [CrossRef]
  14. C. W. Smelser, S. J. Mihailov, and D. Grobnic, "Hydrogen loading for fiber grating writing with a femtosecond laser and a phase mask," Opt. Lett. 29, 2127-2129 (2004).
    [CrossRef] [PubMed]
  15. L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-639 (2005).
    [CrossRef]
  16. C. W. Smelser, S. J. Mihailov, and D. Grobnic, "Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask," Opt. Express 13, 5377-5386 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-13-14-5377.
    [CrossRef] [PubMed]
  17. D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, "Long-term thermal stability tests at 1000 ºC of silica fibre Bragg gratings made with ultrafast laser radiation," Meas. Sci. Technol. 17, 1009-1013 (2006).
    [CrossRef]
  18. P. Lu, D. Grobnic, and S. J. Mihailov, "Characterization of the Birefringence in Fiber Bragg Gratings Fabricated With an Ultrafast-Infrared Laser," J. Lightwave Technol. 25, 779-786 (2007).
    [CrossRef]
  19. M. L. Aslund, N. Jovanovic, N. Groothoff, J. Canning, G. D. Marshall, S. D. Jackson, A. Fuerbach, and M. J. Withford, "Optical loss mechanisms in femtosecond laser written point-by-point fibre Bragg gratings," Opt. Express 16, 14248-14254 (2008),http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-18-14248.
    [CrossRef] [PubMed]
  20. C. W. Smelser, D. Grobnic, P. Lu, and S. J. Mihailov, "High temperature stable Type I IR ultrafast induced FBGS," ECOC, Brussels, Belgium, 21-25 Sept. 2008.
  21. J. Canning and S. Bandyopadhyay, "Fibre Bragg Grating Sensor for High Temperature Application," In Australian Conference on Optical Fibre Technology (ACOFT) & Opto-Electron. Commun.Conference (OECCC), Darling Harbour, Sydney, Australia, 2008.
    [CrossRef] [PubMed]
  22. B. Zhang and M. Kahrizi, "High-temperature resistance fiber Bragg grating temperature sensor fabrication," IEEE Sens. J. 7, 586-591 (2007).
    [CrossRef]
  23. Q1. J. Canning, "Fibre gratings and devices for sensors and lasers," Laser Photon. Rev. 2, 275-289 (2008).
    [CrossRef]

2008 (2)

2007 (2)

P. Lu, D. Grobnic, and S. J. Mihailov, "Characterization of the Birefringence in Fiber Bragg Gratings Fabricated With an Ultrafast-Infrared Laser," J. Lightwave Technol. 25, 779-786 (2007).
[CrossRef]

B. Zhang and M. Kahrizi, "High-temperature resistance fiber Bragg grating temperature sensor fabrication," IEEE Sens. J. 7, 586-591 (2007).
[CrossRef]

2006 (2)

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, "Long-term thermal stability tests at 1000 ºC of silica fibre Bragg gratings made with ultrafast laser radiation," Meas. Sci. Technol. 17, 1009-1013 (2006).
[CrossRef]

S. J. Mihailov, D. Grobnic, H. Ding, C. W. Smelser, and J. Broeng, "Femtosecond IR Laser Fabrication of Bragg Gratings in Photonic Crystal Fibers and Taper," IEEE Photon. Technol. Lett. 18, 1837-1839 (2006).
[CrossRef]

2005 (2)

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-639 (2005).
[CrossRef]

C. W. Smelser, S. J. Mihailov, and D. Grobnic, "Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask," Opt. Express 13, 5377-5386 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-13-14-5377.
[CrossRef] [PubMed]

2004 (3)

2003 (4)

N. Groothoff, J. Canning, E. Buckley, K. Lyttikainen, and J. Zagari, "Bragg gratings in air-silica structured fibers," Opt. Lett. 28, 233-235 (2003).
[CrossRef] [PubMed]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, "Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation," Opt. Lett. 28, 995-997 (2003).
[CrossRef] [PubMed]

B. Lee, "Review of the present status of optical fiber sensors," Opt. Fiber Technol. 9, 57-79 (2003).
[CrossRef]

S. Pal, J. Mandal, T. Sun, K. T. V. Grattan, M. Fokine, F. Carlsson, P. Y. Fonjallaz, S. A. Wade, and S. F. Collins, "Characteristics of potential fibre Bragg grating sensor-based devices at elevated temperatures," Meas. Sci. Technol. 14, 1131-1136 (2003).
[CrossRef]

2002 (1)

1998 (1)

J. Albert, "Permanent photoinduced refractive-index changes for Bragg gratings in silicate glass waveguides and fibers," MRS Bull. 23, 36 (1998).

1997 (2)

A. D. Kersey, M. A. Davis, H. J. Patrick, M LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

K. O. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef]

1996 (1)

Albert, J.

J. Albert, M. Fokine, and W. Margulis, "Grating formation in pure silica-core fibers," Opt. Lett. 27, 809-811 (2002).
[CrossRef]

J. Albert, "Permanent photoinduced refractive-index changes for Bragg gratings in silicate glass waveguides and fibers," MRS Bull. 23, 36 (1998).

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Aslund, M. L.

Bolger, J. A.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-639 (2005).
[CrossRef]

Broeng, J.

S. J. Mihailov, D. Grobnic, H. Ding, C. W. Smelser, and J. Broeng, "Femtosecond IR Laser Fabrication of Bragg Gratings in Photonic Crystal Fibers and Taper," IEEE Photon. Technol. Lett. 18, 1837-1839 (2006).
[CrossRef]

Buckley, E.

Canning, J.

Carlsson, F.

S. Pal, J. Mandal, T. Sun, K. T. V. Grattan, M. Fokine, F. Carlsson, P. Y. Fonjallaz, S. A. Wade, and S. F. Collins, "Characteristics of potential fibre Bragg grating sensor-based devices at elevated temperatures," Meas. Sci. Technol. 14, 1131-1136 (2003).
[CrossRef]

Chekalin, S. V.

Collins, S. F.

S. Pal, J. Mandal, T. Sun, K. T. V. Grattan, M. Fokine, F. Carlsson, P. Y. Fonjallaz, S. A. Wade, and S. F. Collins, "Characteristics of potential fibre Bragg grating sensor-based devices at elevated temperatures," Meas. Sci. Technol. 14, 1131-1136 (2003).
[CrossRef]

Davis, K. M.

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Dianov, E. M.

Ding, H.

Eggleton, B. J.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-639 (2005).
[CrossRef]

Fokine, M.

S. Pal, J. Mandal, T. Sun, K. T. V. Grattan, M. Fokine, F. Carlsson, P. Y. Fonjallaz, S. A. Wade, and S. F. Collins, "Characteristics of potential fibre Bragg grating sensor-based devices at elevated temperatures," Meas. Sci. Technol. 14, 1131-1136 (2003).
[CrossRef]

J. Albert, M. Fokine, and W. Margulis, "Grating formation in pure silica-core fibers," Opt. Lett. 27, 809-811 (2002).
[CrossRef]

Fonjallaz, P. Y.

S. Pal, J. Mandal, T. Sun, K. T. V. Grattan, M. Fokine, F. Carlsson, P. Y. Fonjallaz, S. A. Wade, and S. F. Collins, "Characteristics of potential fibre Bragg grating sensor-based devices at elevated temperatures," Meas. Sci. Technol. 14, 1131-1136 (2003).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Fu, L. B.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-639 (2005).
[CrossRef]

Fuerbach, A.

Grattan, K. T. V.

S. Pal, J. Mandal, T. Sun, K. T. V. Grattan, M. Fokine, F. Carlsson, P. Y. Fonjallaz, S. A. Wade, and S. F. Collins, "Characteristics of potential fibre Bragg grating sensor-based devices at elevated temperatures," Meas. Sci. Technol. 14, 1131-1136 (2003).
[CrossRef]

Grobnic, D.

P. Lu, D. Grobnic, and S. J. Mihailov, "Characterization of the Birefringence in Fiber Bragg Gratings Fabricated With an Ultrafast-Infrared Laser," J. Lightwave Technol. 25, 779-786 (2007).
[CrossRef]

S. J. Mihailov, D. Grobnic, H. Ding, C. W. Smelser, and J. Broeng, "Femtosecond IR Laser Fabrication of Bragg Gratings in Photonic Crystal Fibers and Taper," IEEE Photon. Technol. Lett. 18, 1837-1839 (2006).
[CrossRef]

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, "Long-term thermal stability tests at 1000 ºC of silica fibre Bragg gratings made with ultrafast laser radiation," Meas. Sci. Technol. 17, 1009-1013 (2006).
[CrossRef]

C. W. Smelser, S. J. Mihailov, and D. Grobnic, "Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask," Opt. Express 13, 5377-5386 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-13-14-5377.
[CrossRef] [PubMed]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, "Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask," J. Lightwave Technol. 22, 94-100 (2004).
[CrossRef]

C. W. Smelser, S. J. Mihailov, and D. Grobnic, "Hydrogen loading for fiber grating writing with a femtosecond laser and a phase mask," Opt. Lett. 29, 2127-2129 (2004).
[CrossRef] [PubMed]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, "Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation," Opt. Lett. 28, 995-997 (2003).
[CrossRef] [PubMed]

Groothoff, N.

Henderson, G.

Hill, K. O.

K. O. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef]

Hirao, K.

Jackson, S. D.

Jovanovic, N.

Kahrizi, M.

B. Zhang and M. Kahrizi, "High-temperature resistance fiber Bragg grating temperature sensor fabrication," IEEE Sens. J. 7, 586-591 (2007).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Konpanets, V. O.

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Kryukov, P. G.

Laronov, Y. V.

LeBlanc, M

A. D. Kersey, M. A. Davis, H. J. Patrick, M LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Lee, B.

B. Lee, "Review of the present status of optical fiber sensors," Opt. Fiber Technol. 9, 57-79 (2003).
[CrossRef]

Lu, P.

Lyttikainen, K.

Mägi, E. C.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-639 (2005).
[CrossRef]

Mandal, J.

S. Pal, J. Mandal, T. Sun, K. T. V. Grattan, M. Fokine, F. Carlsson, P. Y. Fonjallaz, S. A. Wade, and S. F. Collins, "Characteristics of potential fibre Bragg grating sensor-based devices at elevated temperatures," Meas. Sci. Technol. 14, 1131-1136 (2003).
[CrossRef]

Margulis, W.

Marshall, G. D.

M. L. Aslund, N. Jovanovic, N. Groothoff, J. Canning, G. D. Marshall, S. D. Jackson, A. Fuerbach, and M. J. Withford, "Optical loss mechanisms in femtosecond laser written point-by-point fibre Bragg gratings," Opt. Express 16, 14248-14254 (2008),http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-18-14248.
[CrossRef] [PubMed]

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-639 (2005).
[CrossRef]

Matveets, Y. A.

Meltz, G.

K. O. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef]

Mihailov, S. J.

P. Lu, D. Grobnic, and S. J. Mihailov, "Characterization of the Birefringence in Fiber Bragg Gratings Fabricated With an Ultrafast-Infrared Laser," J. Lightwave Technol. 25, 779-786 (2007).
[CrossRef]

S. J. Mihailov, D. Grobnic, H. Ding, C. W. Smelser, and J. Broeng, "Femtosecond IR Laser Fabrication of Bragg Gratings in Photonic Crystal Fibers and Taper," IEEE Photon. Technol. Lett. 18, 1837-1839 (2006).
[CrossRef]

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, "Long-term thermal stability tests at 1000 ºC of silica fibre Bragg gratings made with ultrafast laser radiation," Meas. Sci. Technol. 17, 1009-1013 (2006).
[CrossRef]

C. W. Smelser, S. J. Mihailov, and D. Grobnic, "Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask," Opt. Express 13, 5377-5386 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-13-14-5377.
[CrossRef] [PubMed]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, "Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask," J. Lightwave Technol. 22, 94-100 (2004).
[CrossRef]

C. W. Smelser, S. J. Mihailov, and D. Grobnic, "Hydrogen loading for fiber grating writing with a femtosecond laser and a phase mask," Opt. Lett. 29, 2127-2129 (2004).
[CrossRef] [PubMed]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, "Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation," Opt. Lett. 28, 995-997 (2003).
[CrossRef] [PubMed]

Miura, K.

Pal, S.

S. Pal, J. Mandal, T. Sun, K. T. V. Grattan, M. Fokine, F. Carlsson, P. Y. Fonjallaz, S. A. Wade, and S. F. Collins, "Characteristics of potential fibre Bragg grating sensor-based devices at elevated temperatures," Meas. Sci. Technol. 14, 1131-1136 (2003).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Rybaltovsky, A. A.

Smelser, C. W.

Steinvurzel, P.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-639 (2005).
[CrossRef]

Sugimoto, N.

Sun, T.

S. Pal, J. Mandal, T. Sun, K. T. V. Grattan, M. Fokine, F. Carlsson, P. Y. Fonjallaz, S. A. Wade, and S. F. Collins, "Characteristics of potential fibre Bragg grating sensor-based devices at elevated temperatures," Meas. Sci. Technol. 14, 1131-1136 (2003).
[CrossRef]

Unruh, J.

Wade, S. A.

S. Pal, J. Mandal, T. Sun, K. T. V. Grattan, M. Fokine, F. Carlsson, P. Y. Fonjallaz, S. A. Wade, and S. F. Collins, "Characteristics of potential fibre Bragg grating sensor-based devices at elevated temperatures," Meas. Sci. Technol. 14, 1131-1136 (2003).
[CrossRef]

Walker, R. B.

Withford, M. J.

M. L. Aslund, N. Jovanovic, N. Groothoff, J. Canning, G. D. Marshall, S. D. Jackson, A. Fuerbach, and M. J. Withford, "Optical loss mechanisms in femtosecond laser written point-by-point fibre Bragg gratings," Opt. Express 16, 14248-14254 (2008),http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-18-14248.
[CrossRef] [PubMed]

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-639 (2005).
[CrossRef]

Zagari, J.

Zagorulko, K. A.

Zhang, B.

B. Zhang and M. Kahrizi, "High-temperature resistance fiber Bragg grating temperature sensor fabrication," IEEE Sens. J. 7, 586-591 (2007).
[CrossRef]

Electron. Lett. (1)

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres," Electron. Lett. 41, 638-639 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. J. Mihailov, D. Grobnic, H. Ding, C. W. Smelser, and J. Broeng, "Femtosecond IR Laser Fabrication of Bragg Gratings in Photonic Crystal Fibers and Taper," IEEE Photon. Technol. Lett. 18, 1837-1839 (2006).
[CrossRef]

IEEE Sens. J. (1)

B. Zhang and M. Kahrizi, "High-temperature resistance fiber Bragg grating temperature sensor fabrication," IEEE Sens. J. 7, 586-591 (2007).
[CrossRef]

J. Lightwave Technol. (4)

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, "Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask," J. Lightwave Technol. 22, 94-100 (2004).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

K. O. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef]

P. Lu, D. Grobnic, and S. J. Mihailov, "Characterization of the Birefringence in Fiber Bragg Gratings Fabricated With an Ultrafast-Infrared Laser," J. Lightwave Technol. 25, 779-786 (2007).
[CrossRef]

Laser Photon. Rev. (1)

Q1. J. Canning, "Fibre gratings and devices for sensors and lasers," Laser Photon. Rev. 2, 275-289 (2008).
[CrossRef]

Meas. Sci. Technol. (2)

S. Pal, J. Mandal, T. Sun, K. T. V. Grattan, M. Fokine, F. Carlsson, P. Y. Fonjallaz, S. A. Wade, and S. F. Collins, "Characteristics of potential fibre Bragg grating sensor-based devices at elevated temperatures," Meas. Sci. Technol. 14, 1131-1136 (2003).
[CrossRef]

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, "Long-term thermal stability tests at 1000 ºC of silica fibre Bragg gratings made with ultrafast laser radiation," Meas. Sci. Technol. 17, 1009-1013 (2006).
[CrossRef]

MRS Bull. (1)

J. Albert, "Permanent photoinduced refractive-index changes for Bragg gratings in silicate glass waveguides and fibers," MRS Bull. 23, 36 (1998).

Opt. Express (3)

Opt. Fiber Technol. (1)

B. Lee, "Review of the present status of optical fiber sensors," Opt. Fiber Technol. 9, 57-79 (2003).
[CrossRef]

Opt. Lett. (5)

Other (3)

A. Othonos and K. Kalli, Fiber Bragg gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

C. W. Smelser, D. Grobnic, P. Lu, and S. J. Mihailov, "High temperature stable Type I IR ultrafast induced FBGS," ECOC, Brussels, Belgium, 21-25 Sept. 2008.

J. Canning and S. Bandyopadhyay, "Fibre Bragg Grating Sensor for High Temperature Application," In Australian Conference on Optical Fibre Technology (ACOFT) & Opto-Electron. Commun.Conference (OECCC), Darling Harbour, Sydney, Australia, 2008.
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Reflection spectra of the FBGs fabricated (a) in a H2-free SMF-28 fiber with 350 µJ pulse energy; (b) in a H2-free SMF-28 fiber with 550 µJ pulse energy; (c) in a H2-loaded SMF-28 fiber with 150 µJ pulse energy; (d) in a H2-loaded SMF-28 fiber with 500 µJ pulse energy.

Fig. 2.
Fig. 2.

Short-term annealing study of FBGs written in two types of fibers. (a) in a H2-free fiber with 350 µJ pulse energy; (b) in a H2-free fiber with 550 µJ pulse energy; (c) in a H2-loaded fiber with 150 µJ pulse energy; (d) in a H2-loaded fiber with 500 µJ pulse energy.

Fig. 3.
Fig. 3.

Isothermal evolution of the reflection and resonant wavelength of type II-IR FBGs inscribed in non-hydrogenated and hydrogenated fibers over a 12 h period at 1000 oC annealing followed by 4 h cooling. (a) the response in terms of reflectivity; (b) the wavelength drift response.

Fig. 4.
Fig. 4.

Spectral evolution of Type II-IR FBGs inscribed in (a) non-hydrogenated and (b) hydrogenated fibers at the four times shown during the annealing process.

Fig. 5.
Fig. 5.

Isothermal evolution of (a) the reflection and (b) resonant wavelength of Type II-IR FBGs inscribed in H2-free fibers during 442 min (at 1150°C) annealing and 180 min cooling.

Tables (1)

Tables Icon

Table 1. Experimental results of irradiation of several fibers with 120 fs, 800 nm laser pulses

Metrics