Abstract

In this paper, we demonstrate that metamaterials represent model systems for longitudinal and transverse magnetic coupling in the optical domain. In particular, such coupling can lead to fully parallel or antiparallel alignment of the magnetic dipoles at the lowest frequency resonance. Also, we present the design scheme for constructing three-dimensional metamaterials with solely magnetic interaction. Our concept could pave the way for achieving rather complicated magnetic materials with desired arrangements of magnetic dipoles at optical frequencies.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Majlis, The quantum theory of magnetism (World Scientific, Singapore, 2000).
    [CrossRef]
  2. K. Itoh, Molecular magnetism: new magnetic materials (Gordon and Breach, Amsterdam, 2000).
  3. C. Stamm, F. Marty, A. Vaterlaus, V. Weich, S. Egger, U. Maier, U. Ramsperger, H. Fuhrmann, and D. Pescia, "Two-dimensional magnetic particles," Science 282, 449-451 (1998).
    [CrossRef] [PubMed]
  4. C. Chappert, H. Bernas, J. Ferre, V. Kottler, J. P. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet, and H. Launois, "Planar patterned magnetic media obtained by ion irradiation," Science 280, 1919-1922 (1998).
    [CrossRef] [PubMed]
  5. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science 305, 788-792 (2004).
    [CrossRef] [PubMed]
  6. S. Palit, T. Driscoll, T. Ren, J. Mock, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. Basov, "Towards artificial magnetism using terahertz split ring resonator metamaterials," Lasers and electro-optics society, LEOS 2006. 19th annual meeting of the IEEE. 248-249 (2006).
  7. S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, "Photonic metamaterials: magnetism at optical frequencies," IEEE J. Sel. Top. Quantum Electron. 12, 1097-1105 (2006).
    [CrossRef]
  8. N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nature Mater. 7, 31-37 (2008).
    [CrossRef]
  9. N. Liu, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Plasmonic building blocks for magnetic molecules in three-dimensional metamaterials," Adv. Mater. 20, 3859-3865 (2008).
    [CrossRef]
  10. W. J. Padilla, D. R. Smith, and D. N. Basov, "Spectrodcopy of metamaterials from infrared to optical frequencies," J. Opt. Soc. Am. B 23, 404-414 (2006).
    [CrossRef]
  11. C. M. Soukoulis, S. Linden, and M. Wegener, "Negative refractive index at optical frequencies," Science 315, 47-49 (2007).
    [CrossRef] [PubMed]
  12. V. M. Shalaev, "Optical negative-index metamaterials," Nature Photon. 1, 41-48 (2007).
    [CrossRef]
  13. S. Blundell, Magnetism in condensed matter (Oxford University Press, 2004).
  14. All the numerical simulations were performed by using the software package CST Microwave Studio, Darmstadt, Germany. The permittivity of bulk gold in the infrared spectral regime is described by the Drude model with plasma frequency ωpl = 1.37 × 1016 s-1 and the damping constant ωc = 4.08 × 1013 s-1.
  15. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
    [CrossRef] [PubMed]
  16. N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Plasmon hybridization in stacked cut-wire metamaterials," Adv. Mater. 19, 3628-3632 (2007).
    [CrossRef]
  17. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures," Phys. Rev. B. 76, 073101 (2007).
    [CrossRef]
  18. S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
    [CrossRef] [PubMed]
  19. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial," Science 312, 892-894 (2006).
    [CrossRef] [PubMed]
  20. S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks," Opt. Express 14, 6778-6787 (2006).
    [CrossRef] [PubMed]
  21. G. Dolling, M. Wegener, and S. Linden, "Realization of a three-functional-layer negative-index photonic metamaterial," Opt. Lett. 32, 551-553 (2007).
    [CrossRef] [PubMed]
  22. T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, "Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission," Opt. Express 14, 11155-11163 (2006).
    [CrossRef] [PubMed]
  23. F. Falcone, T. Lopetegi, M. A. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marques, F. Martin, and M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Phys. Rev. Lett. 93, 197401 (2004).
    [CrossRef] [PubMed]
  24. T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, "Babinet’s principle for optical frequency metamaterials and nanoantennas," Phys. Rev. B. 76, 033407 (2007).
    [CrossRef]

2008 (2)

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nature Mater. 7, 31-37 (2008).
[CrossRef]

N. Liu, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Plasmonic building blocks for magnetic molecules in three-dimensional metamaterials," Adv. Mater. 20, 3859-3865 (2008).
[CrossRef]

2007 (6)

C. M. Soukoulis, S. Linden, and M. Wegener, "Negative refractive index at optical frequencies," Science 315, 47-49 (2007).
[CrossRef] [PubMed]

V. M. Shalaev, "Optical negative-index metamaterials," Nature Photon. 1, 41-48 (2007).
[CrossRef]

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Plasmon hybridization in stacked cut-wire metamaterials," Adv. Mater. 19, 3628-3632 (2007).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures," Phys. Rev. B. 76, 073101 (2007).
[CrossRef]

G. Dolling, M. Wegener, and S. Linden, "Realization of a three-functional-layer negative-index photonic metamaterial," Opt. Lett. 32, 551-553 (2007).
[CrossRef] [PubMed]

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, "Babinet’s principle for optical frequency metamaterials and nanoantennas," Phys. Rev. B. 76, 033407 (2007).
[CrossRef]

2006 (5)

2005 (1)

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

2004 (2)

F. Falcone, T. Lopetegi, M. A. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marques, F. Martin, and M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Phys. Rev. Lett. 93, 197401 (2004).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science 305, 788-792 (2004).
[CrossRef] [PubMed]

2003 (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

1998 (2)

C. Stamm, F. Marty, A. Vaterlaus, V. Weich, S. Egger, U. Maier, U. Ramsperger, H. Fuhrmann, and D. Pescia, "Two-dimensional magnetic particles," Science 282, 449-451 (1998).
[CrossRef] [PubMed]

C. Chappert, H. Bernas, J. Ferre, V. Kottler, J. P. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet, and H. Launois, "Planar patterned magnetic media obtained by ion irradiation," Science 280, 1919-1922 (1998).
[CrossRef] [PubMed]

Baena, J. D.

F. Falcone, T. Lopetegi, M. A. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marques, F. Martin, and M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Phys. Rev. Lett. 93, 197401 (2004).
[CrossRef] [PubMed]

Basov, D. N.

Bernas, H.

C. Chappert, H. Bernas, J. Ferre, V. Kottler, J. P. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet, and H. Launois, "Planar patterned magnetic media obtained by ion irradiation," Science 280, 1919-1922 (1998).
[CrossRef] [PubMed]

Beruete, M.

F. Falcone, T. Lopetegi, M. A. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marques, F. Martin, and M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Phys. Rev. Lett. 93, 197401 (2004).
[CrossRef] [PubMed]

Bonache, J.

F. Falcone, T. Lopetegi, M. A. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marques, F. Martin, and M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Phys. Rev. Lett. 93, 197401 (2004).
[CrossRef] [PubMed]

Brueck, S. R. J.

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks," Opt. Express 14, 6778-6787 (2006).
[CrossRef] [PubMed]

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Burger, S.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, "Photonic metamaterials: magnetism at optical frequencies," IEEE J. Sel. Top. Quantum Electron. 12, 1097-1105 (2006).
[CrossRef]

Cambril, E.

C. Chappert, H. Bernas, J. Ferre, V. Kottler, J. P. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet, and H. Launois, "Planar patterned magnetic media obtained by ion irradiation," Science 280, 1919-1922 (1998).
[CrossRef] [PubMed]

Chappert, C.

C. Chappert, H. Bernas, J. Ferre, V. Kottler, J. P. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet, and H. Launois, "Planar patterned magnetic media obtained by ion irradiation," Science 280, 1919-1922 (1998).
[CrossRef] [PubMed]

Chen, Y.

C. Chappert, H. Bernas, J. Ferre, V. Kottler, J. P. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet, and H. Launois, "Planar patterned magnetic media obtained by ion irradiation," Science 280, 1919-1922 (1998).
[CrossRef] [PubMed]

Devolder, T.

C. Chappert, H. Bernas, J. Ferre, V. Kottler, J. P. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet, and H. Launois, "Planar patterned magnetic media obtained by ion irradiation," Science 280, 1919-1922 (1998).
[CrossRef] [PubMed]

Dolling, G.

G. Dolling, M. Wegener, and S. Linden, "Realization of a three-functional-layer negative-index photonic metamaterial," Opt. Lett. 32, 551-553 (2007).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, "Photonic metamaterials: magnetism at optical frequencies," IEEE J. Sel. Top. Quantum Electron. 12, 1097-1105 (2006).
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial," Science 312, 892-894 (2006).
[CrossRef] [PubMed]

Dong, Z. G.

Egger, S.

C. Stamm, F. Marty, A. Vaterlaus, V. Weich, S. Egger, U. Maier, U. Ramsperger, H. Fuhrmann, and D. Pescia, "Two-dimensional magnetic particles," Science 282, 449-451 (1998).
[CrossRef] [PubMed]

Enkrich, C.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, "Photonic metamaterials: magnetism at optical frequencies," IEEE J. Sel. Top. Quantum Electron. 12, 1097-1105 (2006).
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial," Science 312, 892-894 (2006).
[CrossRef] [PubMed]

Falcone, F.

F. Falcone, T. Lopetegi, M. A. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marques, F. Martin, and M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Phys. Rev. Lett. 93, 197401 (2004).
[CrossRef] [PubMed]

Fan, W. J.

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks," Opt. Express 14, 6778-6787 (2006).
[CrossRef] [PubMed]

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Ferre, J.

C. Chappert, H. Bernas, J. Ferre, V. Kottler, J. P. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet, and H. Launois, "Planar patterned magnetic media obtained by ion irradiation," Science 280, 1919-1922 (1998).
[CrossRef] [PubMed]

Fu, L. W.

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nature Mater. 7, 31-37 (2008).
[CrossRef]

N. Liu, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Plasmonic building blocks for magnetic molecules in three-dimensional metamaterials," Adv. Mater. 20, 3859-3865 (2008).
[CrossRef]

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Plasmon hybridization in stacked cut-wire metamaterials," Adv. Mater. 19, 3628-3632 (2007).
[CrossRef]

Fuhrmann, H.

C. Stamm, F. Marty, A. Vaterlaus, V. Weich, S. Egger, U. Maier, U. Ramsperger, H. Fuhrmann, and D. Pescia, "Two-dimensional magnetic particles," Science 282, 449-451 (1998).
[CrossRef] [PubMed]

Genov, D. A.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures," Phys. Rev. B. 76, 073101 (2007).
[CrossRef]

Giessen, H.

N. Liu, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Plasmonic building blocks for magnetic molecules in three-dimensional metamaterials," Adv. Mater. 20, 3859-3865 (2008).
[CrossRef]

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nature Mater. 7, 31-37 (2008).
[CrossRef]

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Plasmon hybridization in stacked cut-wire metamaterials," Adv. Mater. 19, 3628-3632 (2007).
[CrossRef]

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, "Babinet’s principle for optical frequency metamaterials and nanoantennas," Phys. Rev. B. 76, 033407 (2007).
[CrossRef]

Guo, H. C.

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nature Mater. 7, 31-37 (2008).
[CrossRef]

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Plasmon hybridization in stacked cut-wire metamaterials," Adv. Mater. 19, 3628-3632 (2007).
[CrossRef]

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Jamet, J. P.

C. Chappert, H. Bernas, J. Ferre, V. Kottler, J. P. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet, and H. Launois, "Planar patterned magnetic media obtained by ion irradiation," Science 280, 1919-1922 (1998).
[CrossRef] [PubMed]

Kaiser, S.

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nature Mater. 7, 31-37 (2008).
[CrossRef]

N. Liu, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Plasmonic building blocks for magnetic molecules in three-dimensional metamaterials," Adv. Mater. 20, 3859-3865 (2008).
[CrossRef]

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Plasmon hybridization in stacked cut-wire metamaterials," Adv. Mater. 19, 3628-3632 (2007).
[CrossRef]

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, "Babinet’s principle for optical frequency metamaterials and nanoantennas," Phys. Rev. B. 76, 033407 (2007).
[CrossRef]

Klein, M. W.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, "Photonic metamaterials: magnetism at optical frequencies," IEEE J. Sel. Top. Quantum Electron. 12, 1097-1105 (2006).
[CrossRef]

Koschny, T.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, "Photonic metamaterials: magnetism at optical frequencies," IEEE J. Sel. Top. Quantum Electron. 12, 1097-1105 (2006).
[CrossRef]

Kottler, V.

C. Chappert, H. Bernas, J. Ferre, V. Kottler, J. P. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet, and H. Launois, "Planar patterned magnetic media obtained by ion irradiation," Science 280, 1919-1922 (1998).
[CrossRef] [PubMed]

Laso, M. A.

F. Falcone, T. Lopetegi, M. A. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marques, F. Martin, and M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Phys. Rev. Lett. 93, 197401 (2004).
[CrossRef] [PubMed]

Launois, H.

C. Chappert, H. Bernas, J. Ferre, V. Kottler, J. P. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet, and H. Launois, "Planar patterned magnetic media obtained by ion irradiation," Science 280, 1919-1922 (1998).
[CrossRef] [PubMed]

Lederer, F.

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, "Babinet’s principle for optical frequency metamaterials and nanoantennas," Phys. Rev. B. 76, 033407 (2007).
[CrossRef]

Li, T.

Linden, S.

G. Dolling, M. Wegener, and S. Linden, "Realization of a three-functional-layer negative-index photonic metamaterial," Opt. Lett. 32, 551-553 (2007).
[CrossRef] [PubMed]

C. M. Soukoulis, S. Linden, and M. Wegener, "Negative refractive index at optical frequencies," Science 315, 47-49 (2007).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, "Photonic metamaterials: magnetism at optical frequencies," IEEE J. Sel. Top. Quantum Electron. 12, 1097-1105 (2006).
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial," Science 312, 892-894 (2006).
[CrossRef] [PubMed]

Liu, H.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures," Phys. Rev. B. 76, 073101 (2007).
[CrossRef]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, "Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission," Opt. Express 14, 11155-11163 (2006).
[CrossRef] [PubMed]

Liu, N.

N. Liu, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Plasmonic building blocks for magnetic molecules in three-dimensional metamaterials," Adv. Mater. 20, 3859-3865 (2008).
[CrossRef]

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nature Mater. 7, 31-37 (2008).
[CrossRef]

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Plasmon hybridization in stacked cut-wire metamaterials," Adv. Mater. 19, 3628-3632 (2007).
[CrossRef]

Liu, Y. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures," Phys. Rev. B. 76, 073101 (2007).
[CrossRef]

Liu, Z. W.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures," Phys. Rev. B. 76, 073101 (2007).
[CrossRef]

Lopetegi, T.

F. Falcone, T. Lopetegi, M. A. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marques, F. Martin, and M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Phys. Rev. Lett. 93, 197401 (2004).
[CrossRef] [PubMed]

Maier, U.

C. Stamm, F. Marty, A. Vaterlaus, V. Weich, S. Egger, U. Maier, U. Ramsperger, H. Fuhrmann, and D. Pescia, "Two-dimensional magnetic particles," Science 282, 449-451 (1998).
[CrossRef] [PubMed]

Malloy, K. J.

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks," Opt. Express 14, 6778-6787 (2006).
[CrossRef] [PubMed]

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Marques, R.

F. Falcone, T. Lopetegi, M. A. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marques, F. Martin, and M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Phys. Rev. Lett. 93, 197401 (2004).
[CrossRef] [PubMed]

Martin, F.

F. Falcone, T. Lopetegi, M. A. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marques, F. Martin, and M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Phys. Rev. Lett. 93, 197401 (2004).
[CrossRef] [PubMed]

Marty, F.

C. Stamm, F. Marty, A. Vaterlaus, V. Weich, S. Egger, U. Maier, U. Ramsperger, H. Fuhrmann, and D. Pescia, "Two-dimensional magnetic particles," Science 282, 449-451 (1998).
[CrossRef] [PubMed]

Mathet, V.

C. Chappert, H. Bernas, J. Ferre, V. Kottler, J. P. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet, and H. Launois, "Planar patterned magnetic media obtained by ion irradiation," Science 280, 1919-1922 (1998).
[CrossRef] [PubMed]

Meyrath, T. P.

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, "Babinet’s principle for optical frequency metamaterials and nanoantennas," Phys. Rev. B. 76, 033407 (2007).
[CrossRef]

Nordlander, P.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Osgood, R. M.

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks," Opt. Express 14, 6778-6787 (2006).
[CrossRef] [PubMed]

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Padilla, W. J.

Panoiu, N. C.

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks," Opt. Express 14, 6778-6787 (2006).
[CrossRef] [PubMed]

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science 305, 788-792 (2004).
[CrossRef] [PubMed]

Pescia, D.

C. Stamm, F. Marty, A. Vaterlaus, V. Weich, S. Egger, U. Maier, U. Ramsperger, H. Fuhrmann, and D. Pescia, "Two-dimensional magnetic particles," Science 282, 449-451 (1998).
[CrossRef] [PubMed]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Ramsperger, U.

C. Stamm, F. Marty, A. Vaterlaus, V. Weich, S. Egger, U. Maier, U. Ramsperger, H. Fuhrmann, and D. Pescia, "Two-dimensional magnetic particles," Science 282, 449-451 (1998).
[CrossRef] [PubMed]

Rockstuhl, C.

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, "Babinet’s principle for optical frequency metamaterials and nanoantennas," Phys. Rev. B. 76, 033407 (2007).
[CrossRef]

Rousseaux, F.

C. Chappert, H. Bernas, J. Ferre, V. Kottler, J. P. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet, and H. Launois, "Planar patterned magnetic media obtained by ion irradiation," Science 280, 1919-1922 (1998).
[CrossRef] [PubMed]

Schmidt, F.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, "Photonic metamaterials: magnetism at optical frequencies," IEEE J. Sel. Top. Quantum Electron. 12, 1097-1105 (2006).
[CrossRef]

Schweizer, H.

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nature Mater. 7, 31-37 (2008).
[CrossRef]

N. Liu, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Plasmonic building blocks for magnetic molecules in three-dimensional metamaterials," Adv. Mater. 20, 3859-3865 (2008).
[CrossRef]

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Plasmon hybridization in stacked cut-wire metamaterials," Adv. Mater. 19, 3628-3632 (2007).
[CrossRef]

Seidel, A.

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, "Babinet’s principle for optical frequency metamaterials and nanoantennas," Phys. Rev. B. 76, 033407 (2007).
[CrossRef]

Shalaev, V. M.

V. M. Shalaev, "Optical negative-index metamaterials," Nature Photon. 1, 41-48 (2007).
[CrossRef]

Smith, D. R.

W. J. Padilla, D. R. Smith, and D. N. Basov, "Spectrodcopy of metamaterials from infrared to optical frequencies," J. Opt. Soc. Am. B 23, 404-414 (2006).
[CrossRef]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science 305, 788-792 (2004).
[CrossRef] [PubMed]

Sorolla, M.

F. Falcone, T. Lopetegi, M. A. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marques, F. Martin, and M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Phys. Rev. Lett. 93, 197401 (2004).
[CrossRef] [PubMed]

Soukoulis, C. M.

C. M. Soukoulis, S. Linden, and M. Wegener, "Negative refractive index at optical frequencies," Science 315, 47-49 (2007).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, "Photonic metamaterials: magnetism at optical frequencies," IEEE J. Sel. Top. Quantum Electron. 12, 1097-1105 (2006).
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial," Science 312, 892-894 (2006).
[CrossRef] [PubMed]

Stamm, C.

C. Stamm, F. Marty, A. Vaterlaus, V. Weich, S. Egger, U. Maier, U. Ramsperger, H. Fuhrmann, and D. Pescia, "Two-dimensional magnetic particles," Science 282, 449-451 (1998).
[CrossRef] [PubMed]

Sun, C.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures," Phys. Rev. B. 76, 073101 (2007).
[CrossRef]

Vaterlaus, A.

C. Stamm, F. Marty, A. Vaterlaus, V. Weich, S. Egger, U. Maier, U. Ramsperger, H. Fuhrmann, and D. Pescia, "Two-dimensional magnetic particles," Science 282, 449-451 (1998).
[CrossRef] [PubMed]

Wang, F. M.

Wegener, M.

G. Dolling, M. Wegener, and S. Linden, "Realization of a three-functional-layer negative-index photonic metamaterial," Opt. Lett. 32, 551-553 (2007).
[CrossRef] [PubMed]

C. M. Soukoulis, S. Linden, and M. Wegener, "Negative refractive index at optical frequencies," Science 315, 47-49 (2007).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial," Science 312, 892-894 (2006).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, "Photonic metamaterials: magnetism at optical frequencies," IEEE J. Sel. Top. Quantum Electron. 12, 1097-1105 (2006).
[CrossRef]

Weich, V.

C. Stamm, F. Marty, A. Vaterlaus, V. Weich, S. Egger, U. Maier, U. Ramsperger, H. Fuhrmann, and D. Pescia, "Two-dimensional magnetic particles," Science 282, 449-451 (1998).
[CrossRef] [PubMed]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science 305, 788-792 (2004).
[CrossRef] [PubMed]

Wu, D. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures," Phys. Rev. B. 76, 073101 (2007).
[CrossRef]

Zentgraf, T.

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, "Babinet’s principle for optical frequency metamaterials and nanoantennas," Phys. Rev. B. 76, 033407 (2007).
[CrossRef]

Zhang, S.

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks," Opt. Express 14, 6778-6787 (2006).
[CrossRef] [PubMed]

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

Zhang, X.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures," Phys. Rev. B. 76, 073101 (2007).
[CrossRef]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, "Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission," Opt. Express 14, 11155-11163 (2006).
[CrossRef] [PubMed]

Zhou, J.

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, "Photonic metamaterials: magnetism at optical frequencies," IEEE J. Sel. Top. Quantum Electron. 12, 1097-1105 (2006).
[CrossRef]

Zhu, S. N.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures," Phys. Rev. B. 76, 073101 (2007).
[CrossRef]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, "Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission," Opt. Express 14, 11155-11163 (2006).
[CrossRef] [PubMed]

Adv. Mater. (2)

N. Liu, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Plasmonic building blocks for magnetic molecules in three-dimensional metamaterials," Adv. Mater. 20, 3859-3865 (2008).
[CrossRef]

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Plasmon hybridization in stacked cut-wire metamaterials," Adv. Mater. 19, 3628-3632 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, and M. Wegener, "Photonic metamaterials: magnetism at optical frequencies," IEEE J. Sel. Top. Quantum Electron. 12, 1097-1105 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature Mater. (1)

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nature Mater. 7, 31-37 (2008).
[CrossRef]

Nature Photon. (1)

V. M. Shalaev, "Optical negative-index metamaterials," Nature Photon. 1, 41-48 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B. (2)

T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, "Babinet’s principle for optical frequency metamaterials and nanoantennas," Phys. Rev. B. 76, 033407 (2007).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, "Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures," Phys. Rev. B. 76, 073101 (2007).
[CrossRef]

Phys. Rev. Lett. (2)

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

F. Falcone, T. Lopetegi, M. A. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marques, F. Martin, and M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Phys. Rev. Lett. 93, 197401 (2004).
[CrossRef] [PubMed]

Science (6)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial," Science 312, 892-894 (2006).
[CrossRef] [PubMed]

C. M. Soukoulis, S. Linden, and M. Wegener, "Negative refractive index at optical frequencies," Science 315, 47-49 (2007).
[CrossRef] [PubMed]

C. Stamm, F. Marty, A. Vaterlaus, V. Weich, S. Egger, U. Maier, U. Ramsperger, H. Fuhrmann, and D. Pescia, "Two-dimensional magnetic particles," Science 282, 449-451 (1998).
[CrossRef] [PubMed]

C. Chappert, H. Bernas, J. Ferre, V. Kottler, J. P. Jamet, Y. Chen, E. Cambril, T. Devolder, F. Rousseaux, V. Mathet, and H. Launois, "Planar patterned magnetic media obtained by ion irradiation," Science 280, 1919-1922 (1998).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science 305, 788-792 (2004).
[CrossRef] [PubMed]

Other (5)

S. Palit, T. Driscoll, T. Ren, J. Mock, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. Basov, "Towards artificial magnetism using terahertz split ring resonator metamaterials," Lasers and electro-optics society, LEOS 2006. 19th annual meeting of the IEEE. 248-249 (2006).

N. Majlis, The quantum theory of magnetism (World Scientific, Singapore, 2000).
[CrossRef]

K. Itoh, Molecular magnetism: new magnetic materials (Gordon and Breach, Amsterdam, 2000).

S. Blundell, Magnetism in condensed matter (Oxford University Press, 2004).

All the numerical simulations were performed by using the software package CST Microwave Studio, Darmstadt, Germany. The permittivity of bulk gold in the infrared spectral regime is described by the Drude model with plasma frequency ωpl = 1.37 × 1016 s-1 and the damping constant ωc = 4.08 × 1013 s-1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig.1. .
Fig.1. .

Structure geometry and polarization configuration. (a) 4-layer twisted SRR metamaterial. lx =ly =400 nm, w=100 nm, t=60 nm, d=120 nm, and the lattice constants in both x and y directions are 1200 nm. (b) 5-layer fishnet metamaterial. lx =ly =350 nm, t=40 nm, d=60 nm, and the lattice constants in both x and y directions are 600 nm.

Fig. 2.
Fig. 2.

Optical spectra and magnetic field intensities. (a) Simulated transmission spectrum and detected Hz intensities for the 4-layer twisted SRR metamaterial (longitudinal coupling). (b) Simulated transmission spectrum and detected Hy intensities for the 5-layer fishnet metamaterial (transverse coupling).

Fig. 3.
Fig. 3.

(a) Resonance diagram depicting the hybridization of the modes for the 4-layer twisted SRR metamaterial and the simulated magnetic field distributions of Hz at the corresponding resonance frequencies. (b) Resonance diagram depicting the hybridization of the modes for the 5-layer fishnet metamaterial and the simulated magnetic field distributions of Hy at the corresponding resonance frequencies. Red color denotes a positive H-field, and blue denotes a negative H-field. The “spin” symbols represent the magnetic dipole moments for the respective modes. The fully parallel and antiparallel alignments of “spins” correspond to the lowest frequency resonance in (a) and (b), respectively. The number of magnetic field nodes (dotted lines) is rising and declining in (a) and (b), respectively, for increasing resonance frequencies.

Fig. 4.
Fig. 4.

(a) A unit cell of a two-dimensional magnetic metamaterial. (b) A hypothetical three-dimensional magnetic (“spin”) metamaterial. Each layer consists of SRRs that are twisted by 90° compared to its vertical neighbor layers.

Metrics