Abstract

Ocular aberrations were measured by using a Hartmann-Shack wavefront sensor in the visible and infrared portions of the spectrum. In the latter, wavelengths 1030, 1050 and 1070 nm were used for the first time for the study of the optical quality of the eye. In this spectral range the retinal photoreceptors barely respond, so the radiation is virtually invisible for the subject. The results were confronted with those obtained by the same system at 780 and 632.8 nm. Monochromatic aberrations were found to be similar from the visible to the infrared. Longitudinal chromatic aberration was experimentally obtained, being approximately 1 D from 632.8 to 1070 nm. The feasibility of using the infrared for studying the eye was demonstrated. The employment of the infrared has an enormous potential for the better understanding of the impact and influence of the aberrations in vision with adaptive optics. It allows for measuring and controlling aberrations whilst the subject might eventually perform visual tests, with no interference from the beacon light.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. S. Smirnov, "Measurement of the wave aberration of the human eye," Biophys. J. 7, 766-795 (1962).
  2. F. Berny and S. Slansky, "Wavefront determination resulting from Foucault test as applied to the human eye and visual instruments," in Optical Instruments and Techniques, H. Dickson, 375-386 (Oriel, London, 1970).
  3. H. Howland and B. Howland, "A subjective method for the measurement of monochromatic aberrations of the eye," J. Opt. Soc. Am. 67, 1508-1518 (1977).
    [CrossRef] [PubMed]
  4. G. Walsh, W. N. Charman, and H. Howland, "Objective technology for the determination of monochromatic aberrations of the human eye," J. Opt. Soc. Am. A 1, 987-992 (1984).
    [CrossRef] [PubMed]
  5. D. R. Williams, D. H. Brainard, M. J. McMahon, and R. Navarro, "Double-pass and interferometric measures of the optical quality ofthe eye," J. Opt. Soc. Am. A 11, 3123-3135 (1994).
    [CrossRef]
  6. P. Artal, S. Marcos, R. Navarro, and D. R. Williams, "Odd aberrations and double-pass measurements of retinal image quality," J. Opt. Soc. Am. A 12, 195-201 (1995).
    [CrossRef]
  7. I. Iglesias, E. Berrio, and P. Artal, "Estimates of the ocular wave aberration from pairs of double-pass retinal images," J. Opt. Soc. Am. A. 15, 2466-2476 (1998).
    [CrossRef]
  8. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, "Objective measurement of WA’s of the human eye with the use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. A 11, 1949-1957 (1994).
    [CrossRef]
  9. J. Liang and D. R. Williams, "Aberrations and retinal image quality of the normal human eye," J. Opt. Soc. Am. A 14, 2873-2883 (1997).
    [CrossRef]
  10. P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, "Analysis of the performance of the Hartmann-Shack sensor in the human eye," J. Opt. Soc. Am. A 17, 1388-1398 (2000).
    [CrossRef]
  11. D. R. Griffin, R. Hubbard, and G. Wald, "The Sensitivity of the human eye to infra-red radiation," J. Opt. Soc. Am. 37, 546-553 (1947).
    [CrossRef] [PubMed]
  12. P. L. Walraven and H. J. Leebeek, "Foveal sensitivity of the human eye in the near infrared," J. Opt. Soc. Am. 53, 765-766 (1963).
    [CrossRef] [PubMed]
  13. D. H. Sliney, R. T. Wangemann, J. K. Franks, and M. L. Wolbarsht, "Visual sensitivity of the eye to infrared laser radiation," J. Opt. Soc. Am. 66, 339-341 (1976).
    [CrossRef] [PubMed]
  14. American National Standard Institutes "For the safe use of lasers," ANSI Z136.1-2000, Laser Institute of America, (Orlando, Fla., 2000).
  15. F. C. Delori and K. P. Pflibsen, "Spectral reflectance of the human ocular fundus," Appl. Opt. 28, 1061-1077 (1989).
    [CrossRef] [PubMed]
  16. J. van de Kraats, T. T. J. M. Berendschot, and D. van Norren, "The pathways of light measured in fundus reflectometry," Vision Res. 36, 2229-2247 (1996).
    [CrossRef]
  17. E. J. Fernández, A. Unterhuber, P. Prieto, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-2-400.
    [CrossRef] [PubMed]
  18. D. A. Atchison and G. Smith, "Chromatic dispersions of the ocular media of human eyes," J. Opt. Soc. Am. A 22, 29-37 (2005).
    [CrossRef]
  19. S. Manzanera, C. Canovas, P. M. Prieto, and P. Artal, "A wavelength tunable wavefront sensor for the human eye," Opt. Express 16, 7748-7755 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-11-7748.
    [CrossRef] [PubMed]
  20. H. Liou and N. A. Brennan, "Anatomically accurate, finite model eye for optical modeling," J. Opt. Soc. Am. A 14, 1684-1695 (1997).
    [CrossRef]
  21. R. E. Bedford and G. Wyszecki, "Axial chromatic aberration of the human eye," J. Opt. Soc. Am. 47, 564- 565 (1957).
    [CrossRef] [PubMed]
  22. W. N. Charman and J. A. Jennings, "Objective measurements of the longitudinal chromatic aberration of the human eye," Vision Res. 16, 999-1005 (1976).
    [CrossRef] [PubMed]
  23. P. A. Howarth and A. Bradley, "The longitudinal chromatic aberration of the human eye and its correction," Vision Res. 26, 361-366 (1986).
    [CrossRef] [PubMed]
  24. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, "The chromatic eye: a new reduce-eye model of ocular chromatic aberration in humans," Appl. Opt. 31, 592-599 (1992).
    [CrossRef]
  25. E. J. Fernández, I. Iglesias, and P. Artal, "Closed-loop adaptive optics in the human eye," Opt. Lett. 26, 746-748 (2001).
    [CrossRef]
  26. E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, "Adaptive optics visual simulator," J. Refract. Surg. 18, 634-638 (2002).
  27. P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, "Neural compensation for the eye's optical aberrations," J. Vision 4, 281-287 (2004).
    [CrossRef]
  28. E. J. Fernández and P. Artal, "Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics," J. Opt. Soc. Am. A 22, 1732-1738 (2005).
    [CrossRef]
  29. P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, "Adaptive optics simulation of intraocular lenses with modified spherical aberration," Invest. Ophthalmol. Vis. Sci. 45, 4601-4610 (2004).
    [CrossRef] [PubMed]
  30. L. Chen, P. B. Kruger, H. Hofer, B. Singer, and D. R. Williams, "Accommodation with higher-order monochromatic aberrations corrected with adaptive optics," J. Opt. Soc. Am. A 23, 1-8 (2006).
    [CrossRef]
  31. K. M. Hampson, C. Paterson, C. Dainty, and E. A. H. Mallen, "Adaptive optics system for investigation of the effect of the aberration dynamics of the human eye on steady-state accommodation control," J. Opt. Soc. Am. A 23, 1082-1088 (2006).
    [CrossRef]
  32. A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid," Opt. Express 13, 3252-3258 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-9-3252.
    [CrossRef] [PubMed]
  33. E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, "In vivo optical frequency domain imaging of human retina and choroid," Opt. Express 14, 4403-4411 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4403.
    [CrossRef] [PubMed]
  34. R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, "Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second," Opt. Lett. 32, 2049-2051 (2007).
    [CrossRef] [PubMed]
  35. S. Makita, T. Fabritius, and Y. Yasuno, "Full-range, high-speed, high-resolution 1-μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye," Opt. Express 16, 8406-8420 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-12-8406.
    [CrossRef] [PubMed]

2008 (2)

2007 (1)

2006 (3)

2005 (4)

2004 (2)

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, "Neural compensation for the eye's optical aberrations," J. Vision 4, 281-287 (2004).
[CrossRef]

P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, "Adaptive optics simulation of intraocular lenses with modified spherical aberration," Invest. Ophthalmol. Vis. Sci. 45, 4601-4610 (2004).
[CrossRef] [PubMed]

2002 (1)

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, "Adaptive optics visual simulator," J. Refract. Surg. 18, 634-638 (2002).

2001 (1)

2000 (1)

1998 (1)

I. Iglesias, E. Berrio, and P. Artal, "Estimates of the ocular wave aberration from pairs of double-pass retinal images," J. Opt. Soc. Am. A. 15, 2466-2476 (1998).
[CrossRef]

1997 (2)

1996 (1)

J. van de Kraats, T. T. J. M. Berendschot, and D. van Norren, "The pathways of light measured in fundus reflectometry," Vision Res. 36, 2229-2247 (1996).
[CrossRef]

1995 (1)

1994 (2)

1992 (1)

1989 (1)

1986 (1)

P. A. Howarth and A. Bradley, "The longitudinal chromatic aberration of the human eye and its correction," Vision Res. 26, 361-366 (1986).
[CrossRef] [PubMed]

1984 (1)

1977 (1)

1976 (2)

W. N. Charman and J. A. Jennings, "Objective measurements of the longitudinal chromatic aberration of the human eye," Vision Res. 16, 999-1005 (1976).
[CrossRef] [PubMed]

D. H. Sliney, R. T. Wangemann, J. K. Franks, and M. L. Wolbarsht, "Visual sensitivity of the eye to infrared laser radiation," J. Opt. Soc. Am. 66, 339-341 (1976).
[CrossRef] [PubMed]

1963 (1)

1962 (1)

M. S. Smirnov, "Measurement of the wave aberration of the human eye," Biophys. J. 7, 766-795 (1962).

1957 (1)

1947 (1)

Adler, D. C.

Artal, P.

S. Manzanera, C. Canovas, P. M. Prieto, and P. Artal, "A wavelength tunable wavefront sensor for the human eye," Opt. Express 16, 7748-7755 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-11-7748.
[CrossRef] [PubMed]

E. J. Fernández, A. Unterhuber, P. Prieto, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-2-400.
[CrossRef] [PubMed]

E. J. Fernández and P. Artal, "Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics," J. Opt. Soc. Am. A 22, 1732-1738 (2005).
[CrossRef]

P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, "Adaptive optics simulation of intraocular lenses with modified spherical aberration," Invest. Ophthalmol. Vis. Sci. 45, 4601-4610 (2004).
[CrossRef] [PubMed]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, "Neural compensation for the eye's optical aberrations," J. Vision 4, 281-287 (2004).
[CrossRef]

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, "Adaptive optics visual simulator," J. Refract. Surg. 18, 634-638 (2002).

E. J. Fernández, I. Iglesias, and P. Artal, "Closed-loop adaptive optics in the human eye," Opt. Lett. 26, 746-748 (2001).
[CrossRef]

P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, "Analysis of the performance of the Hartmann-Shack sensor in the human eye," J. Opt. Soc. Am. A 17, 1388-1398 (2000).
[CrossRef]

I. Iglesias, E. Berrio, and P. Artal, "Estimates of the ocular wave aberration from pairs of double-pass retinal images," J. Opt. Soc. Am. A. 15, 2466-2476 (1998).
[CrossRef]

P. Artal, S. Marcos, R. Navarro, and D. R. Williams, "Odd aberrations and double-pass measurements of retinal image quality," J. Opt. Soc. Am. A 12, 195-201 (1995).
[CrossRef]

Atchison, D. A.

Bedford, R. E.

Berendschot, T. T. J. M.

J. van de Kraats, T. T. J. M. Berendschot, and D. van Norren, "The pathways of light measured in fundus reflectometry," Vision Res. 36, 2229-2247 (1996).
[CrossRef]

Berrio, E.

I. Iglesias, E. Berrio, and P. Artal, "Estimates of the ocular wave aberration from pairs of double-pass retinal images," J. Opt. Soc. Am. A. 15, 2466-2476 (1998).
[CrossRef]

Bille, J. F.

Bradley, A.

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, "The chromatic eye: a new reduce-eye model of ocular chromatic aberration in humans," Appl. Opt. 31, 592-599 (1992).
[CrossRef]

P. A. Howarth and A. Bradley, "The longitudinal chromatic aberration of the human eye and its correction," Vision Res. 26, 361-366 (1986).
[CrossRef] [PubMed]

Brainard, D. H.

Brennan, N. A.

Canovas, C.

Charman, W. N.

G. Walsh, W. N. Charman, and H. Howland, "Objective technology for the determination of monochromatic aberrations of the human eye," J. Opt. Soc. Am. A 1, 987-992 (1984).
[CrossRef] [PubMed]

W. N. Charman and J. A. Jennings, "Objective measurements of the longitudinal chromatic aberration of the human eye," Vision Res. 16, 999-1005 (1976).
[CrossRef] [PubMed]

Chavez-Pirson, A.

Chen, L.

L. Chen, P. B. Kruger, H. Hofer, B. Singer, and D. R. Williams, "Accommodation with higher-order monochromatic aberrations corrected with adaptive optics," J. Opt. Soc. Am. A 23, 1-8 (2006).
[CrossRef]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, "Neural compensation for the eye's optical aberrations," J. Vision 4, 281-287 (2004).
[CrossRef]

Dainty, C.

de Boer, J. F.

Delori, F. C.

Drexler, W.

Fabritius, T.

Fernández, E. J.

E. J. Fernández, A. Unterhuber, P. Prieto, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-2-400.
[CrossRef] [PubMed]

E. J. Fernández and P. Artal, "Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics," J. Opt. Soc. Am. A 22, 1732-1738 (2005).
[CrossRef]

P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, "Adaptive optics simulation of intraocular lenses with modified spherical aberration," Invest. Ophthalmol. Vis. Sci. 45, 4601-4610 (2004).
[CrossRef] [PubMed]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, "Neural compensation for the eye's optical aberrations," J. Vision 4, 281-287 (2004).
[CrossRef]

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, "Adaptive optics visual simulator," J. Refract. Surg. 18, 634-638 (2002).

E. J. Fernández, I. Iglesias, and P. Artal, "Closed-loop adaptive optics in the human eye," Opt. Lett. 26, 746-748 (2001).
[CrossRef]

Franks, J. K.

Fujimoto, J. G.

Goelz, S.

Griffin, D. R.

Grimm, B.

Hampson, K. M.

Hermann, B.

Hofer, H.

Howarth, P. A.

P. A. Howarth and A. Bradley, "The longitudinal chromatic aberration of the human eye and its correction," Vision Res. 26, 361-366 (1986).
[CrossRef] [PubMed]

Howland, B.

Howland, H.

Hubbard, R.

Huber, R.

Iglesias, I.

E. J. Fernández, I. Iglesias, and P. Artal, "Closed-loop adaptive optics in the human eye," Opt. Lett. 26, 746-748 (2001).
[CrossRef]

I. Iglesias, E. Berrio, and P. Artal, "Estimates of the ocular wave aberration from pairs of double-pass retinal images," J. Opt. Soc. Am. A. 15, 2466-2476 (1998).
[CrossRef]

Jennings, J. A.

W. N. Charman and J. A. Jennings, "Objective measurements of the longitudinal chromatic aberration of the human eye," Vision Res. 16, 999-1005 (1976).
[CrossRef] [PubMed]

Kruger, P. B.

Lee, E. C.

Leebeek, H. J.

Liang, J.

Lim, H.

Liou, H.

Makita, S.

Mallen, E. A. H.

Manzanera, S.

S. Manzanera, C. Canovas, P. M. Prieto, and P. Artal, "A wavelength tunable wavefront sensor for the human eye," Opt. Express 16, 7748-7755 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-11-7748.
[CrossRef] [PubMed]

P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, "Adaptive optics simulation of intraocular lenses with modified spherical aberration," Invest. Ophthalmol. Vis. Sci. 45, 4601-4610 (2004).
[CrossRef] [PubMed]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, "Neural compensation for the eye's optical aberrations," J. Vision 4, 281-287 (2004).
[CrossRef]

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, "Adaptive optics visual simulator," J. Refract. Surg. 18, 634-638 (2002).

Marcos, S.

McMahon, M. J.

Mujat, M.

Navarro, R.

Norrby, S.

P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, "Adaptive optics simulation of intraocular lenses with modified spherical aberration," Invest. Ophthalmol. Vis. Sci. 45, 4601-4610 (2004).
[CrossRef] [PubMed]

Paterson, C.

Pflibsen, K. P.

Piers, P.

P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, "Adaptive optics simulation of intraocular lenses with modified spherical aberration," Invest. Ophthalmol. Vis. Sci. 45, 4601-4610 (2004).
[CrossRef] [PubMed]

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, "Adaptive optics visual simulator," J. Refract. Surg. 18, 634-638 (2002).

Považay, B.

Prieto, P.

Prieto, P. M.

Sattmann, H.

Singer, B.

L. Chen, P. B. Kruger, H. Hofer, B. Singer, and D. R. Williams, "Accommodation with higher-order monochromatic aberrations corrected with adaptive optics," J. Opt. Soc. Am. A 23, 1-8 (2006).
[CrossRef]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, "Neural compensation for the eye's optical aberrations," J. Vision 4, 281-287 (2004).
[CrossRef]

Sliney, D. H.

Smirnov, M. S.

M. S. Smirnov, "Measurement of the wave aberration of the human eye," Biophys. J. 7, 766-795 (1962).

Smith, G.

Srinivasan, V. J.

Thibos, L. N.

Unterhuber, A.

van de Kraats, J.

J. van de Kraats, T. T. J. M. Berendschot, and D. van Norren, "The pathways of light measured in fundus reflectometry," Vision Res. 36, 2229-2247 (1996).
[CrossRef]

van Norren, D.

J. van de Kraats, T. T. J. M. Berendschot, and D. van Norren, "The pathways of light measured in fundus reflectometry," Vision Res. 36, 2229-2247 (1996).
[CrossRef]

Vargas-Martín, F.

Wald, G.

Walraven, P. L.

Walsh, G.

Wangemann, R. T.

Williams, D. R.

Wolbarsht, M. L.

Wyszecki, G.

Yasuno, Y.

Ye, M.

Yun, S. H.

Zhang, X.

Appl. Opt. (2)

Biophys. J. (1)

M. S. Smirnov, "Measurement of the wave aberration of the human eye," Biophys. J. 7, 766-795 (1962).

Invest. Ophthalmol. Vis. Sci. (1)

P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, "Adaptive optics simulation of intraocular lenses with modified spherical aberration," Invest. Ophthalmol. Vis. Sci. 45, 4601-4610 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (5)

J. Opt. Soc. Am. A (11)

D. A. Atchison and G. Smith, "Chromatic dispersions of the ocular media of human eyes," J. Opt. Soc. Am. A 22, 29-37 (2005).
[CrossRef]

E. J. Fernández and P. Artal, "Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics," J. Opt. Soc. Am. A 22, 1732-1738 (2005).
[CrossRef]

L. Chen, P. B. Kruger, H. Hofer, B. Singer, and D. R. Williams, "Accommodation with higher-order monochromatic aberrations corrected with adaptive optics," J. Opt. Soc. Am. A 23, 1-8 (2006).
[CrossRef]

K. M. Hampson, C. Paterson, C. Dainty, and E. A. H. Mallen, "Adaptive optics system for investigation of the effect of the aberration dynamics of the human eye on steady-state accommodation control," J. Opt. Soc. Am. A 23, 1082-1088 (2006).
[CrossRef]

J. Liang, B. Grimm, S. Goelz, and J. F. Bille, "Objective measurement of WA’s of the human eye with the use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. A 11, 1949-1957 (1994).
[CrossRef]

D. R. Williams, D. H. Brainard, M. J. McMahon, and R. Navarro, "Double-pass and interferometric measures of the optical quality ofthe eye," J. Opt. Soc. Am. A 11, 3123-3135 (1994).
[CrossRef]

G. Walsh, W. N. Charman, and H. Howland, "Objective technology for the determination of monochromatic aberrations of the human eye," J. Opt. Soc. Am. A 1, 987-992 (1984).
[CrossRef] [PubMed]

H. Liou and N. A. Brennan, "Anatomically accurate, finite model eye for optical modeling," J. Opt. Soc. Am. A 14, 1684-1695 (1997).
[CrossRef]

J. Liang and D. R. Williams, "Aberrations and retinal image quality of the normal human eye," J. Opt. Soc. Am. A 14, 2873-2883 (1997).
[CrossRef]

P. Artal, S. Marcos, R. Navarro, and D. R. Williams, "Odd aberrations and double-pass measurements of retinal image quality," J. Opt. Soc. Am. A 12, 195-201 (1995).
[CrossRef]

P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, "Analysis of the performance of the Hartmann-Shack sensor in the human eye," J. Opt. Soc. Am. A 17, 1388-1398 (2000).
[CrossRef]

J. Opt. Soc. Am. A. (1)

I. Iglesias, E. Berrio, and P. Artal, "Estimates of the ocular wave aberration from pairs of double-pass retinal images," J. Opt. Soc. Am. A. 15, 2466-2476 (1998).
[CrossRef]

J. Refract. Surg. (1)

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, "Adaptive optics visual simulator," J. Refract. Surg. 18, 634-638 (2002).

J. Vision (1)

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, "Neural compensation for the eye's optical aberrations," J. Vision 4, 281-287 (2004).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Vision Res. (3)

J. van de Kraats, T. T. J. M. Berendschot, and D. van Norren, "The pathways of light measured in fundus reflectometry," Vision Res. 36, 2229-2247 (1996).
[CrossRef]

W. N. Charman and J. A. Jennings, "Objective measurements of the longitudinal chromatic aberration of the human eye," Vision Res. 16, 999-1005 (1976).
[CrossRef] [PubMed]

P. A. Howarth and A. Bradley, "The longitudinal chromatic aberration of the human eye and its correction," Vision Res. 26, 361-366 (1986).
[CrossRef] [PubMed]

Other (2)

American National Standard Institutes "For the safe use of lasers," ANSI Z136.1-2000, Laser Institute of America, (Orlando, Fla., 2000).

F. Berny and S. Slansky, "Wavefront determination resulting from Foucault test as applied to the human eye and visual instruments," in Optical Instruments and Techniques, H. Dickson, 375-386 (Oriel, London, 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental set-up. Three light sources illuminated consecutively the eye. Ocular aberrations were obtained by a Hartmann-Shack (H-S) wavefront sensor at wavelengths 632.8, 780, 1030, 1050 and 1070 nm. Fixation test was employed in the system during the runs.

Fig. 2.
Fig. 2.

H-S images obtained from different subjects at 632.8 and 1050 nm showing the augment of scattering with wavelength. Below images, average peak and pedestal value are presented.

Fig. 3.
Fig. 3.

Average pedestal-peak ratio (PPR) from all subjects as a function of wavelength. Error bars corresponded to the standard deviation.

Fig. 4.
Fig. 4.

Zernike coefficients from two subjects at 632.8, 780, 1030, 1050 and 1070 nm, together with aberration maps. The mean value from all wavelengths was also included (pink color).

Fig. 5.
Fig. 5.

RMS, excluding defocus, of ocular aberration from each subject for a 5.8 mm pupil size at different wavelengths. Average RMS was shown in pink color. Error bars corresponded with standard deviation.

Fig. 6.
Fig. 6.

Averaged chromatic defocus from all subjects as a function of wavelength. Error bars showed the standard deviation.

Metrics