Abstract

In this paper, polarization-insensitive wavelength conversion based on orthogonal-pumps and four-wave mixing in HNLF is experimentally demonstrated for high-speed 112-Gb/s PolMux-RZ-QPSK transmission with digital coherent detection. The conversion performance of the proposed scheme is investigated for both single- and four-channel input signals, with the achieved post-conversion OSNR for the two cases shown to be 30 and 20 dB, respectively. Moreover, it is shown that the OSNR of the converted single-channel signal can be maintained above 25 dB even if the wavelength spacing between the original and converted signals is larger than 25 nm. Finally, the BER of 4×112-Gb/s PolMux-RZ-QPSK converted signals after 1 km HNLF transmission is measured to be below 1×10-4. The optimum OSNR and launched HNLF power are also investigated.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Uesaka, K. Wang, M. E. Marhic, and L. G. Kazovsky, "Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments," IEEE J. Quantum Electron. 18, 560-568 (2002).
  2. Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. M. J. Koonen, G. D. Khoe, H. J. S. Dorren, X. Shu, and I. Bennion, "Error-free 320 Gb/s SOA-based wavelength conversion using optical filtering," in Proc. OFC, paper PDP28 (2006).
  3. W. Wang, H. N. Poulsen, L. Rau, H. F. Chou, J. E. Bowers, and D. J. Blumenthal, "Raman-enhanced regenerative ultrafast all-optical fiber XPM wavelength converter," J. Lightwave Technol. 23, 1105-1115 (2005).
    [CrossRef]
  4. R. M. Jopson and R. E. Tench, "Polarisation-independent phase conjugation of lightwave signals," Electron. Lett. 29, 2216 - 2217, (1993).
    [CrossRef]
  5. K. Inoue, "Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequency," J. Lightwave Technol. 12, 1916-1920 (1994).
    [CrossRef]
  6. L. Y. Lin, J. M. Wiesenfeld, J. S. Perino, and A. H. Gnauck, "Polarization-insensitive wavelength conversion up to 10 Gb/s based on four-wave mixing is a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 10, 955-957 (1998).
    [CrossRef]
  7. M. Matsuura, N. Kishi, and T. Miki, "Broadband regenerative wavelength conversion and multicasting using triple-stage semiconductor-based wavelength converters," Opt. Lett. 23, 1026-1028 (2007).
    [CrossRef]
  8. S. H. Wang, L. Xu, P.K.A. Wai, and H. Y. Tam, "All-optical wavelength conversion using multi-pump Raman-assisted four-wave mixing," in Proc OFC, paper OWQ1 (2007).
  9. J. Ma, J. Yu, C. Yu, Z. Jia, X. Sang, Z. Zhou, T. Wang, and G. K. Chang, "Wavelength conversion based on four-wave mixing in high-nonlinear dispersion shifted fiber using a dual-pump configuration," J. Lightwave Technol. 24, 2851-2858 (2006).
    [CrossRef]
  10. W. Mao, P. A. Andrekson, and J. Toulouse, "All-optical wavelength conversion based on sinusoidal cross-phase modulation in optical fiber," IEEE Photon. Technol. Lett. 17, 420-422 (2005).
    [CrossRef]
  11. S. Radic, C. J. McKinstrie, R. M. Jopson, A. H. Gnauck, J. C. Centanni, and R. Chraplyvy, "Bit-level switching in a fiber parametric processor with inherent wavelength conversion and optical conjugation," in Proc. OFC, 23-27 (2004).
  12. A. Hamié, A. Sharaiha, M. Guégan, and J. L. Bihan, "All-optical inverted and noninverted wavelength conversion using two-cascaded semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 17, 1229-1231 (2005).
    [CrossRef]
  13. J. Yu, Z. Jia, Y. K. Yeo, and G. K. Chang, "Spectrally non-inverting wavelength conversion based on FWM in HNL-DSF and its application in label switching optical network," in Proc. 25th ECOC, 32-35 (2005).
  14. C. Porzi, A. Bogoni, L. Poti, and G. Contestabile, "Polarization and wavelength-independent time-division demultiplexing based on copolarized-pumps FWM in an SOA," IEEE Photon. Technol. Lett. 17, 633-635 (2005).
    [CrossRef]
  15. J. P. R. Lacey, M. A. Summerfield, and S. J. Madden, "Tunability of polarization-insensitive wavelength converters based on four-wave mixing in semiconductor optical amplifiers," J. Lightwave Technol. 16, 2419-2427 (1998).
    [CrossRef]
  16. K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky "Polarization-insensitive wavelength exchange in highly-nonlinear dispersion-shifted fiber," in Proc. OFC, paper ThY3 (2006).
  17. T. Tanemura, K. Katoh, and K. Kikuchi, "Polarization-insensitive asymmetric four-wave mixing using circularly polarized pumps in a twisted fiber," Opt. Express 13, 7497-7505 (2005).
    [CrossRef] [PubMed]
  18. C. J. McKinstrie, H. Kogelnik, R. M. Jopson, S. Radic, and A. V. Kanaev, "Four-wave mixing in fibers with random birefringence," Opt. Express 12, 2033-2055 (2004).
    [CrossRef] [PubMed]
  19. D. van den Borne, T. Duthel, C. R. S. Fludger, E. D. Schmidt, T. Wuth, C. Schulien, E. Gottwald, G. D. Khoe, and H. de Waardt, " Coherent equalization versus direct detection for 111-Gb/s Ethernet transport," in Proc ECOC, paper MA2.4 (2007).
  20. X. Zhou, J. Yu, D. Qian, T. Wang, G. Zhang, and P. Magil, "8x114Gb/s, 25-GHz-spaced, polmux-RZ-8PSK transmission over 640km of SSMF employing digital coherent detection and EDFA-only amplification," in Proc OFC, paper PDP1 (2008).
  21. S. K. Korotky, P. B. Hansen, L. Eskildsen, and J. J. Veselka, "Efficient phase modulation scheme for suppressing stimulated Brillouin scattering," in Proc IOOC, paper WD2-1 (1995).

2007

M. Matsuura, N. Kishi, and T. Miki, "Broadband regenerative wavelength conversion and multicasting using triple-stage semiconductor-based wavelength converters," Opt. Lett. 23, 1026-1028 (2007).
[CrossRef]

2006

2005

W. Wang, H. N. Poulsen, L. Rau, H. F. Chou, J. E. Bowers, and D. J. Blumenthal, "Raman-enhanced regenerative ultrafast all-optical fiber XPM wavelength converter," J. Lightwave Technol. 23, 1105-1115 (2005).
[CrossRef]

T. Tanemura, K. Katoh, and K. Kikuchi, "Polarization-insensitive asymmetric four-wave mixing using circularly polarized pumps in a twisted fiber," Opt. Express 13, 7497-7505 (2005).
[CrossRef] [PubMed]

W. Mao, P. A. Andrekson, and J. Toulouse, "All-optical wavelength conversion based on sinusoidal cross-phase modulation in optical fiber," IEEE Photon. Technol. Lett. 17, 420-422 (2005).
[CrossRef]

A. Hamié, A. Sharaiha, M. Guégan, and J. L. Bihan, "All-optical inverted and noninverted wavelength conversion using two-cascaded semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 17, 1229-1231 (2005).
[CrossRef]

C. Porzi, A. Bogoni, L. Poti, and G. Contestabile, "Polarization and wavelength-independent time-division demultiplexing based on copolarized-pumps FWM in an SOA," IEEE Photon. Technol. Lett. 17, 633-635 (2005).
[CrossRef]

2004

2002

K. Uesaka, K. Wang, M. E. Marhic, and L. G. Kazovsky, "Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments," IEEE J. Quantum Electron. 18, 560-568 (2002).

1998

J. P. R. Lacey, M. A. Summerfield, and S. J. Madden, "Tunability of polarization-insensitive wavelength converters based on four-wave mixing in semiconductor optical amplifiers," J. Lightwave Technol. 16, 2419-2427 (1998).
[CrossRef]

L. Y. Lin, J. M. Wiesenfeld, J. S. Perino, and A. H. Gnauck, "Polarization-insensitive wavelength conversion up to 10 Gb/s based on four-wave mixing is a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 10, 955-957 (1998).
[CrossRef]

1994

K. Inoue, "Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequency," J. Lightwave Technol. 12, 1916-1920 (1994).
[CrossRef]

1993

R. M. Jopson and R. E. Tench, "Polarisation-independent phase conjugation of lightwave signals," Electron. Lett. 29, 2216 - 2217, (1993).
[CrossRef]

Andrekson, P. A.

W. Mao, P. A. Andrekson, and J. Toulouse, "All-optical wavelength conversion based on sinusoidal cross-phase modulation in optical fiber," IEEE Photon. Technol. Lett. 17, 420-422 (2005).
[CrossRef]

Bihan, J. L.

A. Hamié, A. Sharaiha, M. Guégan, and J. L. Bihan, "All-optical inverted and noninverted wavelength conversion using two-cascaded semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 17, 1229-1231 (2005).
[CrossRef]

Blumenthal, D. J.

Bogoni, A.

C. Porzi, A. Bogoni, L. Poti, and G. Contestabile, "Polarization and wavelength-independent time-division demultiplexing based on copolarized-pumps FWM in an SOA," IEEE Photon. Technol. Lett. 17, 633-635 (2005).
[CrossRef]

Bowers, J. E.

Chang, G. K.

Chou, H. F.

Contestabile, G.

C. Porzi, A. Bogoni, L. Poti, and G. Contestabile, "Polarization and wavelength-independent time-division demultiplexing based on copolarized-pumps FWM in an SOA," IEEE Photon. Technol. Lett. 17, 633-635 (2005).
[CrossRef]

Gnauck, A. H.

L. Y. Lin, J. M. Wiesenfeld, J. S. Perino, and A. H. Gnauck, "Polarization-insensitive wavelength conversion up to 10 Gb/s based on four-wave mixing is a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 10, 955-957 (1998).
[CrossRef]

Guégan, M.

A. Hamié, A. Sharaiha, M. Guégan, and J. L. Bihan, "All-optical inverted and noninverted wavelength conversion using two-cascaded semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 17, 1229-1231 (2005).
[CrossRef]

Hamié, A.

A. Hamié, A. Sharaiha, M. Guégan, and J. L. Bihan, "All-optical inverted and noninverted wavelength conversion using two-cascaded semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 17, 1229-1231 (2005).
[CrossRef]

Inoue, K.

K. Inoue, "Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequency," J. Lightwave Technol. 12, 1916-1920 (1994).
[CrossRef]

Jia, Z.

Jopson, R. M.

C. J. McKinstrie, H. Kogelnik, R. M. Jopson, S. Radic, and A. V. Kanaev, "Four-wave mixing in fibers with random birefringence," Opt. Express 12, 2033-2055 (2004).
[CrossRef] [PubMed]

R. M. Jopson and R. E. Tench, "Polarisation-independent phase conjugation of lightwave signals," Electron. Lett. 29, 2216 - 2217, (1993).
[CrossRef]

Kanaev, A. V.

Katoh, K.

Kazovsky, L. G.

K. Uesaka, K. Wang, M. E. Marhic, and L. G. Kazovsky, "Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments," IEEE J. Quantum Electron. 18, 560-568 (2002).

Kikuchi, K.

Kishi, N.

M. Matsuura, N. Kishi, and T. Miki, "Broadband regenerative wavelength conversion and multicasting using triple-stage semiconductor-based wavelength converters," Opt. Lett. 23, 1026-1028 (2007).
[CrossRef]

Kogelnik, H.

Lacey, J. P. R.

Lin, L. Y.

L. Y. Lin, J. M. Wiesenfeld, J. S. Perino, and A. H. Gnauck, "Polarization-insensitive wavelength conversion up to 10 Gb/s based on four-wave mixing is a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 10, 955-957 (1998).
[CrossRef]

Ma, J.

Madden, S. J.

Mao, W.

W. Mao, P. A. Andrekson, and J. Toulouse, "All-optical wavelength conversion based on sinusoidal cross-phase modulation in optical fiber," IEEE Photon. Technol. Lett. 17, 420-422 (2005).
[CrossRef]

Marhic, M. E.

K. Uesaka, K. Wang, M. E. Marhic, and L. G. Kazovsky, "Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments," IEEE J. Quantum Electron. 18, 560-568 (2002).

Matsuura, M.

M. Matsuura, N. Kishi, and T. Miki, "Broadband regenerative wavelength conversion and multicasting using triple-stage semiconductor-based wavelength converters," Opt. Lett. 23, 1026-1028 (2007).
[CrossRef]

McKinstrie, C. J.

Miki, T.

M. Matsuura, N. Kishi, and T. Miki, "Broadband regenerative wavelength conversion and multicasting using triple-stage semiconductor-based wavelength converters," Opt. Lett. 23, 1026-1028 (2007).
[CrossRef]

Perino, J. S.

L. Y. Lin, J. M. Wiesenfeld, J. S. Perino, and A. H. Gnauck, "Polarization-insensitive wavelength conversion up to 10 Gb/s based on four-wave mixing is a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 10, 955-957 (1998).
[CrossRef]

Porzi, C.

C. Porzi, A. Bogoni, L. Poti, and G. Contestabile, "Polarization and wavelength-independent time-division demultiplexing based on copolarized-pumps FWM in an SOA," IEEE Photon. Technol. Lett. 17, 633-635 (2005).
[CrossRef]

Poti, L.

C. Porzi, A. Bogoni, L. Poti, and G. Contestabile, "Polarization and wavelength-independent time-division demultiplexing based on copolarized-pumps FWM in an SOA," IEEE Photon. Technol. Lett. 17, 633-635 (2005).
[CrossRef]

Poulsen, H. N.

Radic, S.

Rau, L.

Sang, X.

Sharaiha, A.

A. Hamié, A. Sharaiha, M. Guégan, and J. L. Bihan, "All-optical inverted and noninverted wavelength conversion using two-cascaded semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 17, 1229-1231 (2005).
[CrossRef]

Summerfield, M. A.

Tanemura, T.

Tench, R. E.

R. M. Jopson and R. E. Tench, "Polarisation-independent phase conjugation of lightwave signals," Electron. Lett. 29, 2216 - 2217, (1993).
[CrossRef]

Toulouse, J.

W. Mao, P. A. Andrekson, and J. Toulouse, "All-optical wavelength conversion based on sinusoidal cross-phase modulation in optical fiber," IEEE Photon. Technol. Lett. 17, 420-422 (2005).
[CrossRef]

Uesaka, K.

K. Uesaka, K. Wang, M. E. Marhic, and L. G. Kazovsky, "Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments," IEEE J. Quantum Electron. 18, 560-568 (2002).

Wang, K.

K. Uesaka, K. Wang, M. E. Marhic, and L. G. Kazovsky, "Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments," IEEE J. Quantum Electron. 18, 560-568 (2002).

Wang, T.

Wang, W.

Wiesenfeld, J. M.

L. Y. Lin, J. M. Wiesenfeld, J. S. Perino, and A. H. Gnauck, "Polarization-insensitive wavelength conversion up to 10 Gb/s based on four-wave mixing is a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 10, 955-957 (1998).
[CrossRef]

Yu, C.

Yu, J.

Zhou, Z.

Electron. Lett.

R. M. Jopson and R. E. Tench, "Polarisation-independent phase conjugation of lightwave signals," Electron. Lett. 29, 2216 - 2217, (1993).
[CrossRef]

IEEE J. Quantum Electron.

K. Uesaka, K. Wang, M. E. Marhic, and L. G. Kazovsky, "Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments," IEEE J. Quantum Electron. 18, 560-568 (2002).

IEEE Photon. Technol. Lett.

L. Y. Lin, J. M. Wiesenfeld, J. S. Perino, and A. H. Gnauck, "Polarization-insensitive wavelength conversion up to 10 Gb/s based on four-wave mixing is a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 10, 955-957 (1998).
[CrossRef]

W. Mao, P. A. Andrekson, and J. Toulouse, "All-optical wavelength conversion based on sinusoidal cross-phase modulation in optical fiber," IEEE Photon. Technol. Lett. 17, 420-422 (2005).
[CrossRef]

A. Hamié, A. Sharaiha, M. Guégan, and J. L. Bihan, "All-optical inverted and noninverted wavelength conversion using two-cascaded semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 17, 1229-1231 (2005).
[CrossRef]

C. Porzi, A. Bogoni, L. Poti, and G. Contestabile, "Polarization and wavelength-independent time-division demultiplexing based on copolarized-pumps FWM in an SOA," IEEE Photon. Technol. Lett. 17, 633-635 (2005).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

M. Matsuura, N. Kishi, and T. Miki, "Broadband regenerative wavelength conversion and multicasting using triple-stage semiconductor-based wavelength converters," Opt. Lett. 23, 1026-1028 (2007).
[CrossRef]

Other

S. H. Wang, L. Xu, P.K.A. Wai, and H. Y. Tam, "All-optical wavelength conversion using multi-pump Raman-assisted four-wave mixing," in Proc OFC, paper OWQ1 (2007).

J. Yu, Z. Jia, Y. K. Yeo, and G. K. Chang, "Spectrally non-inverting wavelength conversion based on FWM in HNL-DSF and its application in label switching optical network," in Proc. 25th ECOC, 32-35 (2005).

S. Radic, C. J. McKinstrie, R. M. Jopson, A. H. Gnauck, J. C. Centanni, and R. Chraplyvy, "Bit-level switching in a fiber parametric processor with inherent wavelength conversion and optical conjugation," in Proc. OFC, 23-27 (2004).

Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. M. J. Koonen, G. D. Khoe, H. J. S. Dorren, X. Shu, and I. Bennion, "Error-free 320 Gb/s SOA-based wavelength conversion using optical filtering," in Proc. OFC, paper PDP28 (2006).

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky "Polarization-insensitive wavelength exchange in highly-nonlinear dispersion-shifted fiber," in Proc. OFC, paper ThY3 (2006).

D. van den Borne, T. Duthel, C. R. S. Fludger, E. D. Schmidt, T. Wuth, C. Schulien, E. Gottwald, G. D. Khoe, and H. de Waardt, " Coherent equalization versus direct detection for 111-Gb/s Ethernet transport," in Proc ECOC, paper MA2.4 (2007).

X. Zhou, J. Yu, D. Qian, T. Wang, G. Zhang, and P. Magil, "8x114Gb/s, 25-GHz-spaced, polmux-RZ-8PSK transmission over 640km of SSMF employing digital coherent detection and EDFA-only amplification," in Proc OFC, paper PDP1 (2008).

S. K. Korotky, P. B. Hansen, L. Eskildsen, and J. J. Veselka, "Efficient phase modulation scheme for suppressing stimulated Brillouin scattering," in Proc IOOC, paper WD2-1 (1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

The principle of orthogonal-pump wavelength conversion for (a) single and (b) two input channel signals.

Fig. 2.
Fig. 2.

Experimental setup of single input signal. (ECL: external cavity laser, ATT: attenuator, PMOC: polarization maintaining optical coupler, PBC: polarization beam combiner, MZM: Mach-Zehnder modulator, PM: phase modulator, HNLF: high-nonlinear fiber, TOF: tunable optical filter, PC: polarization controller)

Fig. 3.
Fig. 3.

Measured BER as a function of optical OSNR (0.1-nm reference bandwidth) of single 112-Gb/s PolMux-RZ-QPSK signals for back-to-back and after conversion.

Fig. 4.
Fig. 4.

The optical power and OSNR of the converted signal vs. the wavelength spacing between the converted and the original signals.

Fig. 5.
Fig. 5.

Experimental setup of WDM signals and the optical spectrum (0.1-nm resolution) after the WDM-filter.

Fig. 6.
Fig. 6.

Received optical spectrum (0.1-nm resolution) after WC for 4×112-Gb/s PolMux-RZQPSK signals.

Fig. 7.
Fig. 7.

Measured BER for four 112-Gb/s PolMux-RZ-QPSK signals after wavelength conversion.

Fig. 8.
Fig. 8.

Measured BER for converted CH2 (s2’). (a) At different total signal power. (b) At different pump power.

Fig. 9.
Fig. 9.

Measured OSNR of converted CH2 (s2’) at different launched power into HNLF.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ω c 2 = 2 ω p 1 ω s
ω c 3 = 2 ω p 2 ω s
ω ̲ c 1 ̲ = ω ̲ p 1 ̲ + ω ̲ p 2 ̲ ω ̲ s ̲
ω c 2 ω c 3 = 2 ( ω p 1 ω p 2 )
ω c 1 ω c 3 = ω p 1 ω p 2
ω c 2 ω c 1 = ω p 1 ω p 2

Metrics