Abstract

We demonstrate the compact efficient multi-GHz Kerr-lens mode locking in a diode-pumped Nd:YVO4 laser with a simple linear cavity without the need of any additional components. Experimental results reveal that the laser system can be characterized in stable single-pulse and multiple-pulse mode-locked operations. With a pump power of 2.5 W, the compact laser cavity produces average output powers greater than 0.8 W with a pulse width less than 10 ps in the range of 2–6 GHz.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. García-Cortés, M. D. Serrano, C. Zaldo, C. Cascales, G. Strömqvist, and V. Pasiskevicius, "Nonlinear refractive indices of disordered NaT(XO4)2 T=Y, La, Gd, Lu and Bi, X=Mo, W femtosecond laser crystals," Appl. Phys. B 91, 507-510 (2008).
    [CrossRef]
  2. A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, "Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers," Opt. Commun. 194, 201-206 (2001).
    [CrossRef]
  3. A. A. Kaminskii, H. J. Eichler, H. Rhee, and K. Ueda, "New manifestations of nonlinear χ(3)-laser properties in tetragonal YVO4 crystal: many-phonon SRS, cascaded self-frequency tripling, and self-sum-frequency generation in blue spectral range with the involving of Stokes components under one-micron picosecond pumping," Laser Phys. Lett. 5, 804-811 (2008).
    [CrossRef]
  4. Y. F. Chen, "Efficient subnanosecond diode-pumped passively Q-switched Nd:YVO4 self-stimulated Raman laser," Opt. Lett. 29, 1251-1253 (2004).
    [CrossRef] [PubMed]
  5. Y. F. Chen, "High-power diode-pumped actively Q-switched Nd:YVO4 self-Raman laser: influence of dopant concentration," Opt. Lett. 29, 1915-1917 (2004).
    [CrossRef] [PubMed]
  6. F. Su, X. Y. Zhang, Q. Wang, S. Ding, P. Jia, S. Li, S. Fan, C. Zhang and B. Liu, "Diode pumped actively Q-switched Nd:YVO4 self-Raman laser," J. Phys. D: Appl. Phys. 39, 2090-2093 (2006).
    [CrossRef]
  7. X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, and Z. H. Cong, "Diode-pumped actively Q-switched c-cut Nd:YVO4 self-Raman laser," Laser Phys. Lett. 1-4 (2008) / DOI 10.1002/lapl.200810093.
  8. N. Minkovski, G. I. Petrov, S. M. Saltiel, O. Albert, and J. Etchepare, "Nonlinear polarization rotation and orthogonal polarization generation experienced in a single-beam configuration," J. Opt. Soc. Am. B 21, 1659-1664 (2004).
    [CrossRef]
  9. S. Kourtev, N. Minkovski, S. M. Saltiel, A. Jullien, O. Albert, and J. Etchepare, "Nonlinear mirror based on cross-polarized wave generation," Opt. Lett. 31, 3143-3145 (2006).
    [CrossRef] [PubMed]
  10. A. G. Selivanov, I. A. Denisov, N. V. Kuleshov, and K. V. Yumashev, "Nonlinear refractive properties of Yb3+-doped KY(WO4)2 and YVO4 laser crystals," Appl. Phys. B 83, 61-65 (2006).
    [CrossRef]
  11. D. E. Spence, P. N. Kean, and W. Sibbett, "60-fsec pulse generation from a self-mode-locked Ti:sapphire laser," Opt. Lett. 16, 42-44 (1991).
    [CrossRef] [PubMed]
  12. G. P. A. Malcolm and A. I. Ferguson, "Self-mode locking of a diode-pumped Nd:YLF laser," Opt. Lett. 16, 1967-1969 (1991).
    [CrossRef] [PubMed]
  13. K. X. Liu, C. J. Flood, D. R. Walker, and H. M. van Driel, "Kerr lens mode locking a diode-pumped Nd:YAG laser," Opt. Lett. 19, 1361-1363 (1992).
    [CrossRef]
  14. A. Sennaroglu, C. R. Pollock, and H. Nathel, "Continuous wave self-mode-locked operation of a femtosecond Cr4+:YAG laser," Opt. Lett. 19, 390-392 (1994).
    [PubMed]
  15. Y. Pang, V. Yanovsky, F. Wise, and B. I. Minkov, "Self mode-locked Cr:forsterite laser," Opt. Lett. 18, 1168-1170 (1993).
    [CrossRef] [PubMed]
  16. P. M. W. French, R. Mellish, J. R. Teylor, P. J. Delfyett, and L. T. Florez, "Mode-locked all-solid-state diode-pumped Cr:LiSAF laser," Opt. Lett. 18, 1934-1946 (1993).
    [CrossRef] [PubMed]
  17. P. Li Kam Wa, B. H. T. Chai, and A. Miller, "Self-mode locked Cr3+:LiCaAlF6 laser," Opt. Lett. 17, 1438-1440 (1992).
    [CrossRef]
  18. G. Q. Xie, D. Y. Tang, L. M. Zhao, L. J. Qian, and K. Ueda, "High-power self-mode-locked Yb:Y2O3 ceramic laser," Opt. Lett. 32, 2741-2743 (2007).
    [CrossRef] [PubMed]
  19. K. J. Weingarten, M. J. W. Rodwell, and D. M. Bloom, "Picosecond optical sampling of GaAs integrated circuits," IEEE J. Quantum Electron. 24, 198-220 (1988).
    [CrossRef]
  20. R. Ramaswami and K. Sivarajan, Optical Networks: A Practical Perspective. (San Mateo, CA: Morgan Kaufmann, 1998).
  21. A. Bartels, T. Dekorsky, and H. Kurz, "Femtosecond Ti:sapphire ring laser with 2-GHz repetition rate and its application in time-resolved spectroscopy," Opt. Lett. 24, 996-998 (1999).
    [CrossRef]
  22. J. J. Zayhowski and A. Mooradian, "Single-frequency microchip Nd lasers," Opt. Lett. 14, 24-26 (1989).
    [CrossRef] [PubMed]
  23. G. J. Dixon, L. S. Lingvay, and R. H. Jarman, "Properties of close coupled monolithic, lithium neodymium, tetraphosphate lasers," Proc. SPIE 1104, 107 (1989).
  24. Y. F. Chen, "High-power diode-pumped Q-switched intracavity frequency-doubled Nd:YVO4 laser with a sandwich-type resonator," Opt. Lett. 24, 1032-1034 (1999).
    [CrossRef]

2008

A. García-Cortés, M. D. Serrano, C. Zaldo, C. Cascales, G. Strömqvist, and V. Pasiskevicius, "Nonlinear refractive indices of disordered NaT(XO4)2 T=Y, La, Gd, Lu and Bi, X=Mo, W femtosecond laser crystals," Appl. Phys. B 91, 507-510 (2008).
[CrossRef]

A. A. Kaminskii, H. J. Eichler, H. Rhee, and K. Ueda, "New manifestations of nonlinear χ(3)-laser properties in tetragonal YVO4 crystal: many-phonon SRS, cascaded self-frequency tripling, and self-sum-frequency generation in blue spectral range with the involving of Stokes components under one-micron picosecond pumping," Laser Phys. Lett. 5, 804-811 (2008).
[CrossRef]

2007

2006

F. Su, X. Y. Zhang, Q. Wang, S. Ding, P. Jia, S. Li, S. Fan, C. Zhang and B. Liu, "Diode pumped actively Q-switched Nd:YVO4 self-Raman laser," J. Phys. D: Appl. Phys. 39, 2090-2093 (2006).
[CrossRef]

S. Kourtev, N. Minkovski, S. M. Saltiel, A. Jullien, O. Albert, and J. Etchepare, "Nonlinear mirror based on cross-polarized wave generation," Opt. Lett. 31, 3143-3145 (2006).
[CrossRef] [PubMed]

A. G. Selivanov, I. A. Denisov, N. V. Kuleshov, and K. V. Yumashev, "Nonlinear refractive properties of Yb3+-doped KY(WO4)2 and YVO4 laser crystals," Appl. Phys. B 83, 61-65 (2006).
[CrossRef]

2004

2001

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, "Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers," Opt. Commun. 194, 201-206 (2001).
[CrossRef]

1999

1994

1993

1992

1991

1989

J. J. Zayhowski and A. Mooradian, "Single-frequency microchip Nd lasers," Opt. Lett. 14, 24-26 (1989).
[CrossRef] [PubMed]

G. J. Dixon, L. S. Lingvay, and R. H. Jarman, "Properties of close coupled monolithic, lithium neodymium, tetraphosphate lasers," Proc. SPIE 1104, 107 (1989).

1988

K. J. Weingarten, M. J. W. Rodwell, and D. M. Bloom, "Picosecond optical sampling of GaAs integrated circuits," IEEE J. Quantum Electron. 24, 198-220 (1988).
[CrossRef]

Albert, O.

Bagaev, S. N.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, "Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers," Opt. Commun. 194, 201-206 (2001).
[CrossRef]

Barnes, J. C.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, "Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers," Opt. Commun. 194, 201-206 (2001).
[CrossRef]

Bartels, A.

Bloom, D. M.

K. J. Weingarten, M. J. W. Rodwell, and D. M. Bloom, "Picosecond optical sampling of GaAs integrated circuits," IEEE J. Quantum Electron. 24, 198-220 (1988).
[CrossRef]

Cascales, C.

A. García-Cortés, M. D. Serrano, C. Zaldo, C. Cascales, G. Strömqvist, and V. Pasiskevicius, "Nonlinear refractive indices of disordered NaT(XO4)2 T=Y, La, Gd, Lu and Bi, X=Mo, W femtosecond laser crystals," Appl. Phys. B 91, 507-510 (2008).
[CrossRef]

Chai, B. H. T.

Chen, Y. F.

Chyba, T. H.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, "Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers," Opt. Commun. 194, 201-206 (2001).
[CrossRef]

Dekorsky, T.

Delfyett, P. J.

Denisov, I. A.

A. G. Selivanov, I. A. Denisov, N. V. Kuleshov, and K. V. Yumashev, "Nonlinear refractive properties of Yb3+-doped KY(WO4)2 and YVO4 laser crystals," Appl. Phys. B 83, 61-65 (2006).
[CrossRef]

Ding, S.

F. Su, X. Y. Zhang, Q. Wang, S. Ding, P. Jia, S. Li, S. Fan, C. Zhang and B. Liu, "Diode pumped actively Q-switched Nd:YVO4 self-Raman laser," J. Phys. D: Appl. Phys. 39, 2090-2093 (2006).
[CrossRef]

Dixon, G. J.

G. J. Dixon, L. S. Lingvay, and R. H. Jarman, "Properties of close coupled monolithic, lithium neodymium, tetraphosphate lasers," Proc. SPIE 1104, 107 (1989).

Eichler, H. J.

A. A. Kaminskii, H. J. Eichler, H. Rhee, and K. Ueda, "New manifestations of nonlinear χ(3)-laser properties in tetragonal YVO4 crystal: many-phonon SRS, cascaded self-frequency tripling, and self-sum-frequency generation in blue spectral range with the involving of Stokes components under one-micron picosecond pumping," Laser Phys. Lett. 5, 804-811 (2008).
[CrossRef]

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, "Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers," Opt. Commun. 194, 201-206 (2001).
[CrossRef]

Etchepare, J.

Fan, S.

F. Su, X. Y. Zhang, Q. Wang, S. Ding, P. Jia, S. Li, S. Fan, C. Zhang and B. Liu, "Diode pumped actively Q-switched Nd:YVO4 self-Raman laser," J. Phys. D: Appl. Phys. 39, 2090-2093 (2006).
[CrossRef]

Ferguson, A. I.

Flood, C. J.

Florez, L. T.

French, P. M. W.

Gad, G. M. A.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, "Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers," Opt. Commun. 194, 201-206 (2001).
[CrossRef]

García-Cortés, A.

A. García-Cortés, M. D. Serrano, C. Zaldo, C. Cascales, G. Strömqvist, and V. Pasiskevicius, "Nonlinear refractive indices of disordered NaT(XO4)2 T=Y, La, Gd, Lu and Bi, X=Mo, W femtosecond laser crystals," Appl. Phys. B 91, 507-510 (2008).
[CrossRef]

Jarman, R. H.

G. J. Dixon, L. S. Lingvay, and R. H. Jarman, "Properties of close coupled monolithic, lithium neodymium, tetraphosphate lasers," Proc. SPIE 1104, 107 (1989).

Jia, P.

F. Su, X. Y. Zhang, Q. Wang, S. Ding, P. Jia, S. Li, S. Fan, C. Zhang and B. Liu, "Diode pumped actively Q-switched Nd:YVO4 self-Raman laser," J. Phys. D: Appl. Phys. 39, 2090-2093 (2006).
[CrossRef]

Jullien, A.

Kaminskii, A. A.

A. A. Kaminskii, H. J. Eichler, H. Rhee, and K. Ueda, "New manifestations of nonlinear χ(3)-laser properties in tetragonal YVO4 crystal: many-phonon SRS, cascaded self-frequency tripling, and self-sum-frequency generation in blue spectral range with the involving of Stokes components under one-micron picosecond pumping," Laser Phys. Lett. 5, 804-811 (2008).
[CrossRef]

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, "Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers," Opt. Commun. 194, 201-206 (2001).
[CrossRef]

Kean, P. N.

Kourtev, S.

Kouta, H.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, "Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers," Opt. Commun. 194, 201-206 (2001).
[CrossRef]

Kuleshov, N. V.

A. G. Selivanov, I. A. Denisov, N. V. Kuleshov, and K. V. Yumashev, "Nonlinear refractive properties of Yb3+-doped KY(WO4)2 and YVO4 laser crystals," Appl. Phys. B 83, 61-65 (2006).
[CrossRef]

Kurz, H.

Kuwano, Y.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, "Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers," Opt. Commun. 194, 201-206 (2001).
[CrossRef]

Li, S.

F. Su, X. Y. Zhang, Q. Wang, S. Ding, P. Jia, S. Li, S. Fan, C. Zhang and B. Liu, "Diode pumped actively Q-switched Nd:YVO4 self-Raman laser," J. Phys. D: Appl. Phys. 39, 2090-2093 (2006).
[CrossRef]

Li Kam Wa, P.

Lingvay, L. S.

G. J. Dixon, L. S. Lingvay, and R. H. Jarman, "Properties of close coupled monolithic, lithium neodymium, tetraphosphate lasers," Proc. SPIE 1104, 107 (1989).

Liu, B.

F. Su, X. Y. Zhang, Q. Wang, S. Ding, P. Jia, S. Li, S. Fan, C. Zhang and B. Liu, "Diode pumped actively Q-switched Nd:YVO4 self-Raman laser," J. Phys. D: Appl. Phys. 39, 2090-2093 (2006).
[CrossRef]

Liu, K. X.

Lu, J.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, "Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers," Opt. Commun. 194, 201-206 (2001).
[CrossRef]

Malcolm, G. P. A.

Mellish, R.

Miller, A.

Minkov, B. I.

Minkovski, N.

Mooradian, A.

Murai, T.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, "Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers," Opt. Commun. 194, 201-206 (2001).
[CrossRef]

Nathel, H.

Pang, Y.

Pasiskevicius, V.

A. García-Cortés, M. D. Serrano, C. Zaldo, C. Cascales, G. Strömqvist, and V. Pasiskevicius, "Nonlinear refractive indices of disordered NaT(XO4)2 T=Y, La, Gd, Lu and Bi, X=Mo, W femtosecond laser crystals," Appl. Phys. B 91, 507-510 (2008).
[CrossRef]

Petrov, G. I.

Pollock, C. R.

Qian, L. J.

Rhee, H.

A. A. Kaminskii, H. J. Eichler, H. Rhee, and K. Ueda, "New manifestations of nonlinear χ(3)-laser properties in tetragonal YVO4 crystal: many-phonon SRS, cascaded self-frequency tripling, and self-sum-frequency generation in blue spectral range with the involving of Stokes components under one-micron picosecond pumping," Laser Phys. Lett. 5, 804-811 (2008).
[CrossRef]

Rodwell, M. J. W.

K. J. Weingarten, M. J. W. Rodwell, and D. M. Bloom, "Picosecond optical sampling of GaAs integrated circuits," IEEE J. Quantum Electron. 24, 198-220 (1988).
[CrossRef]

Saltiel, S. M.

Selivanov, A. G.

A. G. Selivanov, I. A. Denisov, N. V. Kuleshov, and K. V. Yumashev, "Nonlinear refractive properties of Yb3+-doped KY(WO4)2 and YVO4 laser crystals," Appl. Phys. B 83, 61-65 (2006).
[CrossRef]

Sennaroglu, A.

Serrano, M. D.

A. García-Cortés, M. D. Serrano, C. Zaldo, C. Cascales, G. Strömqvist, and V. Pasiskevicius, "Nonlinear refractive indices of disordered NaT(XO4)2 T=Y, La, Gd, Lu and Bi, X=Mo, W femtosecond laser crystals," Appl. Phys. B 91, 507-510 (2008).
[CrossRef]

Sibbett, W.

Spence, D. E.

Strömqvist, G.

A. García-Cortés, M. D. Serrano, C. Zaldo, C. Cascales, G. Strömqvist, and V. Pasiskevicius, "Nonlinear refractive indices of disordered NaT(XO4)2 T=Y, La, Gd, Lu and Bi, X=Mo, W femtosecond laser crystals," Appl. Phys. B 91, 507-510 (2008).
[CrossRef]

Su, F.

F. Su, X. Y. Zhang, Q. Wang, S. Ding, P. Jia, S. Li, S. Fan, C. Zhang and B. Liu, "Diode pumped actively Q-switched Nd:YVO4 self-Raman laser," J. Phys. D: Appl. Phys. 39, 2090-2093 (2006).
[CrossRef]

Tang, D. Y.

Teylor, J. R.

Ueda, K.

A. A. Kaminskii, H. J. Eichler, H. Rhee, and K. Ueda, "New manifestations of nonlinear χ(3)-laser properties in tetragonal YVO4 crystal: many-phonon SRS, cascaded self-frequency tripling, and self-sum-frequency generation in blue spectral range with the involving of Stokes components under one-micron picosecond pumping," Laser Phys. Lett. 5, 804-811 (2008).
[CrossRef]

G. Q. Xie, D. Y. Tang, L. M. Zhao, L. J. Qian, and K. Ueda, "High-power self-mode-locked Yb:Y2O3 ceramic laser," Opt. Lett. 32, 2741-2743 (2007).
[CrossRef] [PubMed]

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, "Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers," Opt. Commun. 194, 201-206 (2001).
[CrossRef]

van Driel, H. M.

Walker, D. R.

Wang, Q.

F. Su, X. Y. Zhang, Q. Wang, S. Ding, P. Jia, S. Li, S. Fan, C. Zhang and B. Liu, "Diode pumped actively Q-switched Nd:YVO4 self-Raman laser," J. Phys. D: Appl. Phys. 39, 2090-2093 (2006).
[CrossRef]

Weingarten, K. J.

K. J. Weingarten, M. J. W. Rodwell, and D. M. Bloom, "Picosecond optical sampling of GaAs integrated circuits," IEEE J. Quantum Electron. 24, 198-220 (1988).
[CrossRef]

Wise, F.

Xie, G. Q.

Yanovsky, V.

Yumashev, K. V.

A. G. Selivanov, I. A. Denisov, N. V. Kuleshov, and K. V. Yumashev, "Nonlinear refractive properties of Yb3+-doped KY(WO4)2 and YVO4 laser crystals," Appl. Phys. B 83, 61-65 (2006).
[CrossRef]

Zaldo, C.

A. García-Cortés, M. D. Serrano, C. Zaldo, C. Cascales, G. Strömqvist, and V. Pasiskevicius, "Nonlinear refractive indices of disordered NaT(XO4)2 T=Y, La, Gd, Lu and Bi, X=Mo, W femtosecond laser crystals," Appl. Phys. B 91, 507-510 (2008).
[CrossRef]

Zayhowski, J. J.

Zhang, C.

F. Su, X. Y. Zhang, Q. Wang, S. Ding, P. Jia, S. Li, S. Fan, C. Zhang and B. Liu, "Diode pumped actively Q-switched Nd:YVO4 self-Raman laser," J. Phys. D: Appl. Phys. 39, 2090-2093 (2006).
[CrossRef]

Zhang, X. Y.

F. Su, X. Y. Zhang, Q. Wang, S. Ding, P. Jia, S. Li, S. Fan, C. Zhang and B. Liu, "Diode pumped actively Q-switched Nd:YVO4 self-Raman laser," J. Phys. D: Appl. Phys. 39, 2090-2093 (2006).
[CrossRef]

Zhao, L. M.

Appl. Phys. B

A. García-Cortés, M. D. Serrano, C. Zaldo, C. Cascales, G. Strömqvist, and V. Pasiskevicius, "Nonlinear refractive indices of disordered NaT(XO4)2 T=Y, La, Gd, Lu and Bi, X=Mo, W femtosecond laser crystals," Appl. Phys. B 91, 507-510 (2008).
[CrossRef]

A. G. Selivanov, I. A. Denisov, N. V. Kuleshov, and K. V. Yumashev, "Nonlinear refractive properties of Yb3+-doped KY(WO4)2 and YVO4 laser crystals," Appl. Phys. B 83, 61-65 (2006).
[CrossRef]

IEEE J. Quantum Electron.

K. J. Weingarten, M. J. W. Rodwell, and D. M. Bloom, "Picosecond optical sampling of GaAs integrated circuits," IEEE J. Quantum Electron. 24, 198-220 (1988).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D: Appl. Phys.

F. Su, X. Y. Zhang, Q. Wang, S. Ding, P. Jia, S. Li, S. Fan, C. Zhang and B. Liu, "Diode pumped actively Q-switched Nd:YVO4 self-Raman laser," J. Phys. D: Appl. Phys. 39, 2090-2093 (2006).
[CrossRef]

Laser Phys. Lett.

A. A. Kaminskii, H. J. Eichler, H. Rhee, and K. Ueda, "New manifestations of nonlinear χ(3)-laser properties in tetragonal YVO4 crystal: many-phonon SRS, cascaded self-frequency tripling, and self-sum-frequency generation in blue spectral range with the involving of Stokes components under one-micron picosecond pumping," Laser Phys. Lett. 5, 804-811 (2008).
[CrossRef]

Opt. Commun.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, "Tetragonal vanadates YVO4 and GdVO4 - new efficient χ(3)-materials for Raman lasers," Opt. Commun. 194, 201-206 (2001).
[CrossRef]

Opt. Lett.

Y. F. Chen, "Efficient subnanosecond diode-pumped passively Q-switched Nd:YVO4 self-stimulated Raman laser," Opt. Lett. 29, 1251-1253 (2004).
[CrossRef] [PubMed]

Y. F. Chen, "High-power diode-pumped actively Q-switched Nd:YVO4 self-Raman laser: influence of dopant concentration," Opt. Lett. 29, 1915-1917 (2004).
[CrossRef] [PubMed]

S. Kourtev, N. Minkovski, S. M. Saltiel, A. Jullien, O. Albert, and J. Etchepare, "Nonlinear mirror based on cross-polarized wave generation," Opt. Lett. 31, 3143-3145 (2006).
[CrossRef] [PubMed]

D. E. Spence, P. N. Kean, and W. Sibbett, "60-fsec pulse generation from a self-mode-locked Ti:sapphire laser," Opt. Lett. 16, 42-44 (1991).
[CrossRef] [PubMed]

G. P. A. Malcolm and A. I. Ferguson, "Self-mode locking of a diode-pumped Nd:YLF laser," Opt. Lett. 16, 1967-1969 (1991).
[CrossRef] [PubMed]

K. X. Liu, C. J. Flood, D. R. Walker, and H. M. van Driel, "Kerr lens mode locking a diode-pumped Nd:YAG laser," Opt. Lett. 19, 1361-1363 (1992).
[CrossRef]

A. Sennaroglu, C. R. Pollock, and H. Nathel, "Continuous wave self-mode-locked operation of a femtosecond Cr4+:YAG laser," Opt. Lett. 19, 390-392 (1994).
[PubMed]

Y. Pang, V. Yanovsky, F. Wise, and B. I. Minkov, "Self mode-locked Cr:forsterite laser," Opt. Lett. 18, 1168-1170 (1993).
[CrossRef] [PubMed]

P. M. W. French, R. Mellish, J. R. Teylor, P. J. Delfyett, and L. T. Florez, "Mode-locked all-solid-state diode-pumped Cr:LiSAF laser," Opt. Lett. 18, 1934-1946 (1993).
[CrossRef] [PubMed]

P. Li Kam Wa, B. H. T. Chai, and A. Miller, "Self-mode locked Cr3+:LiCaAlF6 laser," Opt. Lett. 17, 1438-1440 (1992).
[CrossRef]

G. Q. Xie, D. Y. Tang, L. M. Zhao, L. J. Qian, and K. Ueda, "High-power self-mode-locked Yb:Y2O3 ceramic laser," Opt. Lett. 32, 2741-2743 (2007).
[CrossRef] [PubMed]

A. Bartels, T. Dekorsky, and H. Kurz, "Femtosecond Ti:sapphire ring laser with 2-GHz repetition rate and its application in time-resolved spectroscopy," Opt. Lett. 24, 996-998 (1999).
[CrossRef]

J. J. Zayhowski and A. Mooradian, "Single-frequency microchip Nd lasers," Opt. Lett. 14, 24-26 (1989).
[CrossRef] [PubMed]

Y. F. Chen, "High-power diode-pumped Q-switched intracavity frequency-doubled Nd:YVO4 laser with a sandwich-type resonator," Opt. Lett. 24, 1032-1034 (1999).
[CrossRef]

Proc. SPIE

G. J. Dixon, L. S. Lingvay, and R. H. Jarman, "Properties of close coupled monolithic, lithium neodymium, tetraphosphate lasers," Proc. SPIE 1104, 107 (1989).

Other

R. Ramaswami and K. Sivarajan, Optical Networks: A Practical Perspective. (San Mateo, CA: Morgan Kaufmann, 1998).

X. H. Chen, X. Y. Zhang, Q. P. Wang, P. Li, and Z. H. Cong, "Diode-pumped actively Q-switched c-cut Nd:YVO4 self-Raman laser," Laser Phys. Lett. 1-4 (2008) / DOI 10.1002/lapl.200810093.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup for a diode-pumped self-mode locked Nd:YVO4 laser.

Fig. 2.
Fig. 2.

Cavity mode size as a function of the optical cavity length for three different pump powers.

Fig. 3.
Fig. 3.

Pulse trains on two different timescales. (a) time span of 10 ns, demonstrating mode-locked pulses; (b) time span of 5 µs, demonstrating the amplitude oscillation. (c) power spectrum.

Fig. 4.
Fig. 4.

Same as Fig. 3 for the stable CW mode-locked operation.

Fig. 5.
Fig. 5.

(a). Average output powers versus incident pump power obtained with the cavity alignments for maximum output and stable CW mode-locking, respectively; (b). corresponding optical spectrum of the mode-locking; (c). mode-locked pulse trains in time span of 1 ns; (d). autocorrelation trace.

Fig. 6.
Fig. 6.

(a). Experimental time traces for the multiple-pulse mode-locked operation at the cavity length of 11.3 cm (b) corresponding optical spectrum of the mode-locking.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ω l = λ π ( L f th ) 1 4 ( 1 L f th ) 1 4

Metrics