Abstract

Long period fiber gratings are fabricated in the cladding rods of all-solid photonic bandgap fibers (PBGFs) by point-by-point side UV illumination. Resonant couplings from fundamental mode to guided and radiative supermodes (rod modes), and bandgap-like modes are identified. We obtained a detailed insight over the modal and dispersive properties of the PBGF through a series of theoretical and experimental investigations on the spectral characteristics and the responses to temperature and high-index liquid of the LPGs.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long period fiber gratings as band rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
    [CrossRef]
  2. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001), http://www.opticsinfobase.org/abstract.cfm?URI=oe-9-13-698.
    [CrossRef] [PubMed]
  3. C. Kerbage and B. J. Eggleton, "Tunable microfluidic optical fiber gratings," Appl. Phys. Lett. 82, 1338-1340 (2003).
    [CrossRef]
  4. G. Kakarantzas, T. A. Birks, and P. St. J. Russell, "Structural long-period gratings in photonic crystal fibers," Opt. Lett. 27, 1013-1015 (2002).
    [CrossRef]
  5. Y. Zhu, P. Shum, J. H. Chong, M. K. Rao, and C. Lu, "Deep-notch, ultracompact long-period grating in a large-mode-area photonic crystal fiber," Opt. Lett. 28, 2467-2469 (2003).
    [CrossRef] [PubMed]
  6. Y. P. Wang, L. M. Xiao, D. N. Wang, and W. Jin, "Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity," Opt. Lett. 31, 3414-3416 (2006).
    [CrossRef] [PubMed]
  7. D. Lee, Y. Jung, Y. S. Jeong, K. Oh, J. Kobelke, K. Schuster, and J. Kirchof, " Highly polarization-dependent periodic coupling in mechanically induced long period grating over air-silica fibers," Opt. Lett. 31, 296-298 (2006).
    [CrossRef] [PubMed]
  8. P. Steinvurzel, E. D. Moore, E. C. Magi, B. T. Kuhlmey, and B. J. Eggleton, "Long period grating resonances in photonic bandgap fiber," Opt. Express 14, 3007-3014 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=OE-14-7-3007.
    [CrossRef] [PubMed]
  9. Y. Wang, W. Jin, J. Ju, H. Xuan, H. L. Ho, L. Xiao, and D. Wang, "Long period gratings in air-core photonic bandgap fibers," Opt. Express 16, 2784-2790 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-4-2784.
    [CrossRef] [PubMed]
  10. B. T. Kuhlmey, F. Luan, L. Fu, D.-I. Yeom, B. J. Eggleton, A. Wang, and J. C. Knight, "Experimental reconstruction of bands in solid core photonic bandgap fibres using acoustic gratings," Opt. Express 16, 13845-13856 (2008).
    [CrossRef] [PubMed]
  11. D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, "Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers," Opt. Express 15, 7901-7912 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-13-7901.
    [CrossRef] [PubMed]
  12. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. deSterke, "Resonances in microstructured optical waveguides," Opt. Express 11, 1243-1251 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-10-1243.
    [CrossRef] [PubMed]
  13. L. Michaille, C. R. Bennett, D. M. Taylor, T. J. Shpherd, J. Broeng, H. R. Simonsen, and A. Peterson, "Phase locking and supermode selection in multicore photonic crystal fiber lasers with a large doped area," Opt. Lett. 30, 1668-1670 (2005).
    [CrossRef] [PubMed]
  14. J. C. Knight, F. Luan, G. J. Pearce, A. Wang, T. A. Birks, and D. M. Bird, "Solid Photonic Bandgap Fibres and Applications," Jpn. J. Appl. Phys. 45, 6059-6063 (2006).
    [CrossRef]
  15. P. Steinvurzel, E. D. Moore, E. C. Mägi, and B. J. Eggleton, "Tuning properties of long period gratings in photonic bandgap fibers," Opt. Lett. 31, 2103-2105 (2006).
    [CrossRef] [PubMed]

2008 (2)

2007 (1)

2006 (5)

2005 (1)

2003 (3)

2002 (1)

2001 (1)

1996 (1)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long period fiber gratings as band rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Alkeskjold, T. T.

Bennett, C. R.

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long period fiber gratings as band rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Bird, D. M.

J. C. Knight, F. Luan, G. J. Pearce, A. Wang, T. A. Birks, and D. M. Bird, "Solid Photonic Bandgap Fibres and Applications," Jpn. J. Appl. Phys. 45, 6059-6063 (2006).
[CrossRef]

Birks, T. A.

J. C. Knight, F. Luan, G. J. Pearce, A. Wang, T. A. Birks, and D. M. Bird, "Solid Photonic Bandgap Fibres and Applications," Jpn. J. Appl. Phys. 45, 6059-6063 (2006).
[CrossRef]

G. Kakarantzas, T. A. Birks, and P. St. J. Russell, "Structural long-period gratings in photonic crystal fibers," Opt. Lett. 27, 1013-1015 (2002).
[CrossRef]

Broeng, J.

Chong, J. H.

deSterke, C. M.

Dunn, S. C.

Eggleton, B. J.

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long period fiber gratings as band rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Fu, L.

Hale, A.

Ho, H. L.

Jeong, Y. S.

Jin, W.

Ju, J.

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long period fiber gratings as band rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Jung, Y.

Kakarantzas, G.

Kerbage, C.

Kirchof, J.

Knight, J. C.

B. T. Kuhlmey, F. Luan, L. Fu, D.-I. Yeom, B. J. Eggleton, A. Wang, and J. C. Knight, "Experimental reconstruction of bands in solid core photonic bandgap fibres using acoustic gratings," Opt. Express 16, 13845-13856 (2008).
[CrossRef] [PubMed]

J. C. Knight, F. Luan, G. J. Pearce, A. Wang, T. A. Birks, and D. M. Bird, "Solid Photonic Bandgap Fibres and Applications," Jpn. J. Appl. Phys. 45, 6059-6063 (2006).
[CrossRef]

Kobelke, J.

Kuhlmey, B. T.

Lægsgaard, J.

Lee, D.

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long period fiber gratings as band rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Litchinitser, N. M.

Lu, C.

Luan, F.

B. T. Kuhlmey, F. Luan, L. Fu, D.-I. Yeom, B. J. Eggleton, A. Wang, and J. C. Knight, "Experimental reconstruction of bands in solid core photonic bandgap fibres using acoustic gratings," Opt. Express 16, 13845-13856 (2008).
[CrossRef] [PubMed]

J. C. Knight, F. Luan, G. J. Pearce, A. Wang, T. A. Birks, and D. M. Bird, "Solid Photonic Bandgap Fibres and Applications," Jpn. J. Appl. Phys. 45, 6059-6063 (2006).
[CrossRef]

Magi, E. C.

Mägi, E. C.

McPhedran, R. C.

Michaille, L.

Moore, E. D.

Noordegraaf, D.

Oh, K.

Pearce, G. J.

J. C. Knight, F. Luan, G. J. Pearce, A. Wang, T. A. Birks, and D. M. Bird, "Solid Photonic Bandgap Fibres and Applications," Jpn. J. Appl. Phys. 45, 6059-6063 (2006).
[CrossRef]

Peterson, A.

Rao, M. K.

Rindorf, L.

Russell, P. St. J.

Schuster, K.

Scolari, L.

Shpherd, T. J.

Shum, P.

Simonsen, H. R.

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long period fiber gratings as band rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Steinvurzel, P.

Taylor, D. M.

Usner, B.

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long period fiber gratings as band rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Wang, A.

B. T. Kuhlmey, F. Luan, L. Fu, D.-I. Yeom, B. J. Eggleton, A. Wang, and J. C. Knight, "Experimental reconstruction of bands in solid core photonic bandgap fibres using acoustic gratings," Opt. Express 16, 13845-13856 (2008).
[CrossRef] [PubMed]

J. C. Knight, F. Luan, G. J. Pearce, A. Wang, T. A. Birks, and D. M. Bird, "Solid Photonic Bandgap Fibres and Applications," Jpn. J. Appl. Phys. 45, 6059-6063 (2006).
[CrossRef]

Wang, D.

Wang, D. N.

Wang, Y.

Wang, Y. P.

Westbrook, P. S.

White, T. P.

Windeler, R. S.

Xiao, L.

Xiao, L. M.

Xuan, H.

Yeom, D.-I.

Zhu, Y.

Appl. Phys. Lett. (1)

C. Kerbage and B. J. Eggleton, "Tunable microfluidic optical fiber gratings," Appl. Phys. Lett. 82, 1338-1340 (2003).
[CrossRef]

J. Lightwave Technol. (1)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long period fiber gratings as band rejection filters," J. Lightwave Technol. 14, 58-65 (1996).
[CrossRef]

Jpn. J. Appl. Phys. (1)

J. C. Knight, F. Luan, G. J. Pearce, A. Wang, T. A. Birks, and D. M. Bird, "Solid Photonic Bandgap Fibres and Applications," Jpn. J. Appl. Phys. 45, 6059-6063 (2006).
[CrossRef]

Opt. Express (6)

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001), http://www.opticsinfobase.org/abstract.cfm?URI=oe-9-13-698.
[CrossRef] [PubMed]

P. Steinvurzel, E. D. Moore, E. C. Magi, B. T. Kuhlmey, and B. J. Eggleton, "Long period grating resonances in photonic bandgap fiber," Opt. Express 14, 3007-3014 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=OE-14-7-3007.
[CrossRef] [PubMed]

Y. Wang, W. Jin, J. Ju, H. Xuan, H. L. Ho, L. Xiao, and D. Wang, "Long period gratings in air-core photonic bandgap fibers," Opt. Express 16, 2784-2790 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-4-2784.
[CrossRef] [PubMed]

B. T. Kuhlmey, F. Luan, L. Fu, D.-I. Yeom, B. J. Eggleton, A. Wang, and J. C. Knight, "Experimental reconstruction of bands in solid core photonic bandgap fibres using acoustic gratings," Opt. Express 16, 13845-13856 (2008).
[CrossRef] [PubMed]

D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, "Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers," Opt. Express 15, 7901-7912 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-13-7901.
[CrossRef] [PubMed]

N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. deSterke, "Resonances in microstructured optical waveguides," Opt. Express 11, 1243-1251 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-10-1243.
[CrossRef] [PubMed]

Opt. Lett. (6)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Dispersion map for the PBGF. Supermode bands and bandgaps are divided by the black curves. (b) Modal energy distributions for some typical supermodes and fundamental modes of the PBGF. Arrows represent the amplitudes and directions of transverse electric fields.

Fig. 2.
Fig. 2.

Schematic setup for LPG inscription in all-solid PBGFs. Inset, microscopic image for the cross section of the PBGF.

Fig. 3.
Fig. 3.

(a) Transmission spectrum of a section of all-solid PBGF before and after LPG inscription. The grating pitch is 256µm. (b) Measured PDL for an LPG with a period of 340µm. Inset, zoomed measurement result for peak C’. (c) Measured near field profiles of the LPG at different resonant wavelengths. Peaks A’ and C’ corresponds to the resonances to guided LP01 supermodes and a LP11-like mode, respectively. (d) Variation of transmission spectrum before and after the LPG is immersed into a high-index liquid. Peaks A and C are hardly influenced, while peaks D-G decrease in strength.

Fig. 4.
Fig. 4.

(a) Simulated and experimental results of the dispersion curves for the supermodes and bandgap-like modes, relative to the effective index of the fundamental mode. Curves: Calculated results; Squares: experimental results. (b) Spectral widths of LP01 and LP11 guided-supermode peaks as a function of wavelength. Curves: calculated result; Squares: experimental result.

Fig. 5.
Fig. 5.

(a) Modal profiles of the LP01 supermodes for the six-rod fiber with n=0,…, 5. The amplitudes and directions of electric fields are represented by the arrows. (b) Some modal profiles of the LP11 supermodes. The former three with n=0, 2, and 4 produce non-zero overlaps. The modes with all the rod modes antisymmetrical about the radial line from the center of the microstructure, like the last one, cause zero overlap. (c) Calculated overlap integral as a function of wavelength over the rod lattice between the fundamental mode and the guided supermodes. (d) Curves, calculated variations of coupling constants with wavelength for the guided-supermode resonances. Squares, experimental results.

Fig. 6.
Fig. 6.

(a) Schematic index distribution over the six rods. We assume an idea linear gradient is established by the laser beam for simplification. (b) Calculated coupling constant for supermodes with odd n, compared with the decrease of that for supermodes with even n.

Fig. 7.
Fig. 7.

(a) Solid curves, calculated variations of temperature sensitivities for peaks A and C. Squares, experimental measurement. (b) Transmission spectra of the LPG measured at room temperature and 100 °C. Insets, zoomed pictures of spectral variations for peaks A and C.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

κ = π λ rods Δ n UV ( x , y ) · e i * · e j d x d y
ξ LPG = λ 0 ( α + ξ 2 n 2 0 ξ 1 n 1 0 n 2 0 2 n 1 0 2 ) [ 1 + ( n eff fund ) 2 ( n eff HOM ) 2 ( n g fund ) 2 ( n g HOM ) 2 ]

Metrics