Abstract

Supercontinuum light sources spanning into the ultraviolet-visible wavelength region are highly useful for applications such as fluorescence microscopy. A method of shifting the supercontinuum spectrum into this wavelength region has recently become well understood. The method relies on designing the group-velocity profile of the nonlinear fiber in which the supercontinuum is generated, so that red-shifted solitons are group-velocity matched to dispersive waves in the desired ultraviolet-visible wavelength region. The group-velocity profile of a photonic crystal fiber (PCF) can be engineered through the structure of the PCF, but this mostly modifies the group-velocity in the long-wavelength part of the spectrum. In this work, we first consider how the group-velocity profile can be engineered more directly in the short-wavelength part of the spectrum through alternative choices of the glass material from which the PCF is made. We then make simulations of supercontinuum generation in PCFs made of alternative glass materials. It is found that it is possible to increase the blue-shift of the generated supercontinuum by about 20 nm through a careful choice of glass composition, provided that the alternative glass composition does not have a significantly higher loss than silica in the near-infrared.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
    [CrossRef]
  2. M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. Ivanov, A. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2- to 2.2-µm Tunable Raman Soliton Source Based on a Cr:Forsterite Laser and a Photonic-Crystal Fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008).
    [CrossRef]
  3. J. Walewski, M. Borden, and S. Sanders, “Wavelength-agile laser system based on soliton self-shift and its application for broadband spectroscopy,” Appl. Phys. B 79, 937–940 (2004).
    [CrossRef]
  4. E. R. Andresen, C. K. Nielsen, J. Thøgersen, and S. R Keiding, “Fiber laser-based light source for coherent anti-Stokes Raman scattering microspectroscopy,” Opt. Express 15, 4848–4856 (2007),URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-8-4848.
    [CrossRef] [PubMed]
  5. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 µm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31, 2553–2555 (2006), URL http://ol.osa.org/abstract.cfm?URI=ol-31-17-2553.
    [CrossRef] [PubMed]
  6. P. N. Prasad, Introduction to biophotonics (John Wiley & Sons Inc., 2003).
    [CrossRef]
  7. http://www.koheras.com/.
  8. K. Jalink, A. Diaspro, V. Caorsi, and P. Bianchini, “Leica TCS SP5 X - White Light Laser,” Appl. Lett.29, Leica Microsystems (2008), http://www.leica-microsystems.com.
  9. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express 14, 5715–5722 (2006).
    [CrossRef] [PubMed]
  10. F. Lu, Y. Deng, and W. H. Knox, “Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers,” Opt. Lett. 30, 1566–1568 (2005).
    [CrossRef] [PubMed]
  11. P. Westbrook, J. Nicholson, K. Feder, Y. Li, and T. Brown, “Supercontinuum generation in a fiber grating,” Appl. Phys. Lett. 85, 4600–4602 (2004).
    [CrossRef]
  12. J. A. Bolger, F. Luan, D.-I. Yeom, E. N. Tsoy, C. M. de Sterke, and B. J. Eggleton, “Tunable enhancement of a soliton spectrum using an acoustic long-period grating,” Opt. Express 15, 457–462 (2007).
    [CrossRef]
  13. N. I. Nikolov, T. Sørensen, O. Bang, and A. Bjarklev, “Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing,” J. Opt. Soc. Am. B 20, 2329–2337 (2003).
    [CrossRef]
  14. M. H. Frosz, T. Sørensen, and O. Bang, “Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping,” J. Opt. Soc. Am. B 23, 1692–1699 (2006).
    [CrossRef]
  15. P. M. Moselund, M. H. Frosz, C. L. Thomsen, and O. Bang, “Back-seeding of higher order gain processes in picosecond supercontinuum generation,” Opt. Express 16, 11,954–11,968 (2008).
    [CrossRef]
  16. P. Westbrook, J. Nicholson, K. Feder, and A. Yablon, “Improved supercontinuum generation through UV processing of highly nonlinear fibers,” J. Lightwave Techn. 23, 13–18 (2005).
    [CrossRef]
  17. L. Tartara, I. Cristiani, and V. Degiorgio, “Blue light and infrared continuum generation by soliton fission in a microstructured fiber,” Appl. Phys. B 77, 307 (2003).
    [CrossRef]
  18. G. Genty, M. Lehtonen, and H. Ludvigsen, “Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses,” Opt. Express 12, 4614–4624 (2004).
    [CrossRef] [PubMed]
  19. G. Genty, M. Lehtonen, and H. Ludvigsen, “Route to broadband blue-light generation in microstructured fibers,” Opt. Lett. 30, 756–758 (2005),
    [CrossRef] [PubMed]
  20. A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, “Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum,” Opt. Express 14, 9854–9863 (2006).
    [CrossRef] [PubMed]
  21. A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nature Photon. 1, 653–657 (2007).
    [CrossRef]
  22. J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16, 2670–2675 (2008).
    [CrossRef] [PubMed]
  23. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [CrossRef]
  24. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, Burlington, MA, USA, 2007).
  25. N. Nishizawa and T. Goto, “Characteristics of pulse trapping by ultrashort soliton pulses in optical fibers across the zero-dispersion wavelength,” Opt. Express 10, 1151–1160 (2002).
    [PubMed]
  26. D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
    [CrossRef] [PubMed]
  27. J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, “Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser,” Opt. Express 16, 14,435–14,447 (2008).
    [CrossRef]
  28. P. Leproux, C. Buy-Lesvigne, V. Tombelaine, V. Couderc, J. Auguste, J. Blondy, G. Mélin, K. Schuster, J. Kobelke, and H. Bartelt, “Methods for visible supercontinuum generation in doped/undoped holey fibres,” Proceedings of the SPIE - The International Soc. Opt. Engin. 6990, 699,007-1–4 (2008).
  29. V. Tombelaine, C. Buy-Lesvigne, V. Couderc, P. Leproux, G. Mélin, K. Schuster, J. Kobelke, and H. Bartelt, “Second harmonic generation in Ge-doped silica holey fibres and supercontinuum generation,” Proc. SPIE - The International Soc. Opt. Engin. 6990, 69,900N-1–7 (2008a).
  30. V. Tombelaine, C. Buy-Lesvigne, P. Leproux, V. Couderc, and G. Mélin, “Optical poling in germanium-doped microstructured optical fiber for visible supercontinuum generation,” Opt. Lett. 33, 2011–2013 (2008b).
    [CrossRef]
  31. J. W. Fleming and Material dispersion in lightguide glasses,” Electron. Lett. 14, 326–8 (1978).
    [CrossRef]
  32. J. W. Fleming, “Material dispersion in lightguide glasses [Erratum],” Electron. Lett. 15, 507 (1979).
    [CrossRef]
  33. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965).
    [CrossRef]
  34. COMSOL Multiphysics 3.4 (2007), http://www.comsol.com.
  35. N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, and K. P. Hansen, “Modal cutoff and the V parameter in photonic crystal fibers,” Opt. Lett. 28, 1879–1881 (2003).
    [CrossRef] [PubMed]
  36. P. V. Mamyshev and S. V. Chernikov, “Ultrashort-pulse propagation in optical fibers,” Opt. Lett. 15, 1076–1078 (1990).
    [CrossRef] [PubMed]
  37. J. Lægsgaard, “Mode profile dispersion in the generalised nonlinear Schrödinger equation,” Opt. Express 15, 16 110–16123 (2007).
    [CrossRef]
  38. K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
    [CrossRef]
  39. S. Kobayashi, N. Shibata, S. Shibata, and T. Izawa, “Characteristics of optical fibers in infrared wavelength region,” Review of the Electrical Communication Laboratories 26, 453–67 (1978).
  40. O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, “Optimization of the Split-Step Fourier Method in Modeling Optical-Fiber Communications Systems,” J. Lightwave Technol. 21, 61–68 (2003).
    [CrossRef]
  41. M. H. Frosz, O. Bang, and A. Bjarklev, “Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation,” Opt. Express 14, 9391–9407 (2006).
    [CrossRef] [PubMed]
  42. S. B. Cavalcanti, G. P. Agrawal, and M. Yu, “Noise amplification in dispersive nonlinear media,” Phys. Rev. A 51, 4086–4092 (1995).
    [CrossRef] [PubMed]
  43. A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, and S. Pitois, “Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers,” Opt. Express 12, 2838–2843 (2004).
    [CrossRef] [PubMed]
  44. T. Kato, Y. Suetsugu, and M. Nishimura, “Estimation of nonlinear refractive index in various silica-based glasses for optical fibers,” Opt. Lett. 20, 2279 (1995).
    [CrossRef] [PubMed]
  45. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C++: The Art of Scientific Computing, 2nd ed. (Cambridge University Press, Cambridge, 2002). http://www.nr.com.

2008 (5)

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. Ivanov, A. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2- to 2.2-µm Tunable Raman Soliton Source Based on a Cr:Forsterite Laser and a Photonic-Crystal Fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008).
[CrossRef]

P. M. Moselund, M. H. Frosz, C. L. Thomsen, and O. Bang, “Back-seeding of higher order gain processes in picosecond supercontinuum generation,” Opt. Express 16, 11,954–11,968 (2008).
[CrossRef]

J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, “Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser,” Opt. Express 16, 14,435–14,447 (2008).
[CrossRef]

P. Leproux, C. Buy-Lesvigne, V. Tombelaine, V. Couderc, J. Auguste, J. Blondy, G. Mélin, K. Schuster, J. Kobelke, and H. Bartelt, “Methods for visible supercontinuum generation in doped/undoped holey fibres,” Proceedings of the SPIE - The International Soc. Opt. Engin. 6990, 699,007-1–4 (2008).

J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16, 2670–2675 (2008).
[CrossRef] [PubMed]

2007 (4)

E. R. Andresen, C. K. Nielsen, J. Thøgersen, and S. R Keiding, “Fiber laser-based light source for coherent anti-Stokes Raman scattering microspectroscopy,” Opt. Express 15, 4848–4856 (2007),URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-8-4848.
[CrossRef] [PubMed]

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nature Photon. 1, 653–657 (2007).
[CrossRef]

J. A. Bolger, F. Luan, D.-I. Yeom, E. N. Tsoy, C. M. de Sterke, and B. J. Eggleton, “Tunable enhancement of a soliton spectrum using an acoustic long-period grating,” Opt. Express 15, 457–462 (2007).
[CrossRef]

J. Lægsgaard, “Mode profile dispersion in the generalised nonlinear Schrödinger equation,” Opt. Express 15, 16 110–16123 (2007).
[CrossRef]

2006 (6)

2005 (3)

2004 (4)

J. Walewski, M. Borden, and S. Sanders, “Wavelength-agile laser system based on soliton self-shift and its application for broadband spectroscopy,” Appl. Phys. B 79, 937–940 (2004).
[CrossRef]

P. Westbrook, J. Nicholson, K. Feder, Y. Li, and T. Brown, “Supercontinuum generation in a fiber grating,” Appl. Phys. Lett. 85, 4600–4602 (2004).
[CrossRef]

A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, and S. Pitois, “Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers,” Opt. Express 12, 2838–2843 (2004).
[CrossRef] [PubMed]

G. Genty, M. Lehtonen, and H. Ludvigsen, “Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses,” Opt. Express 12, 4614–4624 (2004).
[CrossRef] [PubMed]

2003 (5)

2002 (1)

2000 (1)

1995 (2)

S. B. Cavalcanti, G. P. Agrawal, and M. Yu, “Noise amplification in dispersive nonlinear media,” Phys. Rev. A 51, 4086–4092 (1995).
[CrossRef] [PubMed]

T. Kato, Y. Suetsugu, and M. Nishimura, “Estimation of nonlinear refractive index in various silica-based glasses for optical fibers,” Opt. Lett. 20, 2279 (1995).
[CrossRef] [PubMed]

1990 (1)

1989 (1)

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
[CrossRef]

1979 (1)

J. W. Fleming, “Material dispersion in lightguide glasses [Erratum],” Electron. Lett. 15, 507 (1979).
[CrossRef]

1978 (2)

S. Kobayashi, N. Shibata, S. Shibata, and T. Izawa, “Characteristics of optical fibers in infrared wavelength region,” Review of the Electrical Communication Laboratories 26, 453–67 (1978).

J. W. Fleming and Material dispersion in lightguide glasses,” Electron. Lett. 14, 326–8 (1978).
[CrossRef]

1965 (1)

Agrawal, G. P.

S. B. Cavalcanti, G. P. Agrawal, and M. Yu, “Noise amplification in dispersive nonlinear media,” Phys. Rev. A 51, 4086–4092 (1995).
[CrossRef] [PubMed]

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, Burlington, MA, USA, 2007).

Andresen, E. R.

Auguste, J.

P. Leproux, C. Buy-Lesvigne, V. Tombelaine, V. Couderc, J. Auguste, J. Blondy, G. Mélin, K. Schuster, J. Kobelke, and H. Bartelt, “Methods for visible supercontinuum generation in doped/undoped holey fibres,” Proceedings of the SPIE - The International Soc. Opt. Engin. 6990, 699,007-1–4 (2008).

Bang, O.

Bartelt, H.

V. Tombelaine, C. Buy-Lesvigne, V. Couderc, P. Leproux, G. Mélin, K. Schuster, J. Kobelke, and H. Bartelt, “Second harmonic generation in Ge-doped silica holey fibres and supercontinuum generation,” Proc. SPIE - The International Soc. Opt. Engin. 6990, 69,900N-1–7 (2008a).

P. Leproux, C. Buy-Lesvigne, V. Tombelaine, V. Couderc, J. Auguste, J. Blondy, G. Mélin, K. Schuster, J. Kobelke, and H. Bartelt, “Methods for visible supercontinuum generation in doped/undoped holey fibres,” Proceedings of the SPIE - The International Soc. Opt. Engin. 6990, 699,007-1–4 (2008).

Bianchini, P.

K. Jalink, A. Diaspro, V. Caorsi, and P. Bianchini, “Leica TCS SP5 X - White Light Laser,” Appl. Lett.29, Leica Microsystems (2008), http://www.leica-microsystems.com.

Bjarklev, A.

Blondy, J.

P. Leproux, C. Buy-Lesvigne, V. Tombelaine, V. Couderc, J. Auguste, J. Blondy, G. Mélin, K. Schuster, J. Kobelke, and H. Bartelt, “Methods for visible supercontinuum generation in doped/undoped holey fibres,” Proceedings of the SPIE - The International Soc. Opt. Engin. 6990, 699,007-1–4 (2008).

Blow, K. J.

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
[CrossRef]

Bolger, J. A.

J. A. Bolger, F. Luan, D.-I. Yeom, E. N. Tsoy, C. M. de Sterke, and B. J. Eggleton, “Tunable enhancement of a soliton spectrum using an acoustic long-period grating,” Opt. Express 15, 457–462 (2007).
[CrossRef]

Borden, M.

J. Walewski, M. Borden, and S. Sanders, “Wavelength-agile laser system based on soliton self-shift and its application for broadband spectroscopy,” Appl. Phys. B 79, 937–940 (2004).
[CrossRef]

Brown, T.

P. Westbrook, J. Nicholson, K. Feder, Y. Li, and T. Brown, “Supercontinuum generation in a fiber grating,” Appl. Phys. Lett. 85, 4600–4602 (2004).
[CrossRef]

Buy-Lesvigne, C.

V. Tombelaine, C. Buy-Lesvigne, P. Leproux, V. Couderc, and G. Mélin, “Optical poling in germanium-doped microstructured optical fiber for visible supercontinuum generation,” Opt. Lett. 33, 2011–2013 (2008b).
[CrossRef]

V. Tombelaine, C. Buy-Lesvigne, V. Couderc, P. Leproux, G. Mélin, K. Schuster, J. Kobelke, and H. Bartelt, “Second harmonic generation in Ge-doped silica holey fibres and supercontinuum generation,” Proc. SPIE - The International Soc. Opt. Engin. 6990, 69,900N-1–7 (2008a).

P. Leproux, C. Buy-Lesvigne, V. Tombelaine, V. Couderc, J. Auguste, J. Blondy, G. Mélin, K. Schuster, J. Kobelke, and H. Bartelt, “Methods for visible supercontinuum generation in doped/undoped holey fibres,” Proceedings of the SPIE - The International Soc. Opt. Engin. 6990, 699,007-1–4 (2008).

Caorsi, V.

K. Jalink, A. Diaspro, V. Caorsi, and P. Bianchini, “Leica TCS SP5 X - White Light Laser,” Appl. Lett.29, Leica Microsystems (2008), http://www.leica-microsystems.com.

Cavalcanti, S. B.

S. B. Cavalcanti, G. P. Agrawal, and M. Yu, “Noise amplification in dispersive nonlinear media,” Phys. Rev. A 51, 4086–4092 (1995).
[CrossRef] [PubMed]

Chan, M.-C.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. Ivanov, A. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2- to 2.2-µm Tunable Raman Soliton Source Based on a Cr:Forsterite Laser and a Photonic-Crystal Fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008).
[CrossRef]

Chernikov, S. V.

Chia, S.-H.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. Ivanov, A. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2- to 2.2-µm Tunable Raman Soliton Source Based on a Cr:Forsterite Laser and a Photonic-Crystal Fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008).
[CrossRef]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Couderc, V.

V. Tombelaine, C. Buy-Lesvigne, P. Leproux, V. Couderc, and G. Mélin, “Optical poling in germanium-doped microstructured optical fiber for visible supercontinuum generation,” Opt. Lett. 33, 2011–2013 (2008b).
[CrossRef]

V. Tombelaine, C. Buy-Lesvigne, V. Couderc, P. Leproux, G. Mélin, K. Schuster, J. Kobelke, and H. Bartelt, “Second harmonic generation in Ge-doped silica holey fibres and supercontinuum generation,” Proc. SPIE - The International Soc. Opt. Engin. 6990, 69,900N-1–7 (2008a).

P. Leproux, C. Buy-Lesvigne, V. Tombelaine, V. Couderc, J. Auguste, J. Blondy, G. Mélin, K. Schuster, J. Kobelke, and H. Bartelt, “Methods for visible supercontinuum generation in doped/undoped holey fibres,” Proceedings of the SPIE - The International Soc. Opt. Engin. 6990, 699,007-1–4 (2008).

Cristiani, I.

L. Tartara, I. Cristiani, and V. Degiorgio, “Blue light and infrared continuum generation by soliton fission in a microstructured fiber,” Appl. Phys. B 77, 307 (2003).
[CrossRef]

Cumberland, B. A.

J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, “Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser,” Opt. Express 16, 14,435–14,447 (2008).
[CrossRef]

de Sterke, C. M.

J. A. Bolger, F. Luan, D.-I. Yeom, E. N. Tsoy, C. M. de Sterke, and B. J. Eggleton, “Tunable enhancement of a soliton spectrum using an acoustic long-period grating,” Opt. Express 15, 457–462 (2007).
[CrossRef]

Degiorgio, V.

L. Tartara, I. Cristiani, and V. Degiorgio, “Blue light and infrared continuum generation by soliton fission in a microstructured fiber,” Appl. Phys. B 77, 307 (2003).
[CrossRef]

Deng, Y.

Diaspro, A.

K. Jalink, A. Diaspro, V. Caorsi, and P. Bianchini, “Leica TCS SP5 X - White Light Laser,” Appl. Lett.29, Leica Microsystems (2008), http://www.leica-microsystems.com.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Eggleton, B. J.

J. A. Bolger, F. Luan, D.-I. Yeom, E. N. Tsoy, C. M. de Sterke, and B. J. Eggleton, “Tunable enhancement of a soliton spectrum using an acoustic long-period grating,” Opt. Express 15, 457–462 (2007).
[CrossRef]

Feder, K.

P. Westbrook, J. Nicholson, K. Feder, and A. Yablon, “Improved supercontinuum generation through UV processing of highly nonlinear fibers,” J. Lightwave Techn. 23, 13–18 (2005).
[CrossRef]

P. Westbrook, J. Nicholson, K. Feder, Y. Li, and T. Brown, “Supercontinuum generation in a fiber grating,” Appl. Phys. Lett. 85, 4600–4602 (2004).
[CrossRef]

Finot, C.

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C++: The Art of Scientific Computing, 2nd ed. (Cambridge University Press, Cambridge, 2002). http://www.nr.com.

Fleming, J. W.

J. W. Fleming, “Material dispersion in lightguide glasses [Erratum],” Electron. Lett. 15, 507 (1979).
[CrossRef]

J. W. Fleming and Material dispersion in lightguide glasses,” Electron. Lett. 14, 326–8 (1978).
[CrossRef]

Folkenberg, J. R.

Fred, J.

Freeman, M. J.

Frosz, M. H.

Genty, G.

George, A. K.

Gorbach, A. V.

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nature Photon. 1, 653–657 (2007).
[CrossRef]

A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, “Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum,” Opt. Express 14, 9854–9863 (2006).
[CrossRef] [PubMed]

Goto, T.

Hansen, K. P.

Ho, M.-C.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. Ivanov, A. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2- to 2.2-µm Tunable Raman Soliton Source Based on a Cr:Forsterite Laser and a Photonic-Crystal Fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008).
[CrossRef]

Holzlöhner, R.

Islam, M. N.

Ivanov, A.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. Ivanov, A. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2- to 2.2-µm Tunable Raman Soliton Source Based on a Cr:Forsterite Laser and a Photonic-Crystal Fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008).
[CrossRef]

Izawa, T.

S. Kobayashi, N. Shibata, S. Shibata, and T. Izawa, “Characteristics of optical fibers in infrared wavelength region,” Review of the Electrical Communication Laboratories 26, 453–67 (1978).

Jalink, K.

K. Jalink, A. Diaspro, V. Caorsi, and P. Bianchini, “Leica TCS SP5 X - White Light Laser,” Appl. Lett.29, Leica Microsystems (2008), http://www.leica-microsystems.com.

Kato, T.

Keiding, S. R

Knight, J. C.

Knox, W. H.

Kobayashi, S.

S. Kobayashi, N. Shibata, S. Shibata, and T. Izawa, “Characteristics of optical fibers in infrared wavelength region,” Review of the Electrical Communication Laboratories 26, 453–67 (1978).

Kobelke, J.

V. Tombelaine, C. Buy-Lesvigne, V. Couderc, P. Leproux, G. Mélin, K. Schuster, J. Kobelke, and H. Bartelt, “Second harmonic generation in Ge-doped silica holey fibres and supercontinuum generation,” Proc. SPIE - The International Soc. Opt. Engin. 6990, 69,900N-1–7 (2008a).

P. Leproux, C. Buy-Lesvigne, V. Tombelaine, V. Couderc, J. Auguste, J. Blondy, G. Mélin, K. Schuster, J. Kobelke, and H. Bartelt, “Methods for visible supercontinuum generation in doped/undoped holey fibres,” Proceedings of the SPIE - The International Soc. Opt. Engin. 6990, 699,007-1–4 (2008).

Kudlinski, A.

Kulkarni, O. P.

Kumar, M.

Lægsgaard, J.

J. Lægsgaard, “Mode profile dispersion in the generalised nonlinear Schrödinger equation,” Opt. Express 15, 16 110–16123 (2007).
[CrossRef]

Lantz, E.

Lehtonen, M.

Leproux, P.

V. Tombelaine, C. Buy-Lesvigne, P. Leproux, V. Couderc, and G. Mélin, “Optical poling in germanium-doped microstructured optical fiber for visible supercontinuum generation,” Opt. Lett. 33, 2011–2013 (2008b).
[CrossRef]

V. Tombelaine, C. Buy-Lesvigne, V. Couderc, P. Leproux, G. Mélin, K. Schuster, J. Kobelke, and H. Bartelt, “Second harmonic generation in Ge-doped silica holey fibres and supercontinuum generation,” Proc. SPIE - The International Soc. Opt. Engin. 6990, 69,900N-1–7 (2008a).

P. Leproux, C. Buy-Lesvigne, V. Tombelaine, V. Couderc, J. Auguste, J. Blondy, G. Mélin, K. Schuster, J. Kobelke, and H. Bartelt, “Methods for visible supercontinuum generation in doped/undoped holey fibres,” Proceedings of the SPIE - The International Soc. Opt. Engin. 6990, 699,007-1–4 (2008).

Li, Y.

P. Westbrook, J. Nicholson, K. Feder, Y. Li, and T. Brown, “Supercontinuum generation in a fiber grating,” Appl. Phys. Lett. 85, 4600–4602 (2004).
[CrossRef]

Liu, H.-L.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. Ivanov, A. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2- to 2.2-µm Tunable Raman Soliton Source Based on a Cr:Forsterite Laser and a Photonic-Crystal Fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008).
[CrossRef]

Liu, J.-Y.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. Ivanov, A. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2- to 2.2-µm Tunable Raman Soliton Source Based on a Cr:Forsterite Laser and a Photonic-Crystal Fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008).
[CrossRef]

Liu, T.-M.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. Ivanov, A. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2- to 2.2-µm Tunable Raman Soliton Source Based on a Cr:Forsterite Laser and a Photonic-Crystal Fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008).
[CrossRef]

Lu, F.

Luan, F.

J. A. Bolger, F. Luan, D.-I. Yeom, E. N. Tsoy, C. M. de Sterke, and B. J. Eggleton, “Tunable enhancement of a soliton spectrum using an acoustic long-period grating,” Opt. Express 15, 457–462 (2007).
[CrossRef]

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

Ludvigsen, H.

Maillotte, H.

Malitson, I. H.

Mamyshev, P. V.

Material dispersion in lightguide glasses,

J. W. Fleming and Material dispersion in lightguide glasses,” Electron. Lett. 14, 326–8 (1978).
[CrossRef]

Mazé, G.

Mélin, G.

V. Tombelaine, C. Buy-Lesvigne, P. Leproux, V. Couderc, and G. Mélin, “Optical poling in germanium-doped microstructured optical fiber for visible supercontinuum generation,” Opt. Lett. 33, 2011–2013 (2008b).
[CrossRef]

V. Tombelaine, C. Buy-Lesvigne, V. Couderc, P. Leproux, G. Mélin, K. Schuster, J. Kobelke, and H. Bartelt, “Second harmonic generation in Ge-doped silica holey fibres and supercontinuum generation,” Proc. SPIE - The International Soc. Opt. Engin. 6990, 69,900N-1–7 (2008a).

P. Leproux, C. Buy-Lesvigne, V. Tombelaine, V. Couderc, J. Auguste, J. Blondy, G. Mélin, K. Schuster, J. Kobelke, and H. Bartelt, “Methods for visible supercontinuum generation in doped/undoped holey fibres,” Proceedings of the SPIE - The International Soc. Opt. Engin. 6990, 699,007-1–4 (2008).

Menyuk, C. R.

Mortensen, N. A.

Moselund, P. M.

P. M. Moselund, M. H. Frosz, C. L. Thomsen, and O. Bang, “Back-seeding of higher order gain processes in picosecond supercontinuum generation,” Opt. Express 16, 11,954–11,968 (2008).
[CrossRef]

Mussot, A.

Nicholson, J.

P. Westbrook, J. Nicholson, K. Feder, and A. Yablon, “Improved supercontinuum generation through UV processing of highly nonlinear fibers,” J. Lightwave Techn. 23, 13–18 (2005).
[CrossRef]

P. Westbrook, J. Nicholson, K. Feder, Y. Li, and T. Brown, “Supercontinuum generation in a fiber grating,” Appl. Phys. Lett. 85, 4600–4602 (2004).
[CrossRef]

Nielsen, C. K.

Nielsen, M. D.

Nikolov, N. I.

Nishimura, M.

Nishizawa, N.

Pitois, S.

Popov, S. V.

J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, “Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser,” Opt. Express 16, 14,435–14,447 (2008).
[CrossRef]

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express 14, 5715–5722 (2006).
[CrossRef] [PubMed]

Poulain, M.

Prasad, P. N.

P. N. Prasad, Introduction to biophotonics (John Wiley & Sons Inc., 2003).
[CrossRef]

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C++: The Art of Scientific Computing, 2nd ed. (Cambridge University Press, Cambridge, 2002). http://www.nr.com.

Ranka, J. K.

Rulkov, A. B.

J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, “Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser,” Opt. Express 16, 14,435–14,447 (2008).
[CrossRef]

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express 14, 5715–5722 (2006).
[CrossRef] [PubMed]

Russell, P. S. J.

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

Sanders, S.

J. Walewski, M. Borden, and S. Sanders, “Wavelength-agile laser system based on soliton self-shift and its application for broadband spectroscopy,” Appl. Phys. B 79, 937–940 (2004).
[CrossRef]

Schuster, K.

V. Tombelaine, C. Buy-Lesvigne, V. Couderc, P. Leproux, G. Mélin, K. Schuster, J. Kobelke, and H. Bartelt, “Second harmonic generation in Ge-doped silica holey fibres and supercontinuum generation,” Proc. SPIE - The International Soc. Opt. Engin. 6990, 69,900N-1–7 (2008a).

P. Leproux, C. Buy-Lesvigne, V. Tombelaine, V. Couderc, J. Auguste, J. Blondy, G. Mélin, K. Schuster, J. Kobelke, and H. Bartelt, “Methods for visible supercontinuum generation in doped/undoped holey fibres,” Proceedings of the SPIE - The International Soc. Opt. Engin. 6990, 699,007-1–4 (2008).

Shibata, N.

S. Kobayashi, N. Shibata, S. Shibata, and T. Izawa, “Characteristics of optical fibers in infrared wavelength region,” Review of the Electrical Communication Laboratories 26, 453–67 (1978).

Shibata, S.

S. Kobayashi, N. Shibata, S. Shibata, and T. Izawa, “Characteristics of optical fibers in infrared wavelength region,” Review of the Electrical Communication Laboratories 26, 453–67 (1978).

Sinkin, O. V.

Skryabin, D. V.

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nature Photon. 1, 653–657 (2007).
[CrossRef]

A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, “Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum,” Opt. Express 14, 9854–9863 (2006).
[CrossRef] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

Sørensen, T.

Stentz, A. J.

Stone, J. M.

Suetsugu, Y.

Sun, C.-K.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. Ivanov, A. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2- to 2.2-µm Tunable Raman Soliton Source Based on a Cr:Forsterite Laser and a Photonic-Crystal Fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008).
[CrossRef]

Sylvestre, T.

Tartara, L.

L. Tartara, I. Cristiani, and V. Degiorgio, “Blue light and infrared continuum generation by soliton fission in a microstructured fiber,” Appl. Phys. B 77, 307 (2003).
[CrossRef]

Taylor, J. R.

J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, “Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser,” Opt. Express 16, 14,435–14,447 (2008).
[CrossRef]

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express 14, 5715–5722 (2006).
[CrossRef] [PubMed]

Terry, L.

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C++: The Art of Scientific Computing, 2nd ed. (Cambridge University Press, Cambridge, 2002). http://www.nr.com.

Thøgersen, J.

Thomsen, C. L.

P. M. Moselund, M. H. Frosz, C. L. Thomsen, and O. Bang, “Back-seeding of higher order gain processes in picosecond supercontinuum generation,” Opt. Express 16, 11,954–11,968 (2008).
[CrossRef]

Tombelaine, V.

V. Tombelaine, C. Buy-Lesvigne, P. Leproux, V. Couderc, and G. Mélin, “Optical poling in germanium-doped microstructured optical fiber for visible supercontinuum generation,” Opt. Lett. 33, 2011–2013 (2008b).
[CrossRef]

V. Tombelaine, C. Buy-Lesvigne, V. Couderc, P. Leproux, G. Mélin, K. Schuster, J. Kobelke, and H. Bartelt, “Second harmonic generation in Ge-doped silica holey fibres and supercontinuum generation,” Proc. SPIE - The International Soc. Opt. Engin. 6990, 69,900N-1–7 (2008a).

P. Leproux, C. Buy-Lesvigne, V. Tombelaine, V. Couderc, J. Auguste, J. Blondy, G. Mélin, K. Schuster, J. Kobelke, and H. Bartelt, “Methods for visible supercontinuum generation in doped/undoped holey fibres,” Proceedings of the SPIE - The International Soc. Opt. Engin. 6990, 699,007-1–4 (2008).

Travers, J. C.

J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, “Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser,” Opt. Express 16, 14,435–14,447 (2008).
[CrossRef]

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express 14, 5715–5722 (2006).
[CrossRef] [PubMed]

Tsai, T.-H.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. Ivanov, A. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2- to 2.2-µm Tunable Raman Soliton Source Based on a Cr:Forsterite Laser and a Photonic-Crystal Fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008).
[CrossRef]

Tsoy, E. N.

J. A. Bolger, F. Luan, D.-I. Yeom, E. N. Tsoy, C. M. de Sterke, and B. J. Eggleton, “Tunable enhancement of a soliton spectrum using an acoustic long-period grating,” Opt. Express 15, 457–462 (2007).
[CrossRef]

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C++: The Art of Scientific Computing, 2nd ed. (Cambridge University Press, Cambridge, 2002). http://www.nr.com.

Walewski, J.

J. Walewski, M. Borden, and S. Sanders, “Wavelength-agile laser system based on soliton self-shift and its application for broadband spectroscopy,” Appl. Phys. B 79, 937–940 (2004).
[CrossRef]

Westbrook, P.

P. Westbrook, J. Nicholson, K. Feder, and A. Yablon, “Improved supercontinuum generation through UV processing of highly nonlinear fibers,” J. Lightwave Techn. 23, 13–18 (2005).
[CrossRef]

P. Westbrook, J. Nicholson, K. Feder, Y. Li, and T. Brown, “Supercontinuum generation in a fiber grating,” Appl. Phys. Lett. 85, 4600–4602 (2004).
[CrossRef]

Windeler, R. S.

Wood, D.

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
[CrossRef]

Xia, C.

Yablon, A.

P. Westbrook, J. Nicholson, K. Feder, and A. Yablon, “Improved supercontinuum generation through UV processing of highly nonlinear fibers,” J. Lightwave Techn. 23, 13–18 (2005).
[CrossRef]

Yeom, D.-I.

J. A. Bolger, F. Luan, D.-I. Yeom, E. N. Tsoy, C. M. de Sterke, and B. J. Eggleton, “Tunable enhancement of a soliton spectrum using an acoustic long-period grating,” Opt. Express 15, 457–462 (2007).
[CrossRef]

Yu, M.

S. B. Cavalcanti, G. P. Agrawal, and M. Yu, “Noise amplification in dispersive nonlinear media,” Phys. Rev. A 51, 4086–4092 (1995).
[CrossRef] [PubMed]

Zheltikov, A.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. Ivanov, A. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2- to 2.2-µm Tunable Raman Soliton Source Based on a Cr:Forsterite Laser and a Photonic-Crystal Fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008).
[CrossRef]

Zweck, J.

Appl. Phys. B (2)

J. Walewski, M. Borden, and S. Sanders, “Wavelength-agile laser system based on soliton self-shift and its application for broadband spectroscopy,” Appl. Phys. B 79, 937–940 (2004).
[CrossRef]

L. Tartara, I. Cristiani, and V. Degiorgio, “Blue light and infrared continuum generation by soliton fission in a microstructured fiber,” Appl. Phys. B 77, 307 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

P. Westbrook, J. Nicholson, K. Feder, Y. Li, and T. Brown, “Supercontinuum generation in a fiber grating,” Appl. Phys. Lett. 85, 4600–4602 (2004).
[CrossRef]

Electron. Lett. (2)

J. W. Fleming and Material dispersion in lightguide glasses,” Electron. Lett. 14, 326–8 (1978).
[CrossRef]

J. W. Fleming, “Material dispersion in lightguide glasses [Erratum],” Electron. Lett. 15, 507 (1979).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. Ivanov, A. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, “1.2- to 2.2-µm Tunable Raman Soliton Source Based on a Cr:Forsterite Laser and a Photonic-Crystal Fiber,” IEEE Photon. Technol. Lett. 20, 900–902 (2008).
[CrossRef]

J. Lightwave Techn. (1)

P. Westbrook, J. Nicholson, K. Feder, and A. Yablon, “Improved supercontinuum generation through UV processing of highly nonlinear fibers,” J. Lightwave Techn. 23, 13–18 (2005).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

Nature Photon. (1)

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nature Photon. 1, 653–657 (2007).
[CrossRef]

Opt. Express (12)

J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, “Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser,” Opt. Express 16, 14,435–14,447 (2008).
[CrossRef]

J. A. Bolger, F. Luan, D.-I. Yeom, E. N. Tsoy, C. M. de Sterke, and B. J. Eggleton, “Tunable enhancement of a soliton spectrum using an acoustic long-period grating,” Opt. Express 15, 457–462 (2007).
[CrossRef]

P. M. Moselund, M. H. Frosz, C. L. Thomsen, and O. Bang, “Back-seeding of higher order gain processes in picosecond supercontinuum generation,” Opt. Express 16, 11,954–11,968 (2008).
[CrossRef]

A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, and S. Pitois, “Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers,” Opt. Express 12, 2838–2843 (2004).
[CrossRef] [PubMed]

G. Genty, M. Lehtonen, and H. Ludvigsen, “Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses,” Opt. Express 12, 4614–4624 (2004).
[CrossRef] [PubMed]

N. Nishizawa and T. Goto, “Characteristics of pulse trapping by ultrashort soliton pulses in optical fibers across the zero-dispersion wavelength,” Opt. Express 10, 1151–1160 (2002).
[PubMed]

J. Lægsgaard, “Mode profile dispersion in the generalised nonlinear Schrödinger equation,” Opt. Express 15, 16 110–16123 (2007).
[CrossRef]

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express 14, 5715–5722 (2006).
[CrossRef] [PubMed]

M. H. Frosz, O. Bang, and A. Bjarklev, “Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation,” Opt. Express 14, 9391–9407 (2006).
[CrossRef] [PubMed]

A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, “Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum,” Opt. Express 14, 9854–9863 (2006).
[CrossRef] [PubMed]

E. R. Andresen, C. K. Nielsen, J. Thøgersen, and S. R Keiding, “Fiber laser-based light source for coherent anti-Stokes Raman scattering microspectroscopy,” Opt. Express 15, 4848–4856 (2007),URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-8-4848.
[CrossRef] [PubMed]

J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16, 2670–2675 (2008).
[CrossRef] [PubMed]

Opt. Lett. (8)

V. Tombelaine, C. Buy-Lesvigne, P. Leproux, V. Couderc, and G. Mélin, “Optical poling in germanium-doped microstructured optical fiber for visible supercontinuum generation,” Opt. Lett. 33, 2011–2013 (2008b).
[CrossRef]

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 µm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31, 2553–2555 (2006), URL http://ol.osa.org/abstract.cfm?URI=ol-31-17-2553.
[CrossRef] [PubMed]

N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, and K. P. Hansen, “Modal cutoff and the V parameter in photonic crystal fibers,” Opt. Lett. 28, 1879–1881 (2003).
[CrossRef] [PubMed]

G. Genty, M. Lehtonen, and H. Ludvigsen, “Route to broadband blue-light generation in microstructured fibers,” Opt. Lett. 30, 756–758 (2005),
[CrossRef] [PubMed]

F. Lu, Y. Deng, and W. H. Knox, “Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers,” Opt. Lett. 30, 1566–1568 (2005).
[CrossRef] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[CrossRef]

P. V. Mamyshev and S. V. Chernikov, “Ultrashort-pulse propagation in optical fibers,” Opt. Lett. 15, 1076–1078 (1990).
[CrossRef] [PubMed]

T. Kato, Y. Suetsugu, and M. Nishimura, “Estimation of nonlinear refractive index in various silica-based glasses for optical fibers,” Opt. Lett. 20, 2279 (1995).
[CrossRef] [PubMed]

Phys. Rev. A (1)

S. B. Cavalcanti, G. P. Agrawal, and M. Yu, “Noise amplification in dispersive nonlinear media,” Phys. Rev. A 51, 4086–4092 (1995).
[CrossRef] [PubMed]

Proc. SPIE - The International Soc. Opt. Engin. (1)

V. Tombelaine, C. Buy-Lesvigne, V. Couderc, P. Leproux, G. Mélin, K. Schuster, J. Kobelke, and H. Bartelt, “Second harmonic generation in Ge-doped silica holey fibres and supercontinuum generation,” Proc. SPIE - The International Soc. Opt. Engin. 6990, 69,900N-1–7 (2008a).

Proceedings of the SPIE - The International Soc. Opt. Engin. (1)

P. Leproux, C. Buy-Lesvigne, V. Tombelaine, V. Couderc, J. Auguste, J. Blondy, G. Mélin, K. Schuster, J. Kobelke, and H. Bartelt, “Methods for visible supercontinuum generation in doped/undoped holey fibres,” Proceedings of the SPIE - The International Soc. Opt. Engin. 6990, 699,007-1–4 (2008).

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Review of the Electrical Communication Laboratories (1)

S. Kobayashi, N. Shibata, S. Shibata, and T. Izawa, “Characteristics of optical fibers in infrared wavelength region,” Review of the Electrical Communication Laboratories 26, 453–67 (1978).

Science (1)

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

Other (6)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, Burlington, MA, USA, 2007).

P. N. Prasad, Introduction to biophotonics (John Wiley & Sons Inc., 2003).
[CrossRef]

http://www.koheras.com/.

K. Jalink, A. Diaspro, V. Caorsi, and P. Bianchini, “Leica TCS SP5 X - White Light Laser,” Appl. Lett.29, Leica Microsystems (2008), http://www.leica-microsystems.com.

COMSOL Multiphysics 3.4 (2007), http://www.comsol.com.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C++: The Art of Scientific Computing, 2nd ed. (Cambridge University Press, Cambridge, 2002). http://www.nr.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Calculated group-velocity profiles for PCFs with Λ=2.42 µm, d/Λ=0.46 (blue, solid) and Λ=3.7 µm, d/Λ=0.79 (green, dotted). The horizontal and vertical lines show that there is group-velocity match from 2100 nm to 536 nm in the Λ=2.42 µm, d/Λ=0.46 fibre, while the Λ=3.7 µm, d/Λ=0.79 provides group-velocity match from 2100 nm to 491 nm. The group-velocity in bulk silica is also indicated (red, dash-dotted).

Fig. 2.
Fig. 2.

Calculated group velocity profiles for 6 different glass compositions, including pure silica.

Fig. 3.
Fig. 3.

Left: Calculated group-velocity profiles for a particular PCF structure (Λ=2.42 µm, d/Λ=0.46) of different glass compositions: pure fused silica (blue, solid line), 1% F (green, dashed), and 13.3% B2O3 (red, dash-dot). The vertical lines indicate the calculated location of the short-wavelength peak of the corresponding spectra (Fig. 5). From the intersections between these lines and the corresponding group velocities, a line has been drawn to the group-velocity at which the most red-shifted soliton is located. The line is practically horizontal, which shows that there is group-velocity match between the short-wavelength peak and the most red-shifted soliton. Right: Dispersion profiles corresponding to the same PCF structure and glass compositions. The black horizontal line indicates zero dispersion.

Fig. 4.
Fig. 4.

Measured loss in fibre drawn from all-silica step-index preform with F-doped cladding, used for optical fibers (blue dots), and the fitted loss profile used in the simulations (green line). Measured loss data kindly provided by Heraeus Quarzglas, Germany.

Fig. 5.
Fig. 5.

Calculated spectra after 2.5 m of propagation in a PCF (Λ=2.42 µm and d/Λ=0.46) made of pure silica and alternative glass compositions. The spectra have been smoothed using Savitzky-Golay filtering [45]; the simulations including loss were first averaged over 5 simulations with different input noise seed for each glass composition.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

C ˜ z = i m = 2 β m [ ω ω 0 ] m m ! C ˜ ( z , ω ) α ( ω ) 2 C ˜ ( z , ω )
+ i γ ( ω ) [ 1 + ω ω 0 ω 0 ] { C ( z , t ) R ( t t 1 ) C ( z , t ) 2 d t 1 } ,
γ ( ω ) = n 2 n 0 ω 0 c n eff ( ω ) A eff ( ω ) A eff ( ω 0 ) .
C ˜ ( z , ω ) = [ A eff ( ω ) A eff ( ω 0 ) ] 1 4 A ˜ ( z , ω ) .
R ( t ) = ( 1 f R ) δ ( t ) + f R τ 1 2 + τ 2 2 τ 1 τ 2 2 exp ( t τ 2 ) sin ( t τ 1 ) Θ ( t ) ,
γ ( ω ) γ ( ω 0 ) = n 2 ω 0 c A eff ( ω 0 ) .
γ ( ω ) = n 2 ω 0 c A eff ( ω ) .

Metrics