Abstract

Supercontinuum light sources spanning into the ultraviolet-visible wavelength region are highly useful for applications such as fluorescence microscopy. A method of shifting the supercontinuum spectrum into this wavelength region has recently become well understood. The method relies on designing the group-velocity profile of the nonlinear fiber in which the supercontinuum is generated, so that red-shifted solitons are group-velocity matched to dispersive waves in the desired ultraviolet-visible wavelength region. The group-velocity profile of a photonic crystal fiber (PCF) can be engineered through the structure of the PCF, but this mostly modifies the group-velocity in the long-wavelength part of the spectrum. In this work, we first consider how the group-velocity profile can be engineered more directly in the short-wavelength part of the spectrum through alternative choices of the glass material from which the PCF is made. We then make simulations of supercontinuum generation in PCFs made of alternative glass materials. It is found that it is possible to increase the blue-shift of the generated supercontinuum by about 20 nm through a careful choice of glass composition, provided that the alternative glass composition does not have a significantly higher loss than silica in the near-infrared.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  2. M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. Ivanov, A. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, "1.2- to 2.2-μm Tunable Raman Soliton Source Based on a Cr:Forsterite Laser and a Photonic-Crystal Fiber," IEEE Photon. Technol. Lett. 20, 900-902 (2008).
    [CrossRef]
  3. J. Walewski, M. Borden, and S. Sanders, "Wavelength-agile laser system based on soliton self-shift and its application for broadband spectroscopy," Appl. Phys. B 79, 937-940 (2004).
    [CrossRef]
  4. E. R. Andresen, C. K. Nielsen, J. Thøgersen, and S. R. Keiding, "Fiber laser-based light source for coherent anti-Stokes Raman scattering microspectroscopy," Opt. Express 15, 4848-4856 (2007),URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-8-4848
    [CrossRef] [PubMed]
  5. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, J. Fred L. Terry, M. J. Freeman, M. Poulain, and G. Maz’e, "Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping," Opt. Lett. 31, 2553-2555 (2006), URL http://ol.osa.org/abstract.cfm?URI=ol-31-17-2553.
    [CrossRef] [PubMed]
  6. P. N. Prasad, Introduction to biophotonics (John Wiley & Sons Inc., 2003).
    [CrossRef]
  7. http://www.koheras.com/.
  8. K. Jalink, A. Diaspro, V. Caorsi, and P. Bianchini, "Leica TCS SP5 X - White Light Laser," Appl. Lett. 29, Leica Microsystems (2008), http://www.leica-microsystems.com.
  9. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Zerodispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation," Opt. Express 14, 5715-5722 (2006), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-14-12-5715.
    [CrossRef] [PubMed]
  10. F. Lu, Y. Deng, and W. H. Knox, "Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers," Opt. Lett. 30, 1566-1568 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-12-1566.
    [CrossRef] [PubMed]
  11. P. Westbrook, J. Nicholson, K. Feder, Y. Li, and T. Brown, "Supercontinuum generation in a fiber grating," Appl. Phys. Lett. 85, 4600-4602 (2004).
    [CrossRef]
  12. J. A. Bolger, F. Luan, D.-I. Yeom, E. N. Tsoy, C. M. de Sterke, and B. J. Eggleton, "Tunable enhancement of a soliton spectrum using an acoustic long-period grating," Opt. Express 15, 457-462 (2007), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-20-13457.
    [CrossRef]
  13. N. I. Nikolov, T. Sørensen, O. Bang, and A. Bjarklev, "Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing," J. Opt. Soc. Am. B 20, 2329-2337 (2003).
    [CrossRef]
  14. M. H. Frosz, T. Sørensen, and O. Bang, "Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping," J. Opt. Soc. Am. B 23, 1692-1699 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=josab-23-8-1692.
    [CrossRef]
  15. P. M. Moselund, M. H. Frosz, C. L. Thomsen, and O. Bang, "Back-seeding of higher order gain processes in picosecond supercontinuum generation," Opt. Express 16, 11,954-11,968 (2008), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-16-16-11954.
    [CrossRef]
  16. P. Westbrook, J. Nicholson, K. Feder, and A. Yablon, "Improved supercontinuum generation through UV processing of highly nonlinear fibers," J. Lightwave Techn. 23, 13-18 (2005).
    [CrossRef]
  17. L. Tartara, I. Cristiani, and V. Degiorgio, "Blue light and infrared continuum generation by soliton fission in a microstructured fiber," Appl. Phys. B 77, 307 (2003).
    [CrossRef]
  18. G. Genty, M. Lehtonen, and H. Ludvigsen, "Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses," Opt. Express 12, 4614-4624 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-19-4614.
    [CrossRef] [PubMed]
  19. G. Genty, M. Lehtonen, and H. Ludvigsen, "Route to broadband blue-light generation in microstructured fibers," Opt. Lett. 30, 756-758 (2005), URL http://ol.osa.org/abstract.cfm?URI=ol-30-7-756.
    [CrossRef] [PubMed]
  20. A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, "Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum," Opt. Express 14, 9854-9863 (2006), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-14-21-9854.
    [CrossRef] [PubMed]
  21. A. V. Gorbach and D. V. Skryabin, "Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres," Nat. Photonics 1, 653-657 (2007).
    [CrossRef]
  22. J. M. Stone and J. C. Knight, "Visibly "white" light generation in uniform photonic crystal fiber using a microchip laser," Opt. Express 16, 2670-2675 (2008), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-16-4-2670.
    [CrossRef] [PubMed]
  23. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006), http://link.aps.org/abstract/RMP/v78/p1135.
    [CrossRef]
  24. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, Burlington, MA, USA, 2007).
  25. N. Nishizawa and T. Goto, "Characteristics of pulse trapping by ultrashort soliton pulses in optical fibers across the zero-dispersion wavelength," Opt. Express 10, 1151-1160 (2002), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-10-21-1151.
    [PubMed]
  26. D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003).
    [CrossRef] [PubMed]
  27. J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, "Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser," Opt. Express 16, 14,435-14,447 (2008), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-16-19-14435.
    [CrossRef]
  28. P. Leproux, C. Buy-Lesvigne, V. Tombelaine, V. Couderc, J. Auguste, J. Blondy, G. M’elin, K. Schuster, J. Kobelke, and H. Bartelt, "Methods for visible supercontinuum generation in doped/undoped holey fibres," Proc. SPIE 6990, 699,007-1-4 (2008).
  29. V. Tombelaine, C. Buy-Lesvigne, V. Couderc, P. Leproux, G. Melin, K. Schuster, J. Kobelke, and H. Bartelt, "Second harmonic generation in Ge-doped silica holey fibres and supercontinuum generation," Proc. SPIE 6990, 69,900N-1-7 (2008a).
  30. V. Tombelaine, C. Buy-Lesvigne, P. Leproux, V. Couderc, and G. M’elin, "Optical poling in germanium-doped microstructured optical fiber for visible supercontinuum generation," Opt. Lett. 33, 2011-2013 (2008b), URL http://ol.osa.org/abstract.cfm?URI=ol-33-17-2011.
    [CrossRef]
  31. J. W. Fleming, "Material dispersion in lightguide glasses," Electron. Lett. 14, 326-8 (1978).
    [CrossRef]
  32. J. W. Fleming, "Material dispersion in lightguide glasses [Erratum]," Electron. Lett. 15, 507 (1979).
    [CrossRef]
  33. I. H. Malitson, "Interspecimen comparison of the refractive index of fused silica," J. Opt. Soc. Am. 55, 1205-1209 (1965).
    [CrossRef]
  34. COMSOL Multiphysics 3.4 (2007), http://www.comsol.com.
  35. N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, and K. P. Hansen, "Modal cutoff and the V parameter in photonic crystal fibers," Opt. Lett. 28, 1879-1881 (2003), URL http://ol.osa.org/abstract.cfm?URI=ol-28-20-1879.
    [CrossRef] [PubMed]
  36. P. V. Mamyshev and S. V. Chernikov, "Ultrashort-pulse propagation in optical fibers," Opt. Lett. 15, 1076-1078 (1990).
    [CrossRef] [PubMed]
  37. J. Lægsgaard, "Mode profile dispersion in the generalised nonlinear Schrodinger equation," Opt. Express 15,16 110-16123 (2007).
    [CrossRef]
  38. K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).
    [CrossRef]
  39. S. Kobayashi, N. Shibata, S. Shibata, and T. Izawa, "Characteristics of optical fibers in infrared wavelength region," Rev. Elect. Commun. Lab. 26, 453-67 (1978).
  40. O. V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk, "Optimization of the Split-Step Fourier Method in Modeling Optical-Fiber Communications Systems," J. Lightwave Technol. 21, 61-68 (2003),http://dx.doi.org/10.1109/JLT.2003.808628.
    [CrossRef]
  41. M. H. Frosz, O. Bang, and A. Bjarklev, "Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation," Opt. Express 14, 9391-9407 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9391.
    [CrossRef] [PubMed]
  42. S. B. Cavalcanti, G. P. Agrawal, and M. Yu, "Noise amplification in dispersive nonlinear media," Phys. Rev. A 51, 4086-4092 (1995), http://dx.doi.org/10.1103/PhysRevA.51.4086.
    [CrossRef] [PubMed]
  43. A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, and S. Pitois, "Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers," Opt. Express 12, 2838-2843 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2838.
    [CrossRef] [PubMed]
  44. T. Kato, Y. Suetsugu, and M. Nishimura, "Estimation of nonlinear refractive index in various silica-based glasses for optical fibers," Opt. Lett. 20, 2279 (1995), URL http://ol.osa.org/abstract.cfm?URI=ol-20-22-2279.
    [CrossRef] [PubMed]
  45. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C++: The Art of Scientific Computing, 2nd ed. (Cambridge University Press, Cambridge, 2002). http://www.nr.com.

2008

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. Ivanov, A. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, "1.2- to 2.2-μm Tunable Raman Soliton Source Based on a Cr:Forsterite Laser and a Photonic-Crystal Fiber," IEEE Photon. Technol. Lett. 20, 900-902 (2008).
[CrossRef]

2007

A. V. Gorbach and D. V. Skryabin, "Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres," Nat. Photonics 1, 653-657 (2007).
[CrossRef]

2006

2005

P. Westbrook, J. Nicholson, K. Feder, and A. Yablon, "Improved supercontinuum generation through UV processing of highly nonlinear fibers," J. Lightwave Techn. 23, 13-18 (2005).
[CrossRef]

F. Lu, Y. Deng, and W. H. Knox, "Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers," Opt. Lett. 30, 1566-1568 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-12-1566.
[CrossRef] [PubMed]

2004

2003

2000

1995

S. B. Cavalcanti, G. P. Agrawal, and M. Yu, "Noise amplification in dispersive nonlinear media," Phys. Rev. A 51, 4086-4092 (1995), http://dx.doi.org/10.1103/PhysRevA.51.4086.
[CrossRef] [PubMed]

1990

1989

K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).
[CrossRef]

1979

J. W. Fleming, "Material dispersion in lightguide glasses [Erratum]," Electron. Lett. 15, 507 (1979).
[CrossRef]

1978

S. Kobayashi, N. Shibata, S. Shibata, and T. Izawa, "Characteristics of optical fibers in infrared wavelength region," Rev. Elect. Commun. Lab. 26, 453-67 (1978).

J. W. Fleming, "Material dispersion in lightguide glasses," Electron. Lett. 14, 326-8 (1978).
[CrossRef]

1965

Agrawal, G. P.

S. B. Cavalcanti, G. P. Agrawal, and M. Yu, "Noise amplification in dispersive nonlinear media," Phys. Rev. A 51, 4086-4092 (1995), http://dx.doi.org/10.1103/PhysRevA.51.4086.
[CrossRef] [PubMed]

Bang, O.

Bjarklev, A.

Blow, K. J.

K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).
[CrossRef]

Borden, M.

J. Walewski, M. Borden, and S. Sanders, "Wavelength-agile laser system based on soliton self-shift and its application for broadband spectroscopy," Appl. Phys. B 79, 937-940 (2004).
[CrossRef]

Brown, T.

P. Westbrook, J. Nicholson, K. Feder, Y. Li, and T. Brown, "Supercontinuum generation in a fiber grating," Appl. Phys. Lett. 85, 4600-4602 (2004).
[CrossRef]

Cavalcanti, S. B.

S. B. Cavalcanti, G. P. Agrawal, and M. Yu, "Noise amplification in dispersive nonlinear media," Phys. Rev. A 51, 4086-4092 (1995), http://dx.doi.org/10.1103/PhysRevA.51.4086.
[CrossRef] [PubMed]

Chan, M.-C.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. Ivanov, A. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, "1.2- to 2.2-μm Tunable Raman Soliton Source Based on a Cr:Forsterite Laser and a Photonic-Crystal Fiber," IEEE Photon. Technol. Lett. 20, 900-902 (2008).
[CrossRef]

Chernikov, S. V.

Chia, S.-H.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. Ivanov, A. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, "1.2- to 2.2-μm Tunable Raman Soliton Source Based on a Cr:Forsterite Laser and a Photonic-Crystal Fiber," IEEE Photon. Technol. Lett. 20, 900-902 (2008).
[CrossRef]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006), http://link.aps.org/abstract/RMP/v78/p1135.
[CrossRef]

Cristiani, I.

L. Tartara, I. Cristiani, and V. Degiorgio, "Blue light and infrared continuum generation by soliton fission in a microstructured fiber," Appl. Phys. B 77, 307 (2003).
[CrossRef]

Degiorgio, V.

L. Tartara, I. Cristiani, and V. Degiorgio, "Blue light and infrared continuum generation by soliton fission in a microstructured fiber," Appl. Phys. B 77, 307 (2003).
[CrossRef]

Deng, Y.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006), http://link.aps.org/abstract/RMP/v78/p1135.
[CrossRef]

Feder, K.

P. Westbrook, J. Nicholson, K. Feder, and A. Yablon, "Improved supercontinuum generation through UV processing of highly nonlinear fibers," J. Lightwave Techn. 23, 13-18 (2005).
[CrossRef]

P. Westbrook, J. Nicholson, K. Feder, Y. Li, and T. Brown, "Supercontinuum generation in a fiber grating," Appl. Phys. Lett. 85, 4600-4602 (2004).
[CrossRef]

Finot, C.

Fleming, J. W.

J. W. Fleming, "Material dispersion in lightguide glasses [Erratum]," Electron. Lett. 15, 507 (1979).
[CrossRef]

J. W. Fleming, "Material dispersion in lightguide glasses," Electron. Lett. 14, 326-8 (1978).
[CrossRef]

Frosz, M. H.

Genty, G.

Gorbach, A. V.

A. V. Gorbach and D. V. Skryabin, "Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres," Nat. Photonics 1, 653-657 (2007).
[CrossRef]

Ho, M.-C.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. Ivanov, A. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, "1.2- to 2.2-μm Tunable Raman Soliton Source Based on a Cr:Forsterite Laser and a Photonic-Crystal Fiber," IEEE Photon. Technol. Lett. 20, 900-902 (2008).
[CrossRef]

Holzlohner, R.

Ivanov, A.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. Ivanov, A. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, "1.2- to 2.2-μm Tunable Raman Soliton Source Based on a Cr:Forsterite Laser and a Photonic-Crystal Fiber," IEEE Photon. Technol. Lett. 20, 900-902 (2008).
[CrossRef]

Izawa, T.

S. Kobayashi, N. Shibata, S. Shibata, and T. Izawa, "Characteristics of optical fibers in infrared wavelength region," Rev. Elect. Commun. Lab. 26, 453-67 (1978).

Knight, J. C.

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

Knox, W. H.

Kobayashi, S.

S. Kobayashi, N. Shibata, S. Shibata, and T. Izawa, "Characteristics of optical fibers in infrared wavelength region," Rev. Elect. Commun. Lab. 26, 453-67 (1978).

Lantz, E.

Lehtonen, M.

Li, Y.

P. Westbrook, J. Nicholson, K. Feder, Y. Li, and T. Brown, "Supercontinuum generation in a fiber grating," Appl. Phys. Lett. 85, 4600-4602 (2004).
[CrossRef]

Liu, H.-L.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. Ivanov, A. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, "1.2- to 2.2-μm Tunable Raman Soliton Source Based on a Cr:Forsterite Laser and a Photonic-Crystal Fiber," IEEE Photon. Technol. Lett. 20, 900-902 (2008).
[CrossRef]

Liu, J.-Y.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. Ivanov, A. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, "1.2- to 2.2-μm Tunable Raman Soliton Source Based on a Cr:Forsterite Laser and a Photonic-Crystal Fiber," IEEE Photon. Technol. Lett. 20, 900-902 (2008).
[CrossRef]

Liu, T.-M.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. Ivanov, A. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, "1.2- to 2.2-μm Tunable Raman Soliton Source Based on a Cr:Forsterite Laser and a Photonic-Crystal Fiber," IEEE Photon. Technol. Lett. 20, 900-902 (2008).
[CrossRef]

Lu, F.

Luan, F.

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

Ludvigsen, H.

Maillotte, H.

Malitson, I. H.

Mamyshev, P. V.

Menyuk, C. R.

Mussot, A.

Nicholson, J.

P. Westbrook, J. Nicholson, K. Feder, and A. Yablon, "Improved supercontinuum generation through UV processing of highly nonlinear fibers," J. Lightwave Techn. 23, 13-18 (2005).
[CrossRef]

P. Westbrook, J. Nicholson, K. Feder, Y. Li, and T. Brown, "Supercontinuum generation in a fiber grating," Appl. Phys. Lett. 85, 4600-4602 (2004).
[CrossRef]

Nikolov, N. I.

Pitois, S.

Ranka, J. K.

Russell, P. S. J.

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

Sanders, S.

J. Walewski, M. Borden, and S. Sanders, "Wavelength-agile laser system based on soliton self-shift and its application for broadband spectroscopy," Appl. Phys. B 79, 937-940 (2004).
[CrossRef]

Shibata, N.

S. Kobayashi, N. Shibata, S. Shibata, and T. Izawa, "Characteristics of optical fibers in infrared wavelength region," Rev. Elect. Commun. Lab. 26, 453-67 (1978).

Shibata, S.

S. Kobayashi, N. Shibata, S. Shibata, and T. Izawa, "Characteristics of optical fibers in infrared wavelength region," Rev. Elect. Commun. Lab. 26, 453-67 (1978).

Sinkin, O. V.

Skryabin, D. V.

A. V. Gorbach and D. V. Skryabin, "Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres," Nat. Photonics 1, 653-657 (2007).
[CrossRef]

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

Sørensen, T.

Stentz, A. J.

Sun, C.-K.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. Ivanov, A. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, "1.2- to 2.2-μm Tunable Raman Soliton Source Based on a Cr:Forsterite Laser and a Photonic-Crystal Fiber," IEEE Photon. Technol. Lett. 20, 900-902 (2008).
[CrossRef]

Sylvestre, T.

Tartara, L.

L. Tartara, I. Cristiani, and V. Degiorgio, "Blue light and infrared continuum generation by soliton fission in a microstructured fiber," Appl. Phys. B 77, 307 (2003).
[CrossRef]

Tsai, T.-H.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. Ivanov, A. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, "1.2- to 2.2-μm Tunable Raman Soliton Source Based on a Cr:Forsterite Laser and a Photonic-Crystal Fiber," IEEE Photon. Technol. Lett. 20, 900-902 (2008).
[CrossRef]

Walewski, J.

J. Walewski, M. Borden, and S. Sanders, "Wavelength-agile laser system based on soliton self-shift and its application for broadband spectroscopy," Appl. Phys. B 79, 937-940 (2004).
[CrossRef]

Westbrook, P.

P. Westbrook, J. Nicholson, K. Feder, and A. Yablon, "Improved supercontinuum generation through UV processing of highly nonlinear fibers," J. Lightwave Techn. 23, 13-18 (2005).
[CrossRef]

P. Westbrook, J. Nicholson, K. Feder, Y. Li, and T. Brown, "Supercontinuum generation in a fiber grating," Appl. Phys. Lett. 85, 4600-4602 (2004).
[CrossRef]

Windeler, R. S.

Wood, D.

K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).
[CrossRef]

Yablon, A.

P. Westbrook, J. Nicholson, K. Feder, and A. Yablon, "Improved supercontinuum generation through UV processing of highly nonlinear fibers," J. Lightwave Techn. 23, 13-18 (2005).
[CrossRef]

Yu, M.

S. B. Cavalcanti, G. P. Agrawal, and M. Yu, "Noise amplification in dispersive nonlinear media," Phys. Rev. A 51, 4086-4092 (1995), http://dx.doi.org/10.1103/PhysRevA.51.4086.
[CrossRef] [PubMed]

Zheltikov, A.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. Ivanov, A. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, "1.2- to 2.2-μm Tunable Raman Soliton Source Based on a Cr:Forsterite Laser and a Photonic-Crystal Fiber," IEEE Photon. Technol. Lett. 20, 900-902 (2008).
[CrossRef]

Zweck, J.

Appl. Phys. B

J. Walewski, M. Borden, and S. Sanders, "Wavelength-agile laser system based on soliton self-shift and its application for broadband spectroscopy," Appl. Phys. B 79, 937-940 (2004).
[CrossRef]

L. Tartara, I. Cristiani, and V. Degiorgio, "Blue light and infrared continuum generation by soliton fission in a microstructured fiber," Appl. Phys. B 77, 307 (2003).
[CrossRef]

Appl. Phys. Lett.

P. Westbrook, J. Nicholson, K. Feder, Y. Li, and T. Brown, "Supercontinuum generation in a fiber grating," Appl. Phys. Lett. 85, 4600-4602 (2004).
[CrossRef]

Electron. Lett.

J. W. Fleming, "Material dispersion in lightguide glasses," Electron. Lett. 14, 326-8 (1978).
[CrossRef]

J. W. Fleming, "Material dispersion in lightguide glasses [Erratum]," Electron. Lett. 15, 507 (1979).
[CrossRef]

IEEE J. Quantum Electron.

K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).
[CrossRef]

IEEE Photon. Technol. Lett.

M.-C. Chan, S.-H. Chia, T.-M. Liu, T.-H. Tsai, M.-C. Ho, A. Ivanov, A. Zheltikov, J.-Y. Liu, H.-L. Liu, and C.-K. Sun, "1.2- to 2.2-μm Tunable Raman Soliton Source Based on a Cr:Forsterite Laser and a Photonic-Crystal Fiber," IEEE Photon. Technol. Lett. 20, 900-902 (2008).
[CrossRef]

J. Lightwave Techn.

P. Westbrook, J. Nicholson, K. Feder, and A. Yablon, "Improved supercontinuum generation through UV processing of highly nonlinear fibers," J. Lightwave Techn. 23, 13-18 (2005).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Nat. Photonics

A. V. Gorbach and D. V. Skryabin, "Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres," Nat. Photonics 1, 653-657 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

S. B. Cavalcanti, G. P. Agrawal, and M. Yu, "Noise amplification in dispersive nonlinear media," Phys. Rev. A 51, 4086-4092 (1995), http://dx.doi.org/10.1103/PhysRevA.51.4086.
[CrossRef] [PubMed]

Rev. Elect. Commun. Lab.

S. Kobayashi, N. Shibata, S. Shibata, and T. Izawa, "Characteristics of optical fibers in infrared wavelength region," Rev. Elect. Commun. Lab. 26, 453-67 (1978).

Rev. Mod. Phys.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006), http://link.aps.org/abstract/RMP/v78/p1135.
[CrossRef]

Science

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

Other

J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, "Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser," Opt. Express 16, 14,435-14,447 (2008), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-16-19-14435.
[CrossRef]

P. Leproux, C. Buy-Lesvigne, V. Tombelaine, V. Couderc, J. Auguste, J. Blondy, G. M’elin, K. Schuster, J. Kobelke, and H. Bartelt, "Methods for visible supercontinuum generation in doped/undoped holey fibres," Proc. SPIE 6990, 699,007-1-4 (2008).

V. Tombelaine, C. Buy-Lesvigne, V. Couderc, P. Leproux, G. Melin, K. Schuster, J. Kobelke, and H. Bartelt, "Second harmonic generation in Ge-doped silica holey fibres and supercontinuum generation," Proc. SPIE 6990, 69,900N-1-7 (2008a).

V. Tombelaine, C. Buy-Lesvigne, P. Leproux, V. Couderc, and G. M’elin, "Optical poling in germanium-doped microstructured optical fiber for visible supercontinuum generation," Opt. Lett. 33, 2011-2013 (2008b), URL http://ol.osa.org/abstract.cfm?URI=ol-33-17-2011.
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, Burlington, MA, USA, 2007).

N. Nishizawa and T. Goto, "Characteristics of pulse trapping by ultrashort soliton pulses in optical fibers across the zero-dispersion wavelength," Opt. Express 10, 1151-1160 (2002), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-10-21-1151.
[PubMed]

J. M. Stone and J. C. Knight, "Visibly "white" light generation in uniform photonic crystal fiber using a microchip laser," Opt. Express 16, 2670-2675 (2008), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-16-4-2670.
[CrossRef] [PubMed]

J. Lægsgaard, "Mode profile dispersion in the generalised nonlinear Schrodinger equation," Opt. Express 15,16 110-16123 (2007).
[CrossRef]

COMSOL Multiphysics 3.4 (2007), http://www.comsol.com.

N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, and K. P. Hansen, "Modal cutoff and the V parameter in photonic crystal fibers," Opt. Lett. 28, 1879-1881 (2003), URL http://ol.osa.org/abstract.cfm?URI=ol-28-20-1879.
[CrossRef] [PubMed]

J. A. Bolger, F. Luan, D.-I. Yeom, E. N. Tsoy, C. M. de Sterke, and B. J. Eggleton, "Tunable enhancement of a soliton spectrum using an acoustic long-period grating," Opt. Express 15, 457-462 (2007), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-20-13457.
[CrossRef]

E. R. Andresen, C. K. Nielsen, J. Thøgersen, and S. R. Keiding, "Fiber laser-based light source for coherent anti-Stokes Raman scattering microspectroscopy," Opt. Express 15, 4848-4856 (2007),URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-8-4848
[CrossRef] [PubMed]

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, J. Fred L. Terry, M. J. Freeman, M. Poulain, and G. Maz’e, "Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping," Opt. Lett. 31, 2553-2555 (2006), URL http://ol.osa.org/abstract.cfm?URI=ol-31-17-2553.
[CrossRef] [PubMed]

P. N. Prasad, Introduction to biophotonics (John Wiley & Sons Inc., 2003).
[CrossRef]

http://www.koheras.com/.

K. Jalink, A. Diaspro, V. Caorsi, and P. Bianchini, "Leica TCS SP5 X - White Light Laser," Appl. Lett. 29, Leica Microsystems (2008), http://www.leica-microsystems.com.

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Zerodispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation," Opt. Express 14, 5715-5722 (2006), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-14-12-5715.
[CrossRef] [PubMed]

P. M. Moselund, M. H. Frosz, C. L. Thomsen, and O. Bang, "Back-seeding of higher order gain processes in picosecond supercontinuum generation," Opt. Express 16, 11,954-11,968 (2008), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-16-16-11954.
[CrossRef]

G. Genty, M. Lehtonen, and H. Ludvigsen, "Route to broadband blue-light generation in microstructured fibers," Opt. Lett. 30, 756-758 (2005), URL http://ol.osa.org/abstract.cfm?URI=ol-30-7-756.
[CrossRef] [PubMed]

A. V. Gorbach, D. V. Skryabin, J. M. Stone, and J. C. Knight, "Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum," Opt. Express 14, 9854-9863 (2006), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-14-21-9854.
[CrossRef] [PubMed]

T. Kato, Y. Suetsugu, and M. Nishimura, "Estimation of nonlinear refractive index in various silica-based glasses for optical fibers," Opt. Lett. 20, 2279 (1995), URL http://ol.osa.org/abstract.cfm?URI=ol-20-22-2279.
[CrossRef] [PubMed]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C++: The Art of Scientific Computing, 2nd ed. (Cambridge University Press, Cambridge, 2002). http://www.nr.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Calculated group-velocity profiles for PCFs with Λ=2.42 µm, d/Λ=0.46 (blue, solid) and Λ=3.7 µm, d/Λ=0.79 (green, dotted). The horizontal and vertical lines show that there is group-velocity match from 2100 nm to 536 nm in the Λ=2.42 µm, d/Λ=0.46 fibre, while the Λ=3.7 µm, d/Λ=0.79 provides group-velocity match from 2100 nm to 491 nm. The group-velocity in bulk silica is also indicated (red, dash-dotted).

Fig. 2.
Fig. 2.

Calculated group velocity profiles for 6 different glass compositions, including pure silica.

Fig. 3.
Fig. 3.

Left: Calculated group-velocity profiles for a particular PCF structure (Λ=2.42 µm, d/Λ=0.46) of different glass compositions: pure fused silica (blue, solid line), 1% F (green, dashed), and 13.3% B2O3 (red, dash-dot). The vertical lines indicate the calculated location of the short-wavelength peak of the corresponding spectra (Fig. 5). From the intersections between these lines and the corresponding group velocities, a line has been drawn to the group-velocity at which the most red-shifted soliton is located. The line is practically horizontal, which shows that there is group-velocity match between the short-wavelength peak and the most red-shifted soliton. Right: Dispersion profiles corresponding to the same PCF structure and glass compositions. The black horizontal line indicates zero dispersion.

Fig. 4.
Fig. 4.

Measured loss in fibre drawn from all-silica step-index preform with F-doped cladding, used for optical fibers (blue dots), and the fitted loss profile used in the simulations (green line). Measured loss data kindly provided by Heraeus Quarzglas, Germany.

Fig. 5.
Fig. 5.

Calculated spectra after 2.5 m of propagation in a PCF (Λ=2.42 µm and d/Λ=0.46) made of pure silica and alternative glass compositions. The spectra have been smoothed using Savitzky-Golay filtering [45]; the simulations including loss were first averaged over 5 simulations with different input noise seed for each glass composition.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

C ˜ z = i m = 2 β m [ ω ω 0 ] m m ! C ˜ ( z , ω ) α ( ω ) 2 C ˜ ( z , ω )
+ i γ ( ω ) [ 1 + ω ω 0 ω 0 ] { C ( z , t ) R ( t t 1 ) C ( z , t ) 2 d t 1 } ,
γ ( ω ) = n 2 n 0 ω 0 c n eff ( ω ) A eff ( ω ) A eff ( ω 0 ) .
C ˜ ( z , ω ) = [ A eff ( ω ) A eff ( ω 0 ) ] 1 4 A ˜ ( z , ω ) .
R ( t ) = ( 1 f R ) δ ( t ) + f R τ 1 2 + τ 2 2 τ 1 τ 2 2 exp ( t τ 2 ) sin ( t τ 1 ) Θ ( t ) ,
γ ( ω ) γ ( ω 0 ) = n 2 ω 0 c A eff ( ω 0 ) .
γ ( ω ) = n 2 ω 0 c A eff ( ω ) .

Metrics