Abstract

This paper presents a noble diffractive grating so as to achieve high diffraction order. A v-shaped groove transmission grating with reflective and refractive surfaces (VGRRS) is proposed. Design, fabrication, and optical testing of the VGRRS are described. This grating is simulated by Rigorous coupled-Wave analysis (RCWA) for TE mode and fabricated by thermal evaporation on the replica which is obtained through a hot-embossing process using a v-shaped groove mold. The most important property of VGRRS is to conduct a high diffraction order at visible wavelengths. When used at the wavelength of 406nm, the VGRRS can strongly have two high diffracted lights in terms of -4th and -10th transmission diffraction orders.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Turunen and F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications (Akademie Verlag, 1997)
  2. J. Turunen and E. Noponen, "V-groove gratings on silicon for infrared beam splitting: comment," Appl. Opt. 35,807-808 (1996).
    [CrossRef] [PubMed]
  3. K. Yokomori, "Dielectric surface-relief gratings with high diffraction efficiency," Appl. Opt. 23,2303-2310 (1984)
    [CrossRef] [PubMed]
  4. M. S. D. Smith and K. A. Mcgreer, "Diffraction gratings utilizing total internal reflection facets in Littrow configuration," IEEE Photon. Technol. Lett.,  11,84-86 (1999)
    [CrossRef]
  5. A. N. Simonov, S. Grabarnik, and G. Vdovin, "Stretchable diffraction gratings for spectrometry," Opt. Express 15,9784-9792 (2007)
    [CrossRef] [PubMed]
  6. K. Changanti, I. Salakhutdinov, I. Avrutsky, and G. W. Auner, "A simple miniature optical spectrometer with a planar waveguide grating coupler in combination with a plano-convex lens," Opt. Express 14,4064-4072 (2006)
    [CrossRef]
  7. S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, "Infrared micro-spectrometer based on a diffraction grating," Sens. Actuat. A 92, 88-95 (2001)
    [CrossRef]
  8. I. Avrutsky, K. chaganti, I. Salakhutdinov, and G. Auner, "Concept of a miniature optical spectrometer using integrated optical and micro-optical components," Appl. Opt. 45,7811-7817 (2006)
    [CrossRef] [PubMed]
  9. F. L. Pedrotti, L. S. Pedrotti, and L. M. Pedrotti, Introduction to Optics (Pearson Education, 2007), Chap. 12.
  10. M. G. Moharam and T. K. Gaylord, "Diffraction analysis of dielectric surface-relief gratings," J. Opt. Soc. Am 72,1385-1392 (1982).
    [CrossRef]
  11. T. K Gaylord and M. G. Moharam, "Analysis and Applications of Optical Diffraction by Gratings," inProceedings of the IEEE 73 (1985), pp.894-937.
    [CrossRef]
  12. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, "Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach," J. Opt. Soc. Am. A 12,1077-1086 (1995).
    [CrossRef]
  13. I. Kallioniemi, T. Ammer, and M. Rossi, "Optimization of continuous-profile blazed gratings using rigorous diffraction theory," Opt. Comm. 177,15-24 (2000).
    [CrossRef]
  14. M. J. Madou, Fundamentals of MICROFABRICATION (CRC PRESS, 2002), chap. 1, 3, and 4.
  15. D. K. Woo, K. Hane, S. C. Cho, and S. K. Lee, "The development of an integral optics system for a slim optical mouse in a slim portable electric device," presented at the First International Conference on nanoMANUFACTURING, Singapore, 13-16 July 2008.

2007 (1)

2006 (2)

2001 (1)

S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, "Infrared micro-spectrometer based on a diffraction grating," Sens. Actuat. A 92, 88-95 (2001)
[CrossRef]

2000 (1)

I. Kallioniemi, T. Ammer, and M. Rossi, "Optimization of continuous-profile blazed gratings using rigorous diffraction theory," Opt. Comm. 177,15-24 (2000).
[CrossRef]

1999 (1)

M. S. D. Smith and K. A. Mcgreer, "Diffraction gratings utilizing total internal reflection facets in Littrow configuration," IEEE Photon. Technol. Lett.,  11,84-86 (1999)
[CrossRef]

1996 (1)

1995 (1)

1985 (1)

T. K Gaylord and M. G. Moharam, "Analysis and Applications of Optical Diffraction by Gratings," inProceedings of the IEEE 73 (1985), pp.894-937.
[CrossRef]

1984 (1)

1982 (1)

M. G. Moharam and T. K. Gaylord, "Diffraction analysis of dielectric surface-relief gratings," J. Opt. Soc. Am 72,1385-1392 (1982).
[CrossRef]

Ammer, T.

I. Kallioniemi, T. Ammer, and M. Rossi, "Optimization of continuous-profile blazed gratings using rigorous diffraction theory," Opt. Comm. 177,15-24 (2000).
[CrossRef]

Auner, G. W.

Avrutsky, I.

Changanti, K.

Gaylord, T. K

T. K Gaylord and M. G. Moharam, "Analysis and Applications of Optical Diffraction by Gratings," inProceedings of the IEEE 73 (1985), pp.894-937.
[CrossRef]

Gaylord, T. K.

Grabarnik, S.

Grann, E. B.

Kallioniemi, I.

I. Kallioniemi, T. Ammer, and M. Rossi, "Optimization of continuous-profile blazed gratings using rigorous diffraction theory," Opt. Comm. 177,15-24 (2000).
[CrossRef]

Kong, S. H.

S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, "Infrared micro-spectrometer based on a diffraction grating," Sens. Actuat. A 92, 88-95 (2001)
[CrossRef]

Mcgreer, K. A.

M. S. D. Smith and K. A. Mcgreer, "Diffraction gratings utilizing total internal reflection facets in Littrow configuration," IEEE Photon. Technol. Lett.,  11,84-86 (1999)
[CrossRef]

Moharam, M. G.

M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, "Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach," J. Opt. Soc. Am. A 12,1077-1086 (1995).
[CrossRef]

T. K Gaylord and M. G. Moharam, "Analysis and Applications of Optical Diffraction by Gratings," inProceedings of the IEEE 73 (1985), pp.894-937.
[CrossRef]

M. G. Moharam and T. K. Gaylord, "Diffraction analysis of dielectric surface-relief gratings," J. Opt. Soc. Am 72,1385-1392 (1982).
[CrossRef]

Noponen, E.

Pommet, D. A.

Rossi, M.

I. Kallioniemi, T. Ammer, and M. Rossi, "Optimization of continuous-profile blazed gratings using rigorous diffraction theory," Opt. Comm. 177,15-24 (2000).
[CrossRef]

Salakhutdinov, I.

Simonov, A. N.

Smith, M. S. D.

M. S. D. Smith and K. A. Mcgreer, "Diffraction gratings utilizing total internal reflection facets in Littrow configuration," IEEE Photon. Technol. Lett.,  11,84-86 (1999)
[CrossRef]

Turunen, J.

Vdovin, G.

Wijngaards, D. D. L.

S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, "Infrared micro-spectrometer based on a diffraction grating," Sens. Actuat. A 92, 88-95 (2001)
[CrossRef]

Wolffenbuttel, R. F.

S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, "Infrared micro-spectrometer based on a diffraction grating," Sens. Actuat. A 92, 88-95 (2001)
[CrossRef]

Yokomori, K.

Appl. Opt. (3)

IEEE Photon. Technol. Lett. (1)

M. S. D. Smith and K. A. Mcgreer, "Diffraction gratings utilizing total internal reflection facets in Littrow configuration," IEEE Photon. Technol. Lett.,  11,84-86 (1999)
[CrossRef]

J. Opt. Soc. Am (1)

M. G. Moharam and T. K. Gaylord, "Diffraction analysis of dielectric surface-relief gratings," J. Opt. Soc. Am 72,1385-1392 (1982).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Comm. (1)

I. Kallioniemi, T. Ammer, and M. Rossi, "Optimization of continuous-profile blazed gratings using rigorous diffraction theory," Opt. Comm. 177,15-24 (2000).
[CrossRef]

Opt. Express (2)

Proceedings of the IEEE (1)

T. K Gaylord and M. G. Moharam, "Analysis and Applications of Optical Diffraction by Gratings," inProceedings of the IEEE 73 (1985), pp.894-937.
[CrossRef]

Sens. Actuat. A (1)

S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, "Infrared micro-spectrometer based on a diffraction grating," Sens. Actuat. A 92, 88-95 (2001)
[CrossRef]

Other (4)

F. L. Pedrotti, L. S. Pedrotti, and L. M. Pedrotti, Introduction to Optics (Pearson Education, 2007), Chap. 12.

M. J. Madou, Fundamentals of MICROFABRICATION (CRC PRESS, 2002), chap. 1, 3, and 4.

D. K. Woo, K. Hane, S. C. Cho, and S. K. Lee, "The development of an integral optics system for a slim optical mouse in a slim portable electric device," presented at the First International Conference on nanoMANUFACTURING, Singapore, 13-16 July 2008.

J. Turunen and F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications (Akademie Verlag, 1997)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Introduction of v-shaped grooves gratings: (a) The classical v-shaped groove grating. (b) The v-shaped groove grating with refractive & reflective surfaces.

Fig. 2.
Fig. 2.

Geometry of v-shaped groove grating analyzed with RCWA

Fig. 3.
Fig. 3.

Transmission diffraction efficiencies in TE mode: (a) v-shaped groove grating without any coating, (b) v-shaped groove grating with one reflective surface and (c) Transmitted diffraction efficiency at 406nm in case of (b)

Fig. 4.
Fig. 4.

Schematic of light pass difference on the suggested grating: (a) -4 diffraction order, (b) -10 diffraction order

Fig. 5.
Fig. 5.

Fabrication procedure of v-shaped groove grating including refractive & reflective surface: (a) Fabrication of mold and (b) Fabrication of replica

Fig. 6.
Fig. 6.

Schematic of fabricating reflective surfaces using shadowing effect in thermal evaporation

Fig. 7.
Fig. 7.

Result of fabricating the v-shaped grooves mold: (a) top of view and (b) cross-section view

Fig. 8.
Fig. 8.

Overall schematic of experiment set-up for optical evaluation: Overall schematic of optical evaluation, (b) Overall schematic of light propagation in magnified grating part of (a)

Fig. 9.
Fig. 9.

Light diffracted through fabricated v-shaped groove grating consisting of refractive & reflective surfaces (a) at under -7 diffraction order (b) -10 diffraction order

Tables (1)

Tables Icon

Table 1. Light angles of diffraction at grating A and refraction angle at surface B in fig. 8

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n air sin θ i + n PMMA sin θ m = m λ p

Metrics