Abstract

Experimental corneal models in plastic (in PMMA, and more recently in Filofocon A, a contact lens material) have been proposed recently to overcome some of the limitations of the theoretical approaches aiming at improving the predictability of corneal reshaping by laser ablation. These models have also been proposed for accurate assessment of corneal laser ablation patterns. In this study Filofocon A and PMMA optical and ablation properties were studied using an experimental excimer laser set-up. The effective absorption coefficient and the ablation thresholds of these materials were obtained as a function of the number of pulses. Both materials follow a Beer-Lambert law in the range of fluences used in refractive surgery, and the number of incubation pulses is less than 4 (PMMA) and 2 (Filofocon A) above 140 mJ/cm2. We found that above 40 pulses for Filofocon A and 70 pulses for PMMA, ablation threshold and effective absorption coefficients can be considered constant (Fth=90 mJ/cm2 and αeff=36000 cm-1, for Filofocon A, and Fth=67 mJ/cm2 and αeff=52000 cm-1 for PMMA, respectively). The absence of ablation artifacts (central islands), a lower number of incubation pulses, a lower pulse-number dependence of the ablation threshold, and a good correspondence between αeff and the absorption coefficient α estimated from spectroscopic measurements make Filofocon A a more appropriate material than PMMA for experimental models in refractive surgery and for calibration of clinical lasers.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, "Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing," Invest. Ophthalmol. Visual Sci. 42, 1396-1403 (2001).
  2. S. Marcos, B. Barbero, L. Llorente, and J. Merayo-Lloves, "Optical response to LASIK for myopia from total and corneal aberration measurements," Invest. Ophthalmol. Visual Sci. 42, 3349-3356 (2001).
  3. R. A. Applegate and H. C. Howland, "Refractive surgery, optical aberrations, and visual perfomance," J. Refractive Surg. 13, 295-299 (1997).
  4. T. Seiler, M. Kaemmerer, P. Mierdel, and H.-E. Krinke, "Ocular optical aberrations after photorefractive keratectomy for myopia and myopic astigmatism," Arch. Ophthalmol. 118, 17-21 (2000).
    [PubMed]
  5. S. Marcos, "Aberrations and Visual Performance following standard laser vision correction," J. Refract. Surgery 17, 596-601 (2001).
  6. F. Manns, A. Ho, J. M. Parel, and W. Culbertson, "Ablation profiles for wavefront-guided correction of myopia and primary spherical aberration," J. Cataract. Refract. Surg. 28, 766-774 (2002).
    [CrossRef] [PubMed]
  7. S. Klein, "Optimal corneal ablation for eyes with arbitrary Hartmann-Shack aberrations," J. Opt. Soc. Am. A 15, 2580-2588 (1998).
    [CrossRef]
  8. M. Mrochen, C. Donitzky, C. Wullner, and J. Loffler, "Wavefront-optimized ablation profiles: Theoretical background," J. Cataract. Refract. Surg. 30, 775-785 (2004).
    [CrossRef] [PubMed]
  9. B. T. Fisher and D. W. Hahn, "Determination of Excimer laser ablation rates of corneal tissue using wax impressions of ablation craters and white-light interferometry," Ophthalmic Surg. Lasers Imaging 35, 41-51 (2004).
    [PubMed]
  10. S. Marcos, D. Cano, and S. Barbero, "The increase of corneal asphericity after standard myopic LASIK surgery is not inherent to the Munnerlyn algorithm," J. Refractive Surg. 19, 592-596 (2003).
  11. D. Cano, B. Barbero, and S. Marcos, "Comparison of real and computer-simulated outcomes of LASIK refractive surgery," J. Opt. Soc. Am. A 21, 926-936 (2004).
    [CrossRef]
  12. D. Gatinel, T. Hoang-Xuan, and D. Azar, "Determination of corneal asphericity after myopia surgery with the excimer laser: a mathematical model," Invest. Ophthalmol. Visual Sci. 42, 1736-1742 (2001).
  13. R. Anera, J. Jimenez, L. Jimenez del Barco, and E. Hita, "Changes in corneal asphericity after laser refractive surgery, including reflection losses and nonnormal incidence upon the anterior cornea." Opt Lett. 28, 417-419 (2003).
    [CrossRef] [PubMed]
  14. M. Mrochen, and T. Seiler, "Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery." J Refract Surg. 17, S584-S587. (2001).
    [PubMed]
  15. J. R. Jimenez, F. Rodriguez-Marin, R. G. Anera, and L. J. del Barco, "Deviations of Lambert-Beer's law affect corneal refractive parameters after refractive surgery," Opt. Express 14, 5411-5417 (2006).
    [CrossRef] [PubMed]
  16. J. R. Jimenez, R. G. Anera, L. J. del Barco, E. Hita, and F. Perez-Ocon, "Correction factor for ablation algorithms used in corneal refractive surgery with gaussian-profile beams," Opt. Express 13, 336-343 (2005).
    [CrossRef] [PubMed]
  17. J. R. Jimenez, R. G. Anera, L. J. del Barco, and E. Hita, "Influence of laser polarization on ocular refractive parameters after refractive surgery," Opt. Lett. 29, 962-964 (2004).
    [CrossRef] [PubMed]
  18. S. Arba-Mosquera and D. de Ortueta, "Geometrical analysis of the loss of ablation efficiency at non-normal incidence," Opt. Express 16, 3877-3895 (2008).
    [CrossRef] [PubMed]
  19. Y. Kwon, M. Choi, and S. Bott, "Impact of ablation efficiency reduction on post-surgery corneal asphericity: simulation of the laser refractive surgery with a flying spot laser beam," Opt. Express 16, 11808-11821 (2008).
    [CrossRef] [PubMed]
  20. W. J. Dupps and S. E. Wilson, "Biomechanics and wound healing in the cornea," Exp. Eye Res. 83, 709-720 (2006).
    [CrossRef] [PubMed]
  21. S. Marcos, C. Dorronsoro, and D. Cano, "Spherical aberration prevention method in e.g. laser refractive surgery system," (Patent WO 2005/122873 A1, 2005), http://v3.espacenet.com/textdoc?DB=EPODOC&IDX=WO2005122873.
  22. C. Dorronsoro, D. Cano, J. Merayo, and S. Marcos, "Experiments on PMMA models to predict the impact of corneal refractive surgery on corneal shape," Opt. Express 14, 6142-6156 (2006).
    [CrossRef] [PubMed]
  23. "ANSI Z80.11 Laser Systems for Corneal Reshaping" (American National Standard Institute, 2007).
  24. "Opthalmic Devices Panel 110th Meeting," (Food and Drug Administration, 2008).
  25. B. Drum, "The Evolution of the Optical Zone in Corneal Refractive Surgery," in Wavefront Congress (Santa Fe, New Mexico, 2007).
  26. B. Drum, "Evaluating the Safety and Effectiveness of "Aberration-Free" Ophthalmic Refractive Surgery," in 9th Annual FDA Science Forum (Washington, DC, 2003).
  27. B. Drum, "Radial efficiency function in refractive surgery: Ablation losses caused by corneal curvature," in 11th annual FDA Science Forum (Washington, DC, 2005).
  28. Charles Campbell, 2908 Elmwood Court, Berkeley, California 94705, USA (personal communication 2007).
  29. D. A. Chernyak and C. E. Campbell, "System for the design, manufacture, and testing of custom lenses with known amounts of high-order aberrations," J. Opt. Soc. Am. A 20, 2016-2021 (2003).
    [CrossRef]
  30. R. Srinivasan, B. Braren, D. E. Seeger, and R. W. Dreyfus, "Photochemical cleavage of a polymeric solid - details of the ultraviolet-laser ablation of poly(methyl methacrylate) at 193-nm and 248-nm," Macromol. 19, 916-921 (1986).
    [CrossRef]
  31. A. Costela, J. M. Figuera, F. Florido, I. Garciamoreno, E. P. Collar, and R. Sastre, "Ablation of Poly(Methyl Methacrylate) and Poly(2-Hydroxyethyl Methacrylate) by 308-nm, 222-nm and 193-nm excimer-laser radiation," Appl. Phys. A 60, 261-270 (1995).
    [CrossRef]
  32. S. Kuper and M. Stuke, "Femtosecond UV Excimer Laser Ablation," Appl. Phys. B 44, 199-204 (1987).
    [CrossRef]
  33. G. Pettit and M. Ediger, "Corneal-tissue absorption coefficients for 193- and 213-nm ultraviolet radiation," Appl. Opt. 35, 3386-3391 (1996).
    [CrossRef] [PubMed]
  34. B. T. Fisher and D. W. Hahn, "Development and numerical solution of a mechanistic model for corneal tissue ablation with the 193 nm argon fluoride excimer laser," J. Opt. Soc. Am. A 24, 265-277 (2007).
    [CrossRef]
  35. J. R. Jimenez, F. Rodriguez-Marin, R. G. Anera, and L. J. del Barco, "Experiment on PMMA models to predict the impact of corneal refractive surgery on corneal shape: Comment," Opt. Express 15, 7243-7244 (2007).
    [CrossRef] [PubMed]
  36. C. Dorronsoro and S. Marcos, "Experiments on PMMA models to predict the impact of corneal refractive surgery on corneal shape: reply," Opt. Express 15, 7245-7246 (2007).
    [CrossRef] [PubMed]
  37. C. Wochnowski, S. Metev, and G. Sepold, "UV-laser-assisted modification of the optical properties of polymethylmethacrylate," Appl. Surf. Sci. 154, 706-711 (2000).
    [CrossRef]
  38. W. Pfleging, S. Finke, E. Gaganidze, K. Litfin, L. Steinbock, and R. Heidinger, "Laser-assisted fabrication of monomode polymer waveguides and their optical characterization," Materialwiss. Werkstofftech. 34, 904-911 (2003).
    [CrossRef]
  39. C. Dorronsoro, B. Alonso, and S. Marcos, "Ablation-Induced Changes in Corneal Shape and Aberrations in a Plastic Cornea Refractive Surgery Model," Invest. Ophthalmol. Visual Sci.  49 E-Abstract 2445 (2008).
  40. B. Braren and D. Seeger, "Low-temperature UV laser etching of PMMA - on the mechanism of ablative photodecomposition (APD)," J. Polym. Sci. Polym. Lett. 24, 371-376 (1986).
  41. R. Srinivasan and B. Braren, "Ablative photodecomposition of polymer-films by pulsed far-ultraviolet (193 nm) laser-radiation - dependence of etch depth on experimental conditions," J. Polym. Sci. Pol. Chem. 22, 2601-2609 (1984).
    [CrossRef]
  42. G. H. Pettit, M. N. Ediger, and R. P. Weiblinger, "Excimer laser corneal ablation - absence of a significant incubation effect," Lasers Surg. Med. 11, 411-418 (1991).
    [CrossRef] [PubMed]
  43. D. Huang and M. Arif, "Spot size and quality of scanning laser correction of higher-order wavefront aberrations," J. Cataract Refract. Surg. 28, 407-416 (2002).
    [CrossRef] [PubMed]
  44. J. Noack, R. Tonnies, K. Hohla, R. Birngruber, and A. Vogel, "Influence of ablation plume dynamics on the formation of central islands in excimer laser photorefractive keratectomy," Ophthalmology 104, 823-830 (1997).
    [PubMed]
  45. C. R. Munnerlyn, M. E. Arnoldussen, A. L. Munnerlyn, and B. A. Logan, "Theory concerning the ablation of corneal tissue with large-area, 193-nm excimer laser beams," J. Biomed. Opt. 11, 32-64 (2006).
    [CrossRef]

2008 (2)

2007 (3)

2006 (4)

J. R. Jimenez, F. Rodriguez-Marin, R. G. Anera, and L. J. del Barco, "Deviations of Lambert-Beer's law affect corneal refractive parameters after refractive surgery," Opt. Express 14, 5411-5417 (2006).
[CrossRef] [PubMed]

C. Dorronsoro, D. Cano, J. Merayo, and S. Marcos, "Experiments on PMMA models to predict the impact of corneal refractive surgery on corneal shape," Opt. Express 14, 6142-6156 (2006).
[CrossRef] [PubMed]

C. R. Munnerlyn, M. E. Arnoldussen, A. L. Munnerlyn, and B. A. Logan, "Theory concerning the ablation of corneal tissue with large-area, 193-nm excimer laser beams," J. Biomed. Opt. 11, 32-64 (2006).
[CrossRef]

W. J. Dupps and S. E. Wilson, "Biomechanics and wound healing in the cornea," Exp. Eye Res. 83, 709-720 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (4)

J. R. Jimenez, R. G. Anera, L. J. del Barco, and E. Hita, "Influence of laser polarization on ocular refractive parameters after refractive surgery," Opt. Lett. 29, 962-964 (2004).
[CrossRef] [PubMed]

D. Cano, B. Barbero, and S. Marcos, "Comparison of real and computer-simulated outcomes of LASIK refractive surgery," J. Opt. Soc. Am. A 21, 926-936 (2004).
[CrossRef]

M. Mrochen, C. Donitzky, C. Wullner, and J. Loffler, "Wavefront-optimized ablation profiles: Theoretical background," J. Cataract. Refract. Surg. 30, 775-785 (2004).
[CrossRef] [PubMed]

B. T. Fisher and D. W. Hahn, "Determination of Excimer laser ablation rates of corneal tissue using wax impressions of ablation craters and white-light interferometry," Ophthalmic Surg. Lasers Imaging 35, 41-51 (2004).
[PubMed]

2003 (4)

S. Marcos, D. Cano, and S. Barbero, "The increase of corneal asphericity after standard myopic LASIK surgery is not inherent to the Munnerlyn algorithm," J. Refractive Surg. 19, 592-596 (2003).

R. Anera, J. Jimenez, L. Jimenez del Barco, and E. Hita, "Changes in corneal asphericity after laser refractive surgery, including reflection losses and nonnormal incidence upon the anterior cornea." Opt Lett. 28, 417-419 (2003).
[CrossRef] [PubMed]

W. Pfleging, S. Finke, E. Gaganidze, K. Litfin, L. Steinbock, and R. Heidinger, "Laser-assisted fabrication of monomode polymer waveguides and their optical characterization," Materialwiss. Werkstofftech. 34, 904-911 (2003).
[CrossRef]

D. A. Chernyak and C. E. Campbell, "System for the design, manufacture, and testing of custom lenses with known amounts of high-order aberrations," J. Opt. Soc. Am. A 20, 2016-2021 (2003).
[CrossRef]

2002 (2)

D. Huang and M. Arif, "Spot size and quality of scanning laser correction of higher-order wavefront aberrations," J. Cataract Refract. Surg. 28, 407-416 (2002).
[CrossRef] [PubMed]

F. Manns, A. Ho, J. M. Parel, and W. Culbertson, "Ablation profiles for wavefront-guided correction of myopia and primary spherical aberration," J. Cataract. Refract. Surg. 28, 766-774 (2002).
[CrossRef] [PubMed]

2001 (5)

M. Mrochen, and T. Seiler, "Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery." J Refract Surg. 17, S584-S587. (2001).
[PubMed]

D. Gatinel, T. Hoang-Xuan, and D. Azar, "Determination of corneal asphericity after myopia surgery with the excimer laser: a mathematical model," Invest. Ophthalmol. Visual Sci. 42, 1736-1742 (2001).

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, "Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing," Invest. Ophthalmol. Visual Sci. 42, 1396-1403 (2001).

S. Marcos, B. Barbero, L. Llorente, and J. Merayo-Lloves, "Optical response to LASIK for myopia from total and corneal aberration measurements," Invest. Ophthalmol. Visual Sci. 42, 3349-3356 (2001).

S. Marcos, "Aberrations and Visual Performance following standard laser vision correction," J. Refract. Surgery 17, 596-601 (2001).

2000 (2)

T. Seiler, M. Kaemmerer, P. Mierdel, and H.-E. Krinke, "Ocular optical aberrations after photorefractive keratectomy for myopia and myopic astigmatism," Arch. Ophthalmol. 118, 17-21 (2000).
[PubMed]

C. Wochnowski, S. Metev, and G. Sepold, "UV-laser-assisted modification of the optical properties of polymethylmethacrylate," Appl. Surf. Sci. 154, 706-711 (2000).
[CrossRef]

1998 (1)

1997 (2)

J. Noack, R. Tonnies, K. Hohla, R. Birngruber, and A. Vogel, "Influence of ablation plume dynamics on the formation of central islands in excimer laser photorefractive keratectomy," Ophthalmology 104, 823-830 (1997).
[PubMed]

R. A. Applegate and H. C. Howland, "Refractive surgery, optical aberrations, and visual perfomance," J. Refractive Surg. 13, 295-299 (1997).

1996 (1)

1995 (1)

A. Costela, J. M. Figuera, F. Florido, I. Garciamoreno, E. P. Collar, and R. Sastre, "Ablation of Poly(Methyl Methacrylate) and Poly(2-Hydroxyethyl Methacrylate) by 308-nm, 222-nm and 193-nm excimer-laser radiation," Appl. Phys. A 60, 261-270 (1995).
[CrossRef]

1991 (1)

G. H. Pettit, M. N. Ediger, and R. P. Weiblinger, "Excimer laser corneal ablation - absence of a significant incubation effect," Lasers Surg. Med. 11, 411-418 (1991).
[CrossRef] [PubMed]

1987 (1)

S. Kuper and M. Stuke, "Femtosecond UV Excimer Laser Ablation," Appl. Phys. B 44, 199-204 (1987).
[CrossRef]

1986 (2)

R. Srinivasan, B. Braren, D. E. Seeger, and R. W. Dreyfus, "Photochemical cleavage of a polymeric solid - details of the ultraviolet-laser ablation of poly(methyl methacrylate) at 193-nm and 248-nm," Macromol. 19, 916-921 (1986).
[CrossRef]

B. Braren and D. Seeger, "Low-temperature UV laser etching of PMMA - on the mechanism of ablative photodecomposition (APD)," J. Polym. Sci. Polym. Lett. 24, 371-376 (1986).

1984 (1)

R. Srinivasan and B. Braren, "Ablative photodecomposition of polymer-films by pulsed far-ultraviolet (193 nm) laser-radiation - dependence of etch depth on experimental conditions," J. Polym. Sci. Pol. Chem. 22, 2601-2609 (1984).
[CrossRef]

Anera, R.

R. Anera, J. Jimenez, L. Jimenez del Barco, and E. Hita, "Changes in corneal asphericity after laser refractive surgery, including reflection losses and nonnormal incidence upon the anterior cornea." Opt Lett. 28, 417-419 (2003).
[CrossRef] [PubMed]

Anera, R. G.

Applegate, R. A.

R. A. Applegate and H. C. Howland, "Refractive surgery, optical aberrations, and visual perfomance," J. Refractive Surg. 13, 295-299 (1997).

Arba-Mosquera, S.

Arif, M.

D. Huang and M. Arif, "Spot size and quality of scanning laser correction of higher-order wavefront aberrations," J. Cataract Refract. Surg. 28, 407-416 (2002).
[CrossRef] [PubMed]

Arnoldussen, M. E.

C. R. Munnerlyn, M. E. Arnoldussen, A. L. Munnerlyn, and B. A. Logan, "Theory concerning the ablation of corneal tissue with large-area, 193-nm excimer laser beams," J. Biomed. Opt. 11, 32-64 (2006).
[CrossRef]

Azar, D.

D. Gatinel, T. Hoang-Xuan, and D. Azar, "Determination of corneal asphericity after myopia surgery with the excimer laser: a mathematical model," Invest. Ophthalmol. Visual Sci. 42, 1736-1742 (2001).

Barbero, B.

D. Cano, B. Barbero, and S. Marcos, "Comparison of real and computer-simulated outcomes of LASIK refractive surgery," J. Opt. Soc. Am. A 21, 926-936 (2004).
[CrossRef]

S. Marcos, B. Barbero, L. Llorente, and J. Merayo-Lloves, "Optical response to LASIK for myopia from total and corneal aberration measurements," Invest. Ophthalmol. Visual Sci. 42, 3349-3356 (2001).

Barbero, S.

S. Marcos, D. Cano, and S. Barbero, "The increase of corneal asphericity after standard myopic LASIK surgery is not inherent to the Munnerlyn algorithm," J. Refractive Surg. 19, 592-596 (2003).

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, "Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing," Invest. Ophthalmol. Visual Sci. 42, 1396-1403 (2001).

Birngruber, R.

J. Noack, R. Tonnies, K. Hohla, R. Birngruber, and A. Vogel, "Influence of ablation plume dynamics on the formation of central islands in excimer laser photorefractive keratectomy," Ophthalmology 104, 823-830 (1997).
[PubMed]

Bott, S.

Braren, B.

B. Braren and D. Seeger, "Low-temperature UV laser etching of PMMA - on the mechanism of ablative photodecomposition (APD)," J. Polym. Sci. Polym. Lett. 24, 371-376 (1986).

R. Srinivasan, B. Braren, D. E. Seeger, and R. W. Dreyfus, "Photochemical cleavage of a polymeric solid - details of the ultraviolet-laser ablation of poly(methyl methacrylate) at 193-nm and 248-nm," Macromol. 19, 916-921 (1986).
[CrossRef]

R. Srinivasan and B. Braren, "Ablative photodecomposition of polymer-films by pulsed far-ultraviolet (193 nm) laser-radiation - dependence of etch depth on experimental conditions," J. Polym. Sci. Pol. Chem. 22, 2601-2609 (1984).
[CrossRef]

Campbell, C. E.

Cano, D.

Chernyak, D. A.

Choi, M.

Collar, E. P.

A. Costela, J. M. Figuera, F. Florido, I. Garciamoreno, E. P. Collar, and R. Sastre, "Ablation of Poly(Methyl Methacrylate) and Poly(2-Hydroxyethyl Methacrylate) by 308-nm, 222-nm and 193-nm excimer-laser radiation," Appl. Phys. A 60, 261-270 (1995).
[CrossRef]

Costela, A.

A. Costela, J. M. Figuera, F. Florido, I. Garciamoreno, E. P. Collar, and R. Sastre, "Ablation of Poly(Methyl Methacrylate) and Poly(2-Hydroxyethyl Methacrylate) by 308-nm, 222-nm and 193-nm excimer-laser radiation," Appl. Phys. A 60, 261-270 (1995).
[CrossRef]

Culbertson, W.

F. Manns, A. Ho, J. M. Parel, and W. Culbertson, "Ablation profiles for wavefront-guided correction of myopia and primary spherical aberration," J. Cataract. Refract. Surg. 28, 766-774 (2002).
[CrossRef] [PubMed]

de Ortueta, D.

del Barco, L. J.

Donitzky, C.

M. Mrochen, C. Donitzky, C. Wullner, and J. Loffler, "Wavefront-optimized ablation profiles: Theoretical background," J. Cataract. Refract. Surg. 30, 775-785 (2004).
[CrossRef] [PubMed]

Dorronsoro, C.

Dreyfus, R. W.

R. Srinivasan, B. Braren, D. E. Seeger, and R. W. Dreyfus, "Photochemical cleavage of a polymeric solid - details of the ultraviolet-laser ablation of poly(methyl methacrylate) at 193-nm and 248-nm," Macromol. 19, 916-921 (1986).
[CrossRef]

Dupps, W. J.

W. J. Dupps and S. E. Wilson, "Biomechanics and wound healing in the cornea," Exp. Eye Res. 83, 709-720 (2006).
[CrossRef] [PubMed]

Ediger, M.

Ediger, M. N.

G. H. Pettit, M. N. Ediger, and R. P. Weiblinger, "Excimer laser corneal ablation - absence of a significant incubation effect," Lasers Surg. Med. 11, 411-418 (1991).
[CrossRef] [PubMed]

Figuera, J. M.

A. Costela, J. M. Figuera, F. Florido, I. Garciamoreno, E. P. Collar, and R. Sastre, "Ablation of Poly(Methyl Methacrylate) and Poly(2-Hydroxyethyl Methacrylate) by 308-nm, 222-nm and 193-nm excimer-laser radiation," Appl. Phys. A 60, 261-270 (1995).
[CrossRef]

Finke, S.

W. Pfleging, S. Finke, E. Gaganidze, K. Litfin, L. Steinbock, and R. Heidinger, "Laser-assisted fabrication of monomode polymer waveguides and their optical characterization," Materialwiss. Werkstofftech. 34, 904-911 (2003).
[CrossRef]

Fisher, B. T.

B. T. Fisher and D. W. Hahn, "Development and numerical solution of a mechanistic model for corneal tissue ablation with the 193 nm argon fluoride excimer laser," J. Opt. Soc. Am. A 24, 265-277 (2007).
[CrossRef]

B. T. Fisher and D. W. Hahn, "Determination of Excimer laser ablation rates of corneal tissue using wax impressions of ablation craters and white-light interferometry," Ophthalmic Surg. Lasers Imaging 35, 41-51 (2004).
[PubMed]

Florido, F.

A. Costela, J. M. Figuera, F. Florido, I. Garciamoreno, E. P. Collar, and R. Sastre, "Ablation of Poly(Methyl Methacrylate) and Poly(2-Hydroxyethyl Methacrylate) by 308-nm, 222-nm and 193-nm excimer-laser radiation," Appl. Phys. A 60, 261-270 (1995).
[CrossRef]

Gaganidze, E.

W. Pfleging, S. Finke, E. Gaganidze, K. Litfin, L. Steinbock, and R. Heidinger, "Laser-assisted fabrication of monomode polymer waveguides and their optical characterization," Materialwiss. Werkstofftech. 34, 904-911 (2003).
[CrossRef]

Garciamoreno, I.

A. Costela, J. M. Figuera, F. Florido, I. Garciamoreno, E. P. Collar, and R. Sastre, "Ablation of Poly(Methyl Methacrylate) and Poly(2-Hydroxyethyl Methacrylate) by 308-nm, 222-nm and 193-nm excimer-laser radiation," Appl. Phys. A 60, 261-270 (1995).
[CrossRef]

Gatinel, D.

D. Gatinel, T. Hoang-Xuan, and D. Azar, "Determination of corneal asphericity after myopia surgery with the excimer laser: a mathematical model," Invest. Ophthalmol. Visual Sci. 42, 1736-1742 (2001).

Hahn, D. W.

B. T. Fisher and D. W. Hahn, "Development and numerical solution of a mechanistic model for corneal tissue ablation with the 193 nm argon fluoride excimer laser," J. Opt. Soc. Am. A 24, 265-277 (2007).
[CrossRef]

B. T. Fisher and D. W. Hahn, "Determination of Excimer laser ablation rates of corneal tissue using wax impressions of ablation craters and white-light interferometry," Ophthalmic Surg. Lasers Imaging 35, 41-51 (2004).
[PubMed]

Heidinger, R.

W. Pfleging, S. Finke, E. Gaganidze, K. Litfin, L. Steinbock, and R. Heidinger, "Laser-assisted fabrication of monomode polymer waveguides and their optical characterization," Materialwiss. Werkstofftech. 34, 904-911 (2003).
[CrossRef]

Hita, E.

Ho, A.

F. Manns, A. Ho, J. M. Parel, and W. Culbertson, "Ablation profiles for wavefront-guided correction of myopia and primary spherical aberration," J. Cataract. Refract. Surg. 28, 766-774 (2002).
[CrossRef] [PubMed]

Hoang-Xuan, T.

D. Gatinel, T. Hoang-Xuan, and D. Azar, "Determination of corneal asphericity after myopia surgery with the excimer laser: a mathematical model," Invest. Ophthalmol. Visual Sci. 42, 1736-1742 (2001).

Hohla, K.

J. Noack, R. Tonnies, K. Hohla, R. Birngruber, and A. Vogel, "Influence of ablation plume dynamics on the formation of central islands in excimer laser photorefractive keratectomy," Ophthalmology 104, 823-830 (1997).
[PubMed]

Howland, H. C.

R. A. Applegate and H. C. Howland, "Refractive surgery, optical aberrations, and visual perfomance," J. Refractive Surg. 13, 295-299 (1997).

Huang, D.

D. Huang and M. Arif, "Spot size and quality of scanning laser correction of higher-order wavefront aberrations," J. Cataract Refract. Surg. 28, 407-416 (2002).
[CrossRef] [PubMed]

Jimenez, J.

R. Anera, J. Jimenez, L. Jimenez del Barco, and E. Hita, "Changes in corneal asphericity after laser refractive surgery, including reflection losses and nonnormal incidence upon the anterior cornea." Opt Lett. 28, 417-419 (2003).
[CrossRef] [PubMed]

Jimenez, J. R.

Jimenez del Barco, L.

R. Anera, J. Jimenez, L. Jimenez del Barco, and E. Hita, "Changes in corneal asphericity after laser refractive surgery, including reflection losses and nonnormal incidence upon the anterior cornea." Opt Lett. 28, 417-419 (2003).
[CrossRef] [PubMed]

Kaemmerer, M.

T. Seiler, M. Kaemmerer, P. Mierdel, and H.-E. Krinke, "Ocular optical aberrations after photorefractive keratectomy for myopia and myopic astigmatism," Arch. Ophthalmol. 118, 17-21 (2000).
[PubMed]

Klein, S.

Krinke, H.-E.

T. Seiler, M. Kaemmerer, P. Mierdel, and H.-E. Krinke, "Ocular optical aberrations after photorefractive keratectomy for myopia and myopic astigmatism," Arch. Ophthalmol. 118, 17-21 (2000).
[PubMed]

Kuper, S.

S. Kuper and M. Stuke, "Femtosecond UV Excimer Laser Ablation," Appl. Phys. B 44, 199-204 (1987).
[CrossRef]

Kwon, Y.

Litfin, K.

W. Pfleging, S. Finke, E. Gaganidze, K. Litfin, L. Steinbock, and R. Heidinger, "Laser-assisted fabrication of monomode polymer waveguides and their optical characterization," Materialwiss. Werkstofftech. 34, 904-911 (2003).
[CrossRef]

Llorente, L.

S. Marcos, B. Barbero, L. Llorente, and J. Merayo-Lloves, "Optical response to LASIK for myopia from total and corneal aberration measurements," Invest. Ophthalmol. Visual Sci. 42, 3349-3356 (2001).

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, "Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing," Invest. Ophthalmol. Visual Sci. 42, 1396-1403 (2001).

Loffler, J.

M. Mrochen, C. Donitzky, C. Wullner, and J. Loffler, "Wavefront-optimized ablation profiles: Theoretical background," J. Cataract. Refract. Surg. 30, 775-785 (2004).
[CrossRef] [PubMed]

Logan, B. A.

C. R. Munnerlyn, M. E. Arnoldussen, A. L. Munnerlyn, and B. A. Logan, "Theory concerning the ablation of corneal tissue with large-area, 193-nm excimer laser beams," J. Biomed. Opt. 11, 32-64 (2006).
[CrossRef]

Manns, F.

F. Manns, A. Ho, J. M. Parel, and W. Culbertson, "Ablation profiles for wavefront-guided correction of myopia and primary spherical aberration," J. Cataract. Refract. Surg. 28, 766-774 (2002).
[CrossRef] [PubMed]

Marcos, S.

C. Dorronsoro and S. Marcos, "Experiments on PMMA models to predict the impact of corneal refractive surgery on corneal shape: reply," Opt. Express 15, 7245-7246 (2007).
[CrossRef] [PubMed]

C. Dorronsoro, D. Cano, J. Merayo, and S. Marcos, "Experiments on PMMA models to predict the impact of corneal refractive surgery on corneal shape," Opt. Express 14, 6142-6156 (2006).
[CrossRef] [PubMed]

D. Cano, B. Barbero, and S. Marcos, "Comparison of real and computer-simulated outcomes of LASIK refractive surgery," J. Opt. Soc. Am. A 21, 926-936 (2004).
[CrossRef]

S. Marcos, D. Cano, and S. Barbero, "The increase of corneal asphericity after standard myopic LASIK surgery is not inherent to the Munnerlyn algorithm," J. Refractive Surg. 19, 592-596 (2003).

S. Marcos, B. Barbero, L. Llorente, and J. Merayo-Lloves, "Optical response to LASIK for myopia from total and corneal aberration measurements," Invest. Ophthalmol. Visual Sci. 42, 3349-3356 (2001).

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, "Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing," Invest. Ophthalmol. Visual Sci. 42, 1396-1403 (2001).

S. Marcos, "Aberrations and Visual Performance following standard laser vision correction," J. Refract. Surgery 17, 596-601 (2001).

Merayo, J.

Merayo-Lloves, J.

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, "Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing," Invest. Ophthalmol. Visual Sci. 42, 1396-1403 (2001).

S. Marcos, B. Barbero, L. Llorente, and J. Merayo-Lloves, "Optical response to LASIK for myopia from total and corneal aberration measurements," Invest. Ophthalmol. Visual Sci. 42, 3349-3356 (2001).

Metev, S.

C. Wochnowski, S. Metev, and G. Sepold, "UV-laser-assisted modification of the optical properties of polymethylmethacrylate," Appl. Surf. Sci. 154, 706-711 (2000).
[CrossRef]

Mierdel, P.

T. Seiler, M. Kaemmerer, P. Mierdel, and H.-E. Krinke, "Ocular optical aberrations after photorefractive keratectomy for myopia and myopic astigmatism," Arch. Ophthalmol. 118, 17-21 (2000).
[PubMed]

Moreno-Barriuso, E.

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, "Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing," Invest. Ophthalmol. Visual Sci. 42, 1396-1403 (2001).

Mrochen, M.

M. Mrochen, C. Donitzky, C. Wullner, and J. Loffler, "Wavefront-optimized ablation profiles: Theoretical background," J. Cataract. Refract. Surg. 30, 775-785 (2004).
[CrossRef] [PubMed]

M. Mrochen, and T. Seiler, "Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery." J Refract Surg. 17, S584-S587. (2001).
[PubMed]

Munnerlyn, A. L.

C. R. Munnerlyn, M. E. Arnoldussen, A. L. Munnerlyn, and B. A. Logan, "Theory concerning the ablation of corneal tissue with large-area, 193-nm excimer laser beams," J. Biomed. Opt. 11, 32-64 (2006).
[CrossRef]

Munnerlyn, C. R.

C. R. Munnerlyn, M. E. Arnoldussen, A. L. Munnerlyn, and B. A. Logan, "Theory concerning the ablation of corneal tissue with large-area, 193-nm excimer laser beams," J. Biomed. Opt. 11, 32-64 (2006).
[CrossRef]

Navarro, R.

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, "Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing," Invest. Ophthalmol. Visual Sci. 42, 1396-1403 (2001).

Noack, J.

J. Noack, R. Tonnies, K. Hohla, R. Birngruber, and A. Vogel, "Influence of ablation plume dynamics on the formation of central islands in excimer laser photorefractive keratectomy," Ophthalmology 104, 823-830 (1997).
[PubMed]

Parel, J. M.

F. Manns, A. Ho, J. M. Parel, and W. Culbertson, "Ablation profiles for wavefront-guided correction of myopia and primary spherical aberration," J. Cataract. Refract. Surg. 28, 766-774 (2002).
[CrossRef] [PubMed]

Perez-Ocon, F.

Pettit, G.

Pettit, G. H.

G. H. Pettit, M. N. Ediger, and R. P. Weiblinger, "Excimer laser corneal ablation - absence of a significant incubation effect," Lasers Surg. Med. 11, 411-418 (1991).
[CrossRef] [PubMed]

Pfleging, W.

W. Pfleging, S. Finke, E. Gaganidze, K. Litfin, L. Steinbock, and R. Heidinger, "Laser-assisted fabrication of monomode polymer waveguides and their optical characterization," Materialwiss. Werkstofftech. 34, 904-911 (2003).
[CrossRef]

Rodriguez-Marin, F.

Sastre, R.

A. Costela, J. M. Figuera, F. Florido, I. Garciamoreno, E. P. Collar, and R. Sastre, "Ablation of Poly(Methyl Methacrylate) and Poly(2-Hydroxyethyl Methacrylate) by 308-nm, 222-nm and 193-nm excimer-laser radiation," Appl. Phys. A 60, 261-270 (1995).
[CrossRef]

Seeger, D.

B. Braren and D. Seeger, "Low-temperature UV laser etching of PMMA - on the mechanism of ablative photodecomposition (APD)," J. Polym. Sci. Polym. Lett. 24, 371-376 (1986).

Seeger, D. E.

R. Srinivasan, B. Braren, D. E. Seeger, and R. W. Dreyfus, "Photochemical cleavage of a polymeric solid - details of the ultraviolet-laser ablation of poly(methyl methacrylate) at 193-nm and 248-nm," Macromol. 19, 916-921 (1986).
[CrossRef]

Seiler, T.

M. Mrochen, and T. Seiler, "Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery." J Refract Surg. 17, S584-S587. (2001).
[PubMed]

T. Seiler, M. Kaemmerer, P. Mierdel, and H.-E. Krinke, "Ocular optical aberrations after photorefractive keratectomy for myopia and myopic astigmatism," Arch. Ophthalmol. 118, 17-21 (2000).
[PubMed]

Sepold, G.

C. Wochnowski, S. Metev, and G. Sepold, "UV-laser-assisted modification of the optical properties of polymethylmethacrylate," Appl. Surf. Sci. 154, 706-711 (2000).
[CrossRef]

Srinivasan, R.

R. Srinivasan, B. Braren, D. E. Seeger, and R. W. Dreyfus, "Photochemical cleavage of a polymeric solid - details of the ultraviolet-laser ablation of poly(methyl methacrylate) at 193-nm and 248-nm," Macromol. 19, 916-921 (1986).
[CrossRef]

R. Srinivasan and B. Braren, "Ablative photodecomposition of polymer-films by pulsed far-ultraviolet (193 nm) laser-radiation - dependence of etch depth on experimental conditions," J. Polym. Sci. Pol. Chem. 22, 2601-2609 (1984).
[CrossRef]

Steinbock, L.

W. Pfleging, S. Finke, E. Gaganidze, K. Litfin, L. Steinbock, and R. Heidinger, "Laser-assisted fabrication of monomode polymer waveguides and their optical characterization," Materialwiss. Werkstofftech. 34, 904-911 (2003).
[CrossRef]

Stuke, M.

S. Kuper and M. Stuke, "Femtosecond UV Excimer Laser Ablation," Appl. Phys. B 44, 199-204 (1987).
[CrossRef]

Tonnies, R.

J. Noack, R. Tonnies, K. Hohla, R. Birngruber, and A. Vogel, "Influence of ablation plume dynamics on the formation of central islands in excimer laser photorefractive keratectomy," Ophthalmology 104, 823-830 (1997).
[PubMed]

Vogel, A.

J. Noack, R. Tonnies, K. Hohla, R. Birngruber, and A. Vogel, "Influence of ablation plume dynamics on the formation of central islands in excimer laser photorefractive keratectomy," Ophthalmology 104, 823-830 (1997).
[PubMed]

Weiblinger, R. P.

G. H. Pettit, M. N. Ediger, and R. P. Weiblinger, "Excimer laser corneal ablation - absence of a significant incubation effect," Lasers Surg. Med. 11, 411-418 (1991).
[CrossRef] [PubMed]

Wilson, S. E.

W. J. Dupps and S. E. Wilson, "Biomechanics and wound healing in the cornea," Exp. Eye Res. 83, 709-720 (2006).
[CrossRef] [PubMed]

Wochnowski, C.

C. Wochnowski, S. Metev, and G. Sepold, "UV-laser-assisted modification of the optical properties of polymethylmethacrylate," Appl. Surf. Sci. 154, 706-711 (2000).
[CrossRef]

Wullner, C.

M. Mrochen, C. Donitzky, C. Wullner, and J. Loffler, "Wavefront-optimized ablation profiles: Theoretical background," J. Cataract. Refract. Surg. 30, 775-785 (2004).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. A (1)

A. Costela, J. M. Figuera, F. Florido, I. Garciamoreno, E. P. Collar, and R. Sastre, "Ablation of Poly(Methyl Methacrylate) and Poly(2-Hydroxyethyl Methacrylate) by 308-nm, 222-nm and 193-nm excimer-laser radiation," Appl. Phys. A 60, 261-270 (1995).
[CrossRef]

Appl. Phys. B (1)

S. Kuper and M. Stuke, "Femtosecond UV Excimer Laser Ablation," Appl. Phys. B 44, 199-204 (1987).
[CrossRef]

Appl. Surf. Sci. (1)

C. Wochnowski, S. Metev, and G. Sepold, "UV-laser-assisted modification of the optical properties of polymethylmethacrylate," Appl. Surf. Sci. 154, 706-711 (2000).
[CrossRef]

Arch. Ophthalmol. (1)

T. Seiler, M. Kaemmerer, P. Mierdel, and H.-E. Krinke, "Ocular optical aberrations after photorefractive keratectomy for myopia and myopic astigmatism," Arch. Ophthalmol. 118, 17-21 (2000).
[PubMed]

Exp. Eye Res. (1)

W. J. Dupps and S. E. Wilson, "Biomechanics and wound healing in the cornea," Exp. Eye Res. 83, 709-720 (2006).
[CrossRef] [PubMed]

Invest. Ophthalmol. Visual Sci. (3)

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, "Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing," Invest. Ophthalmol. Visual Sci. 42, 1396-1403 (2001).

S. Marcos, B. Barbero, L. Llorente, and J. Merayo-Lloves, "Optical response to LASIK for myopia from total and corneal aberration measurements," Invest. Ophthalmol. Visual Sci. 42, 3349-3356 (2001).

D. Gatinel, T. Hoang-Xuan, and D. Azar, "Determination of corneal asphericity after myopia surgery with the excimer laser: a mathematical model," Invest. Ophthalmol. Visual Sci. 42, 1736-1742 (2001).

J Refract Surg. (1)

M. Mrochen, and T. Seiler, "Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery." J Refract Surg. 17, S584-S587. (2001).
[PubMed]

J. Biomed. Opt. (1)

C. R. Munnerlyn, M. E. Arnoldussen, A. L. Munnerlyn, and B. A. Logan, "Theory concerning the ablation of corneal tissue with large-area, 193-nm excimer laser beams," J. Biomed. Opt. 11, 32-64 (2006).
[CrossRef]

J. Cataract Refract. Surg. (1)

D. Huang and M. Arif, "Spot size and quality of scanning laser correction of higher-order wavefront aberrations," J. Cataract Refract. Surg. 28, 407-416 (2002).
[CrossRef] [PubMed]

J. Cataract. Refract. Surg. (2)

F. Manns, A. Ho, J. M. Parel, and W. Culbertson, "Ablation profiles for wavefront-guided correction of myopia and primary spherical aberration," J. Cataract. Refract. Surg. 28, 766-774 (2002).
[CrossRef] [PubMed]

M. Mrochen, C. Donitzky, C. Wullner, and J. Loffler, "Wavefront-optimized ablation profiles: Theoretical background," J. Cataract. Refract. Surg. 30, 775-785 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (4)

J. Polym. Sci. Pol. Chem. (1)

R. Srinivasan and B. Braren, "Ablative photodecomposition of polymer-films by pulsed far-ultraviolet (193 nm) laser-radiation - dependence of etch depth on experimental conditions," J. Polym. Sci. Pol. Chem. 22, 2601-2609 (1984).
[CrossRef]

J. Polym. Sci. Polym. Lett. (1)

B. Braren and D. Seeger, "Low-temperature UV laser etching of PMMA - on the mechanism of ablative photodecomposition (APD)," J. Polym. Sci. Polym. Lett. 24, 371-376 (1986).

J. Refract. Surgery (1)

S. Marcos, "Aberrations and Visual Performance following standard laser vision correction," J. Refract. Surgery 17, 596-601 (2001).

J. Refractive Surg. (2)

R. A. Applegate and H. C. Howland, "Refractive surgery, optical aberrations, and visual perfomance," J. Refractive Surg. 13, 295-299 (1997).

S. Marcos, D. Cano, and S. Barbero, "The increase of corneal asphericity after standard myopic LASIK surgery is not inherent to the Munnerlyn algorithm," J. Refractive Surg. 19, 592-596 (2003).

Lasers Surg. Med. (1)

G. H. Pettit, M. N. Ediger, and R. P. Weiblinger, "Excimer laser corneal ablation - absence of a significant incubation effect," Lasers Surg. Med. 11, 411-418 (1991).
[CrossRef] [PubMed]

Macromol. (1)

R. Srinivasan, B. Braren, D. E. Seeger, and R. W. Dreyfus, "Photochemical cleavage of a polymeric solid - details of the ultraviolet-laser ablation of poly(methyl methacrylate) at 193-nm and 248-nm," Macromol. 19, 916-921 (1986).
[CrossRef]

Materialwiss. Werkstofftech. (1)

W. Pfleging, S. Finke, E. Gaganidze, K. Litfin, L. Steinbock, and R. Heidinger, "Laser-assisted fabrication of monomode polymer waveguides and their optical characterization," Materialwiss. Werkstofftech. 34, 904-911 (2003).
[CrossRef]

Ophthalmic Surg. Lasers Imaging (1)

B. T. Fisher and D. W. Hahn, "Determination of Excimer laser ablation rates of corneal tissue using wax impressions of ablation craters and white-light interferometry," Ophthalmic Surg. Lasers Imaging 35, 41-51 (2004).
[PubMed]

Ophthalmology (1)

J. Noack, R. Tonnies, K. Hohla, R. Birngruber, and A. Vogel, "Influence of ablation plume dynamics on the formation of central islands in excimer laser photorefractive keratectomy," Ophthalmology 104, 823-830 (1997).
[PubMed]

Opt Lett. (1)

R. Anera, J. Jimenez, L. Jimenez del Barco, and E. Hita, "Changes in corneal asphericity after laser refractive surgery, including reflection losses and nonnormal incidence upon the anterior cornea." Opt Lett. 28, 417-419 (2003).
[CrossRef] [PubMed]

Opt. Express (7)

J. R. Jimenez, F. Rodriguez-Marin, R. G. Anera, and L. J. del Barco, "Deviations of Lambert-Beer's law affect corneal refractive parameters after refractive surgery," Opt. Express 14, 5411-5417 (2006).
[CrossRef] [PubMed]

J. R. Jimenez, R. G. Anera, L. J. del Barco, E. Hita, and F. Perez-Ocon, "Correction factor for ablation algorithms used in corneal refractive surgery with gaussian-profile beams," Opt. Express 13, 336-343 (2005).
[CrossRef] [PubMed]

J. R. Jimenez, F. Rodriguez-Marin, R. G. Anera, and L. J. del Barco, "Experiment on PMMA models to predict the impact of corneal refractive surgery on corneal shape: Comment," Opt. Express 15, 7243-7244 (2007).
[CrossRef] [PubMed]

C. Dorronsoro and S. Marcos, "Experiments on PMMA models to predict the impact of corneal refractive surgery on corneal shape: reply," Opt. Express 15, 7245-7246 (2007).
[CrossRef] [PubMed]

S. Arba-Mosquera and D. de Ortueta, "Geometrical analysis of the loss of ablation efficiency at non-normal incidence," Opt. Express 16, 3877-3895 (2008).
[CrossRef] [PubMed]

Y. Kwon, M. Choi, and S. Bott, "Impact of ablation efficiency reduction on post-surgery corneal asphericity: simulation of the laser refractive surgery with a flying spot laser beam," Opt. Express 16, 11808-11821 (2008).
[CrossRef] [PubMed]

C. Dorronsoro, D. Cano, J. Merayo, and S. Marcos, "Experiments on PMMA models to predict the impact of corneal refractive surgery on corneal shape," Opt. Express 14, 6142-6156 (2006).
[CrossRef] [PubMed]

Opt. Lett. (1)

Other (8)

"ANSI Z80.11 Laser Systems for Corneal Reshaping" (American National Standard Institute, 2007).

"Opthalmic Devices Panel 110th Meeting," (Food and Drug Administration, 2008).

B. Drum, "The Evolution of the Optical Zone in Corneal Refractive Surgery," in Wavefront Congress (Santa Fe, New Mexico, 2007).

B. Drum, "Evaluating the Safety and Effectiveness of "Aberration-Free" Ophthalmic Refractive Surgery," in 9th Annual FDA Science Forum (Washington, DC, 2003).

B. Drum, "Radial efficiency function in refractive surgery: Ablation losses caused by corneal curvature," in 11th annual FDA Science Forum (Washington, DC, 2005).

Charles Campbell, 2908 Elmwood Court, Berkeley, California 94705, USA (personal communication 2007).

S. Marcos, C. Dorronsoro, and D. Cano, "Spherical aberration prevention method in e.g. laser refractive surgery system," (Patent WO 2005/122873 A1, 2005), http://v3.espacenet.com/textdoc?DB=EPODOC&IDX=WO2005122873.

C. Dorronsoro, B. Alonso, and S. Marcos, "Ablation-Induced Changes in Corneal Shape and Aberrations in a Plastic Cornea Refractive Surgery Model," Invest. Ophthalmol. Visual Sci.  49 E-Abstract 2445 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Typical ablation profiles for PMMA and Filofocon A. These profiles are obtained as diametral cross-sections of the measured interferometric topography. The crater diameter is 422 microns. Crater depth was obtained comparing the depths measured in the proximity of the vertical arrows (see text). The profiles shown in the figure were obtained for 10 pulses at 240 mJ/cm2.

Fig. 2.
Fig. 2.

Ablation depth as a function of the number of pulses, for selected fluences. a) 0 to 200 pulses. b) 0 to 30 pulses (zoomed view).

Fig. 3.
Fig. 3.

Number of incubation pulses as a function of laser fluence.

Fig. 4.
Fig. 4.

Beer Lambert behavior for Filofocon A (a) and PMMA (b) for 10 and 1 pulses. The linear fits provide the estimated ablation thresholds (zero intercepts of the line), and the effective absorption coefficient (slopes). The regression coefficient, R2, and the ablation threshold, Fth , are shown for each linear fit.

Fig. 5.
Fig. 5.

Ablation properties vs number of pulses for Filofocon A and PMMA: a) Ablation threshold and b) Effective absorption coefficient. Large open symbols -solid line- come from the data of Fig. 4. Small solid symbols (dashed line) derived from a second analysis of Fig. 2(a). See text for details.

Fig. 6.
Fig. 6.

High magnification (100x) optical micrographs of Filofocon A (a) and PMMA (b). In both pictures, the ablated zone (400 mJ/cm2, 30 pulses) is on the right. The scale bar is 10 µm.

Fig. 7.
Fig. 7.

AFM images of the ablated zone (400mJ/cm2, 30 pulses) in Filofocon A (a) and PMMA (b). The scalebar is 2 µm. The peak to peak depth (color scale range) is 300 nm.

Tables (1)

Tables Icon

Table 1. Refractive index (n) and extinction coefficient (k) measurements for both PMMA and Filofocon A. The corresponding absorption coefficient (α) is also shown. The values at 193 nm have less precision due to the extrapolation procedure to obtain them.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I ( z ) = I 0 · e α · z ,
α = 4 π · k λ .
d = 1 α ln ( F F th ) ,

Metrics