Abstract

The AcrySof ReSTOR intraocular lens (IOL) is a multifocal lens with state-of-the-art apodized diffractive technology, and is indicated for visual correction of aphakia secondary to removal of cataractous lenses in adult patients with/without presbyopia, who desire near, intermediate, and distance vision with increased spectacle independence. The multifocal design results in some optical contrast reduction, which may be improved by reducing spherical aberration. A novel patent-pending approach was undertaken to investigate the optical performance of aspheric lens designs. Simulated eyes using human normal distributions were corrected with different lens designs in a Monte Carlo simulation that allowed for variability in multiple surgical parameters (e.g. positioning error, biometric variation). Monte Carlo optimized results indicated that a lens spherical aberration of -0.10 µm provided optimal distance image quality.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. S. Lee and M. J. Simpson, Diffractive multifocal ophthalmic lens. Alcon Laboratories, Inc. [5699142]. 12-16-0097. US.
  2. Alcon Laboratories, Inc. AcrySof ReSTOR apodized diffractive aspheric IOL [package insert]. 1-16. 2007. Fort Worth, TX, USA.
  3. G. Smith and C. W. Lu, "The spherical aberration of intra-ocular lenses," Ophthalmic Physiol Opt. 8, 287-294 (1988).
    [CrossRef] [PubMed]
  4. J. T. Holladay, P. A. Piers, G. Koranyi, MoorenM. van der, and N. E. Norrby, "A new intraocular lens design to reduce spherical aberration of pseudophakic eyes," J. Refract. Surg. 18, 683-691 (2002).
    [PubMed]
  5. L. Wang and D. D. Koch, "Custom optimization of intraocular lens asphericity," J. Cataract Refract. Surg. 33, 1713-1720 (2007).
    [CrossRef] [PubMed]
  6. S. Norrby, "Sources of error in intraocular lens power calculation," J. Cataract Refract. Surg. 34, 368-376 (2008).
    [CrossRef] [PubMed]
  7. M. Baumeister, B. Neidhardt, J. Strobel, and T. Kohnen, "Tilt and decentration of three-piece foldable high-refractive silicone and hydrophobic acrylic intraocular lenses with 6-mm optics in an intraindividual comparison," Am. J. Ophthalmol. 140, 1051-1058 (2005).
    [CrossRef] [PubMed]
  8. H. H. Dietze and M. J. Cox, "Limitations of correcting spherical aberration with aspheric intraocular lenses," J. Refract. Surg. 21, S541-S546 (2005).
    [PubMed]
  9. L. N. Thibos, A. Bradley, and X. Hong, "A statistical model of the aberration structure of normal, well-corrected eyes," Ophthalmic Physiol Opt. 22, 427-433 (2002).
    [CrossRef] [PubMed]
  10. T. Kohnen, "Measuring vision in refractive surgery," Cataract and Refractive Surgery Today 27, 1897-1898 (2001).
    [CrossRef]
  11. X. Hong, M. Karakelle, and X. Zhang. Corrections of higher order aberrations in intraocular lenses. Alcon Manufacturing,LTD. [0268453 A1]. 11-22-2007. US.
  12. R. P. Lehman, "Clinically Relevant Advantages in the Functional Performance of the AcrySof IQ IOL" (ASCRS, American Society of Cataract and Refractive Surgery Symposium, Chicago, IL, USA 2008).
  13. M. Packer, I. H. Fine, R. S. Hoffman, and P. A. Piers, "Prospective randomized trial of an anterior surface modified prolate intraocular lens," J. Refract. Surg. 18, 692-696 (2002).
    [PubMed]
  14. M. G. Wirtitsch, O. Findl, R. Menapace, K. Kriechbaum, C. Koeppl, W. Buehl, and W. Drexler, "Effect of haptic design on change in axial lens position after cataract surgery," J. Cataract Refract. Surg. 30, 45-51 (2004).
    [CrossRef] [PubMed]
  15. P. M. Kiely, G. Smith, and L. G. Carney, "The mean shape of the human cornea," Optica Acta 29, 1027-1040 (1982).
    [CrossRef]
  16. M. Guillon, D. P. Lydon, and C. Wilson, "Corneal topography: a clinical model," Ophthalmic Physiol Opt. 6, 47-56 (1986).
    [CrossRef] [PubMed]
  17. X. Hong, N. Himebaugh, and L. N. Thibos, "On-eye evaluation of optical performance of rigid and soft contact lenses," Cataract and Refractive Surgery Today 78, 872-880 (2001).
  18. M. Simpson. Postoperative intraocular lens location: Technical Report. 013:36830, 1-20. 1998.
  19. F. M. Mutlu, A. Bayer, C. Erduman, and M. Z. Bayraktar, "Comparison of tilt and decentration between phacoemulsification and phacotrabeculectomy," Ophthalmologica 219, 26-29 (2005).
    [CrossRef] [PubMed]
  20. K. Hayashi, H. Hayashi, F. Nakao, and F. Hayashi, "Intraocular lens tilt and decentration after implantation in eyes with glaucoma," J. Cataract Refract. Surg. 25, 1515-1520 (1999).
    [CrossRef] [PubMed]
  21. International Organization for Standardization, International Standard IS0 11979-211999 Technical Corrigendum 1 Ophthalmic implants - Intraocular lenses -Part 2: Optical properties and test methods (=International Organization for Standardization, Geneva, Switzerland 1999).
  22. F. W. Campbell and D. G. Green, "Optical and retinal factors affecting visual resolution," J. Physiol. 181, 576-593 (1965).
    [PubMed]
  23. X. Hong. Optical aberrations of human eyes and their impact on visual performances. 2001.
  24. L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, "Accuracy and precision of objective refraction from wavefront aberrations," Cataract and Refractive Surgery Today 4, 329-351 (2004).
  25. L. N. Thibos, "Acuity perimetry and the sampling theory of visual resolution," Optom. Vis. Sci. 75, 399-406 (1998).
    [CrossRef] [PubMed]
  26. N. E. Norrby, L. W. Grossman, E. P. Geraghty, C. F. Kreiner, M. Mihori, A. S. Patel, V. Portney, and D. M. Silberman, "Determining the imaging quality of intraocular lenses," J. Cataract Refract. Surg. 24, 703-714 (1998).
    [PubMed]
  27. I. Escudero-Sanz and R. Navarro, "Off-axis aberrations of a wide-angle schematic eye model," J. Opt. Soc. Am. A Opt. Image Sci. Vis. 16, 1881-1891 (1999).
    [CrossRef] [PubMed]
  28. R. Navarro, J. Santamaria, and J. Bescos, "Accommodation-dependent model of the human eye with aspherics," J. Opt. Soc. Am. A 2, 1273-1281 (1985).
    [CrossRef] [PubMed]
  29. Zemax Development Corporation. Xemax ray-tracing program. 2001.
  30. N. sano-Kato, I. Toda, C. Sakai, Y. Hori-Komai, Y. Takano, M. Dogru, and K. Tsubota, "Pupil decentration and iris tilting detected by Orbscan: anatomic variations among healthy subjects and influence on outcomes of laser refractive surgeries," J. Cataract Refract. Surg. 31, 1938-1942 (2005).
    [CrossRef]
  31. J. T. Holladay, "Standardizing constants for ultrasonic biometry, keratometry, and intraocular lens power calculations," J. Cataract Refract. Surg. 23, 1356-1370 (1997).
  32. D. A. Achison, "Design of aspheric intraocular lenses," Ophthalmic and Physiological Optics 11, 137-146 (1991).
    [CrossRef]
  33. J. Narvaez, G. Zimmerman, R. D. Stulting, and D. H. Chang, "Accuracy of intraocular lens power prediction using the Hoffer Q, Holladay 1, Holladay 2, and SRK/T formulas," J. Cataract Refract. Surg. 32, 2050-2053 (2006).
    [CrossRef] [PubMed]
  34. T. Olsen, "Improved accuracy of intraocular lens power calculation with the Zeiss IOLMaster," Acta Ophthalmol. Scand. 85, 84-87 (2007).
    [CrossRef] [PubMed]
  35. International Organization for Standardization. ISO 11979-3:2006 Ophthalmic implants -- Intraocular lenses -- Part 3: Mechanical properties and test methods. 2006.
  36. A. J. Lang, V. Lakshminarayanan, and V. Portney, "Phenomenological model for interpreting the clinical significance of the in vitro optical transfer function," J. Opt. Soc. Am. A 10, 1600-1610 (1993).
    [CrossRef] [PubMed]
  37. X. Zhang, M. Ye, A. Bradley, and L. Thibos, "Apodization by the Stiles-Crawford effect moderates the visual impact of retinal image defocus," J. Opt. Soc. Am. A Opt. Image Sci. Vis. 16, 812-820 (1999).
    [CrossRef] [PubMed]
  38. K. M. Rocha, E. S. Soriano, M. R. Chalita, A. C. Yamada, K. Bottos, J. Bottos, L. Morimoto, and W. Nose, "Wavefront analysis and contrast sensitivity of aspheric and spherical intraocular lenses: a randomized prospective study," Am. J. Ophthalmol. 142, 750-756 (2006).
    [CrossRef] [PubMed]
  39. S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jimenez-Alfaro, "Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism," Vision Res. 48, 70-79 (2008).
    [CrossRef]
  40. P. Rosales and S. Marcos, "Phakometry and lens tilt and decentration using a custom-developed Purkinje imaging apparatus: validation and measurements," J. Opt. Soc. Am. A Opt. Image Sci. Vis. 23, 509-520 (2006).
    [CrossRef] [PubMed]
  41. CastroA. de, P. Rosales, and S. Marcos, "Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging. Validation study," J. Cataract Refract. Surg. 33, 418-429 (2007).
    [CrossRef]
  42. D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, "Age-related changes in optical and biometric characteristics of emmetropic eyes," J. Vis. 8, 29-20 (2008).
    [CrossRef] [PubMed]
  43. J. Tabernero, A. Benito, E. Alcon, and P. Artal, "Mechanism of compensation of aberrations in the human eye," J. Opt. Soc. Am. A Opt. Image Sci. Vis. 24, 3274-3283 (2007).
    [CrossRef] [PubMed]
  44. P. Rosales and S. Marcos, "Customized computer model of eyes with intraocular lenses," Opt. Express 15, 2204-2218 (2007).
    [CrossRef] [PubMed]

2008 (3)

S. Norrby, "Sources of error in intraocular lens power calculation," J. Cataract Refract. Surg. 34, 368-376 (2008).
[CrossRef] [PubMed]

S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jimenez-Alfaro, "Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism," Vision Res. 48, 70-79 (2008).
[CrossRef]

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, "Age-related changes in optical and biometric characteristics of emmetropic eyes," J. Vis. 8, 29-20 (2008).
[CrossRef] [PubMed]

2007 (5)

J. Tabernero, A. Benito, E. Alcon, and P. Artal, "Mechanism of compensation of aberrations in the human eye," J. Opt. Soc. Am. A Opt. Image Sci. Vis. 24, 3274-3283 (2007).
[CrossRef] [PubMed]

P. Rosales and S. Marcos, "Customized computer model of eyes with intraocular lenses," Opt. Express 15, 2204-2218 (2007).
[CrossRef] [PubMed]

CastroA. de, P. Rosales, and S. Marcos, "Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging. Validation study," J. Cataract Refract. Surg. 33, 418-429 (2007).
[CrossRef]

T. Olsen, "Improved accuracy of intraocular lens power calculation with the Zeiss IOLMaster," Acta Ophthalmol. Scand. 85, 84-87 (2007).
[CrossRef] [PubMed]

L. Wang and D. D. Koch, "Custom optimization of intraocular lens asphericity," J. Cataract Refract. Surg. 33, 1713-1720 (2007).
[CrossRef] [PubMed]

2006 (3)

J. Narvaez, G. Zimmerman, R. D. Stulting, and D. H. Chang, "Accuracy of intraocular lens power prediction using the Hoffer Q, Holladay 1, Holladay 2, and SRK/T formulas," J. Cataract Refract. Surg. 32, 2050-2053 (2006).
[CrossRef] [PubMed]

K. M. Rocha, E. S. Soriano, M. R. Chalita, A. C. Yamada, K. Bottos, J. Bottos, L. Morimoto, and W. Nose, "Wavefront analysis and contrast sensitivity of aspheric and spherical intraocular lenses: a randomized prospective study," Am. J. Ophthalmol. 142, 750-756 (2006).
[CrossRef] [PubMed]

P. Rosales and S. Marcos, "Phakometry and lens tilt and decentration using a custom-developed Purkinje imaging apparatus: validation and measurements," J. Opt. Soc. Am. A Opt. Image Sci. Vis. 23, 509-520 (2006).
[CrossRef] [PubMed]

2005 (4)

N. sano-Kato, I. Toda, C. Sakai, Y. Hori-Komai, Y. Takano, M. Dogru, and K. Tsubota, "Pupil decentration and iris tilting detected by Orbscan: anatomic variations among healthy subjects and influence on outcomes of laser refractive surgeries," J. Cataract Refract. Surg. 31, 1938-1942 (2005).
[CrossRef]

M. Baumeister, B. Neidhardt, J. Strobel, and T. Kohnen, "Tilt and decentration of three-piece foldable high-refractive silicone and hydrophobic acrylic intraocular lenses with 6-mm optics in an intraindividual comparison," Am. J. Ophthalmol. 140, 1051-1058 (2005).
[CrossRef] [PubMed]

H. H. Dietze and M. J. Cox, "Limitations of correcting spherical aberration with aspheric intraocular lenses," J. Refract. Surg. 21, S541-S546 (2005).
[PubMed]

F. M. Mutlu, A. Bayer, C. Erduman, and M. Z. Bayraktar, "Comparison of tilt and decentration between phacoemulsification and phacotrabeculectomy," Ophthalmologica 219, 26-29 (2005).
[CrossRef] [PubMed]

2004 (2)

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, "Accuracy and precision of objective refraction from wavefront aberrations," Cataract and Refractive Surgery Today 4, 329-351 (2004).

M. G. Wirtitsch, O. Findl, R. Menapace, K. Kriechbaum, C. Koeppl, W. Buehl, and W. Drexler, "Effect of haptic design on change in axial lens position after cataract surgery," J. Cataract Refract. Surg. 30, 45-51 (2004).
[CrossRef] [PubMed]

2002 (3)

L. N. Thibos, A. Bradley, and X. Hong, "A statistical model of the aberration structure of normal, well-corrected eyes," Ophthalmic Physiol Opt. 22, 427-433 (2002).
[CrossRef] [PubMed]

M. Packer, I. H. Fine, R. S. Hoffman, and P. A. Piers, "Prospective randomized trial of an anterior surface modified prolate intraocular lens," J. Refract. Surg. 18, 692-696 (2002).
[PubMed]

J. T. Holladay, P. A. Piers, G. Koranyi, MoorenM. van der, and N. E. Norrby, "A new intraocular lens design to reduce spherical aberration of pseudophakic eyes," J. Refract. Surg. 18, 683-691 (2002).
[PubMed]

2001 (2)

T. Kohnen, "Measuring vision in refractive surgery," Cataract and Refractive Surgery Today 27, 1897-1898 (2001).
[CrossRef]

X. Hong, N. Himebaugh, and L. N. Thibos, "On-eye evaluation of optical performance of rigid and soft contact lenses," Cataract and Refractive Surgery Today 78, 872-880 (2001).

1999 (3)

K. Hayashi, H. Hayashi, F. Nakao, and F. Hayashi, "Intraocular lens tilt and decentration after implantation in eyes with glaucoma," J. Cataract Refract. Surg. 25, 1515-1520 (1999).
[CrossRef] [PubMed]

I. Escudero-Sanz and R. Navarro, "Off-axis aberrations of a wide-angle schematic eye model," J. Opt. Soc. Am. A Opt. Image Sci. Vis. 16, 1881-1891 (1999).
[CrossRef] [PubMed]

X. Zhang, M. Ye, A. Bradley, and L. Thibos, "Apodization by the Stiles-Crawford effect moderates the visual impact of retinal image defocus," J. Opt. Soc. Am. A Opt. Image Sci. Vis. 16, 812-820 (1999).
[CrossRef] [PubMed]

1998 (2)

L. N. Thibos, "Acuity perimetry and the sampling theory of visual resolution," Optom. Vis. Sci. 75, 399-406 (1998).
[CrossRef] [PubMed]

N. E. Norrby, L. W. Grossman, E. P. Geraghty, C. F. Kreiner, M. Mihori, A. S. Patel, V. Portney, and D. M. Silberman, "Determining the imaging quality of intraocular lenses," J. Cataract Refract. Surg. 24, 703-714 (1998).
[PubMed]

1997 (1)

J. T. Holladay, "Standardizing constants for ultrasonic biometry, keratometry, and intraocular lens power calculations," J. Cataract Refract. Surg. 23, 1356-1370 (1997).

1993 (1)

1991 (1)

D. A. Achison, "Design of aspheric intraocular lenses," Ophthalmic and Physiological Optics 11, 137-146 (1991).
[CrossRef]

1988 (1)

G. Smith and C. W. Lu, "The spherical aberration of intra-ocular lenses," Ophthalmic Physiol Opt. 8, 287-294 (1988).
[CrossRef] [PubMed]

1986 (1)

M. Guillon, D. P. Lydon, and C. Wilson, "Corneal topography: a clinical model," Ophthalmic Physiol Opt. 6, 47-56 (1986).
[CrossRef] [PubMed]

1985 (1)

1982 (1)

P. M. Kiely, G. Smith, and L. G. Carney, "The mean shape of the human cornea," Optica Acta 29, 1027-1040 (1982).
[CrossRef]

1965 (1)

F. W. Campbell and D. G. Green, "Optical and retinal factors affecting visual resolution," J. Physiol. 181, 576-593 (1965).
[PubMed]

Achison, D. A.

D. A. Achison, "Design of aspheric intraocular lenses," Ophthalmic and Physiological Optics 11, 137-146 (1991).
[CrossRef]

Alcon, E.

J. Tabernero, A. Benito, E. Alcon, and P. Artal, "Mechanism of compensation of aberrations in the human eye," J. Opt. Soc. Am. A Opt. Image Sci. Vis. 24, 3274-3283 (2007).
[CrossRef] [PubMed]

Applegate, R. A.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, "Accuracy and precision of objective refraction from wavefront aberrations," Cataract and Refractive Surgery Today 4, 329-351 (2004).

Artal, P.

J. Tabernero, A. Benito, E. Alcon, and P. Artal, "Mechanism of compensation of aberrations in the human eye," J. Opt. Soc. Am. A Opt. Image Sci. Vis. 24, 3274-3283 (2007).
[CrossRef] [PubMed]

Atchison, D. A.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, "Age-related changes in optical and biometric characteristics of emmetropic eyes," J. Vis. 8, 29-20 (2008).
[CrossRef] [PubMed]

Barbero, S.

S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jimenez-Alfaro, "Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism," Vision Res. 48, 70-79 (2008).
[CrossRef]

Baumeister, M.

M. Baumeister, B. Neidhardt, J. Strobel, and T. Kohnen, "Tilt and decentration of three-piece foldable high-refractive silicone and hydrophobic acrylic intraocular lenses with 6-mm optics in an intraindividual comparison," Am. J. Ophthalmol. 140, 1051-1058 (2005).
[CrossRef] [PubMed]

Bayer, A.

F. M. Mutlu, A. Bayer, C. Erduman, and M. Z. Bayraktar, "Comparison of tilt and decentration between phacoemulsification and phacotrabeculectomy," Ophthalmologica 219, 26-29 (2005).
[CrossRef] [PubMed]

Bayraktar, M. Z.

F. M. Mutlu, A. Bayer, C. Erduman, and M. Z. Bayraktar, "Comparison of tilt and decentration between phacoemulsification and phacotrabeculectomy," Ophthalmologica 219, 26-29 (2005).
[CrossRef] [PubMed]

Benito, A.

J. Tabernero, A. Benito, E. Alcon, and P. Artal, "Mechanism of compensation of aberrations in the human eye," J. Opt. Soc. Am. A Opt. Image Sci. Vis. 24, 3274-3283 (2007).
[CrossRef] [PubMed]

Bescos, J.

Bottos, J.

K. M. Rocha, E. S. Soriano, M. R. Chalita, A. C. Yamada, K. Bottos, J. Bottos, L. Morimoto, and W. Nose, "Wavefront analysis and contrast sensitivity of aspheric and spherical intraocular lenses: a randomized prospective study," Am. J. Ophthalmol. 142, 750-756 (2006).
[CrossRef] [PubMed]

Bottos, K.

K. M. Rocha, E. S. Soriano, M. R. Chalita, A. C. Yamada, K. Bottos, J. Bottos, L. Morimoto, and W. Nose, "Wavefront analysis and contrast sensitivity of aspheric and spherical intraocular lenses: a randomized prospective study," Am. J. Ophthalmol. 142, 750-756 (2006).
[CrossRef] [PubMed]

Bradley, A.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, "Accuracy and precision of objective refraction from wavefront aberrations," Cataract and Refractive Surgery Today 4, 329-351 (2004).

L. N. Thibos, A. Bradley, and X. Hong, "A statistical model of the aberration structure of normal, well-corrected eyes," Ophthalmic Physiol Opt. 22, 427-433 (2002).
[CrossRef] [PubMed]

X. Zhang, M. Ye, A. Bradley, and L. Thibos, "Apodization by the Stiles-Crawford effect moderates the visual impact of retinal image defocus," J. Opt. Soc. Am. A Opt. Image Sci. Vis. 16, 812-820 (1999).
[CrossRef] [PubMed]

Buehl, W.

M. G. Wirtitsch, O. Findl, R. Menapace, K. Kriechbaum, C. Koeppl, W. Buehl, and W. Drexler, "Effect of haptic design on change in axial lens position after cataract surgery," J. Cataract Refract. Surg. 30, 45-51 (2004).
[CrossRef] [PubMed]

Campbell, F. W.

F. W. Campbell and D. G. Green, "Optical and retinal factors affecting visual resolution," J. Physiol. 181, 576-593 (1965).
[PubMed]

Carney, L. G.

P. M. Kiely, G. Smith, and L. G. Carney, "The mean shape of the human cornea," Optica Acta 29, 1027-1040 (1982).
[CrossRef]

Castro,

CastroA. de, P. Rosales, and S. Marcos, "Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging. Validation study," J. Cataract Refract. Surg. 33, 418-429 (2007).
[CrossRef]

Chalita, M. R.

K. M. Rocha, E. S. Soriano, M. R. Chalita, A. C. Yamada, K. Bottos, J. Bottos, L. Morimoto, and W. Nose, "Wavefront analysis and contrast sensitivity of aspheric and spherical intraocular lenses: a randomized prospective study," Am. J. Ophthalmol. 142, 750-756 (2006).
[CrossRef] [PubMed]

Chang, D. H.

J. Narvaez, G. Zimmerman, R. D. Stulting, and D. H. Chang, "Accuracy of intraocular lens power prediction using the Hoffer Q, Holladay 1, Holladay 2, and SRK/T formulas," J. Cataract Refract. Surg. 32, 2050-2053 (2006).
[CrossRef] [PubMed]

Cox, M. J.

H. H. Dietze and M. J. Cox, "Limitations of correcting spherical aberration with aspheric intraocular lenses," J. Refract. Surg. 21, S541-S546 (2005).
[PubMed]

de, A.

CastroA. de, P. Rosales, and S. Marcos, "Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging. Validation study," J. Cataract Refract. Surg. 33, 418-429 (2007).
[CrossRef]

Dietze, H. H.

H. H. Dietze and M. J. Cox, "Limitations of correcting spherical aberration with aspheric intraocular lenses," J. Refract. Surg. 21, S541-S546 (2005).
[PubMed]

Drexler, W.

M. G. Wirtitsch, O. Findl, R. Menapace, K. Kriechbaum, C. Koeppl, W. Buehl, and W. Drexler, "Effect of haptic design on change in axial lens position after cataract surgery," J. Cataract Refract. Surg. 30, 45-51 (2004).
[CrossRef] [PubMed]

Erduman, C.

F. M. Mutlu, A. Bayer, C. Erduman, and M. Z. Bayraktar, "Comparison of tilt and decentration between phacoemulsification and phacotrabeculectomy," Ophthalmologica 219, 26-29 (2005).
[CrossRef] [PubMed]

Escudero-Sanz, I.

I. Escudero-Sanz and R. Navarro, "Off-axis aberrations of a wide-angle schematic eye model," J. Opt. Soc. Am. A Opt. Image Sci. Vis. 16, 1881-1891 (1999).
[CrossRef] [PubMed]

Findl, O.

M. G. Wirtitsch, O. Findl, R. Menapace, K. Kriechbaum, C. Koeppl, W. Buehl, and W. Drexler, "Effect of haptic design on change in axial lens position after cataract surgery," J. Cataract Refract. Surg. 30, 45-51 (2004).
[CrossRef] [PubMed]

Fine, I. H.

M. Packer, I. H. Fine, R. S. Hoffman, and P. A. Piers, "Prospective randomized trial of an anterior surface modified prolate intraocular lens," J. Refract. Surg. 18, 692-696 (2002).
[PubMed]

Geraghty, E. P.

N. E. Norrby, L. W. Grossman, E. P. Geraghty, C. F. Kreiner, M. Mihori, A. S. Patel, V. Portney, and D. M. Silberman, "Determining the imaging quality of intraocular lenses," J. Cataract Refract. Surg. 24, 703-714 (1998).
[PubMed]

Green, D. G.

F. W. Campbell and D. G. Green, "Optical and retinal factors affecting visual resolution," J. Physiol. 181, 576-593 (1965).
[PubMed]

Grossman, L. W.

N. E. Norrby, L. W. Grossman, E. P. Geraghty, C. F. Kreiner, M. Mihori, A. S. Patel, V. Portney, and D. M. Silberman, "Determining the imaging quality of intraocular lenses," J. Cataract Refract. Surg. 24, 703-714 (1998).
[PubMed]

Guillon, M.

M. Guillon, D. P. Lydon, and C. Wilson, "Corneal topography: a clinical model," Ophthalmic Physiol Opt. 6, 47-56 (1986).
[CrossRef] [PubMed]

Hayashi, F.

K. Hayashi, H. Hayashi, F. Nakao, and F. Hayashi, "Intraocular lens tilt and decentration after implantation in eyes with glaucoma," J. Cataract Refract. Surg. 25, 1515-1520 (1999).
[CrossRef] [PubMed]

Hayashi, H.

K. Hayashi, H. Hayashi, F. Nakao, and F. Hayashi, "Intraocular lens tilt and decentration after implantation in eyes with glaucoma," J. Cataract Refract. Surg. 25, 1515-1520 (1999).
[CrossRef] [PubMed]

Hayashi, K.

K. Hayashi, H. Hayashi, F. Nakao, and F. Hayashi, "Intraocular lens tilt and decentration after implantation in eyes with glaucoma," J. Cataract Refract. Surg. 25, 1515-1520 (1999).
[CrossRef] [PubMed]

Himebaugh, N.

X. Hong, N. Himebaugh, and L. N. Thibos, "On-eye evaluation of optical performance of rigid and soft contact lenses," Cataract and Refractive Surgery Today 78, 872-880 (2001).

Hoffman, R. S.

M. Packer, I. H. Fine, R. S. Hoffman, and P. A. Piers, "Prospective randomized trial of an anterior surface modified prolate intraocular lens," J. Refract. Surg. 18, 692-696 (2002).
[PubMed]

Holladay, J. T.

J. T. Holladay, P. A. Piers, G. Koranyi, MoorenM. van der, and N. E. Norrby, "A new intraocular lens design to reduce spherical aberration of pseudophakic eyes," J. Refract. Surg. 18, 683-691 (2002).
[PubMed]

J. T. Holladay, "Standardizing constants for ultrasonic biometry, keratometry, and intraocular lens power calculations," J. Cataract Refract. Surg. 23, 1356-1370 (1997).

Hong, X.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, "Accuracy and precision of objective refraction from wavefront aberrations," Cataract and Refractive Surgery Today 4, 329-351 (2004).

L. N. Thibos, A. Bradley, and X. Hong, "A statistical model of the aberration structure of normal, well-corrected eyes," Ophthalmic Physiol Opt. 22, 427-433 (2002).
[CrossRef] [PubMed]

X. Hong, N. Himebaugh, and L. N. Thibos, "On-eye evaluation of optical performance of rigid and soft contact lenses," Cataract and Refractive Surgery Today 78, 872-880 (2001).

Jimenez-Alfaro, I.

S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jimenez-Alfaro, "Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism," Vision Res. 48, 70-79 (2008).
[CrossRef]

Kasthurirangan, S.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, "Age-related changes in optical and biometric characteristics of emmetropic eyes," J. Vis. 8, 29-20 (2008).
[CrossRef] [PubMed]

Kiely, P. M.

P. M. Kiely, G. Smith, and L. G. Carney, "The mean shape of the human cornea," Optica Acta 29, 1027-1040 (1982).
[CrossRef]

Koch, D. D.

L. Wang and D. D. Koch, "Custom optimization of intraocular lens asphericity," J. Cataract Refract. Surg. 33, 1713-1720 (2007).
[CrossRef] [PubMed]

Koeppl, C.

M. G. Wirtitsch, O. Findl, R. Menapace, K. Kriechbaum, C. Koeppl, W. Buehl, and W. Drexler, "Effect of haptic design on change in axial lens position after cataract surgery," J. Cataract Refract. Surg. 30, 45-51 (2004).
[CrossRef] [PubMed]

Kohnen, T.

M. Baumeister, B. Neidhardt, J. Strobel, and T. Kohnen, "Tilt and decentration of three-piece foldable high-refractive silicone and hydrophobic acrylic intraocular lenses with 6-mm optics in an intraindividual comparison," Am. J. Ophthalmol. 140, 1051-1058 (2005).
[CrossRef] [PubMed]

T. Kohnen, "Measuring vision in refractive surgery," Cataract and Refractive Surgery Today 27, 1897-1898 (2001).
[CrossRef]

Koranyi, G.

J. T. Holladay, P. A. Piers, G. Koranyi, MoorenM. van der, and N. E. Norrby, "A new intraocular lens design to reduce spherical aberration of pseudophakic eyes," J. Refract. Surg. 18, 683-691 (2002).
[PubMed]

Kreiner, C. F.

N. E. Norrby, L. W. Grossman, E. P. Geraghty, C. F. Kreiner, M. Mihori, A. S. Patel, V. Portney, and D. M. Silberman, "Determining the imaging quality of intraocular lenses," J. Cataract Refract. Surg. 24, 703-714 (1998).
[PubMed]

Kriechbaum, K.

M. G. Wirtitsch, O. Findl, R. Menapace, K. Kriechbaum, C. Koeppl, W. Buehl, and W. Drexler, "Effect of haptic design on change in axial lens position after cataract surgery," J. Cataract Refract. Surg. 30, 45-51 (2004).
[CrossRef] [PubMed]

Lakshminarayanan, V.

Lang, A. J.

Llorente, L.

S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jimenez-Alfaro, "Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism," Vision Res. 48, 70-79 (2008).
[CrossRef]

Lu, C. W.

G. Smith and C. W. Lu, "The spherical aberration of intra-ocular lenses," Ophthalmic Physiol Opt. 8, 287-294 (1988).
[CrossRef] [PubMed]

Lydon, D. P.

M. Guillon, D. P. Lydon, and C. Wilson, "Corneal topography: a clinical model," Ophthalmic Physiol Opt. 6, 47-56 (1986).
[CrossRef] [PubMed]

Marcos, S.

S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jimenez-Alfaro, "Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism," Vision Res. 48, 70-79 (2008).
[CrossRef]

CastroA. de, P. Rosales, and S. Marcos, "Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging. Validation study," J. Cataract Refract. Surg. 33, 418-429 (2007).
[CrossRef]

P. Rosales and S. Marcos, "Customized computer model of eyes with intraocular lenses," Opt. Express 15, 2204-2218 (2007).
[CrossRef] [PubMed]

P. Rosales and S. Marcos, "Phakometry and lens tilt and decentration using a custom-developed Purkinje imaging apparatus: validation and measurements," J. Opt. Soc. Am. A Opt. Image Sci. Vis. 23, 509-520 (2006).
[CrossRef] [PubMed]

Markwell, E. L.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, "Age-related changes in optical and biometric characteristics of emmetropic eyes," J. Vis. 8, 29-20 (2008).
[CrossRef] [PubMed]

Menapace, R.

M. G. Wirtitsch, O. Findl, R. Menapace, K. Kriechbaum, C. Koeppl, W. Buehl, and W. Drexler, "Effect of haptic design on change in axial lens position after cataract surgery," J. Cataract Refract. Surg. 30, 45-51 (2004).
[CrossRef] [PubMed]

Mihori, M.

N. E. Norrby, L. W. Grossman, E. P. Geraghty, C. F. Kreiner, M. Mihori, A. S. Patel, V. Portney, and D. M. Silberman, "Determining the imaging quality of intraocular lenses," J. Cataract Refract. Surg. 24, 703-714 (1998).
[PubMed]

Mooren, G.

J. T. Holladay, P. A. Piers, G. Koranyi, MoorenM. van der, and N. E. Norrby, "A new intraocular lens design to reduce spherical aberration of pseudophakic eyes," J. Refract. Surg. 18, 683-691 (2002).
[PubMed]

Morimoto, L.

K. M. Rocha, E. S. Soriano, M. R. Chalita, A. C. Yamada, K. Bottos, J. Bottos, L. Morimoto, and W. Nose, "Wavefront analysis and contrast sensitivity of aspheric and spherical intraocular lenses: a randomized prospective study," Am. J. Ophthalmol. 142, 750-756 (2006).
[CrossRef] [PubMed]

Mutlu, F. M.

F. M. Mutlu, A. Bayer, C. Erduman, and M. Z. Bayraktar, "Comparison of tilt and decentration between phacoemulsification and phacotrabeculectomy," Ophthalmologica 219, 26-29 (2005).
[CrossRef] [PubMed]

Nakao, F.

K. Hayashi, H. Hayashi, F. Nakao, and F. Hayashi, "Intraocular lens tilt and decentration after implantation in eyes with glaucoma," J. Cataract Refract. Surg. 25, 1515-1520 (1999).
[CrossRef] [PubMed]

Narvaez, J.

J. Narvaez, G. Zimmerman, R. D. Stulting, and D. H. Chang, "Accuracy of intraocular lens power prediction using the Hoffer Q, Holladay 1, Holladay 2, and SRK/T formulas," J. Cataract Refract. Surg. 32, 2050-2053 (2006).
[CrossRef] [PubMed]

Navarro, R.

I. Escudero-Sanz and R. Navarro, "Off-axis aberrations of a wide-angle schematic eye model," J. Opt. Soc. Am. A Opt. Image Sci. Vis. 16, 1881-1891 (1999).
[CrossRef] [PubMed]

R. Navarro, J. Santamaria, and J. Bescos, "Accommodation-dependent model of the human eye with aspherics," J. Opt. Soc. Am. A 2, 1273-1281 (1985).
[CrossRef] [PubMed]

Neidhardt, B.

M. Baumeister, B. Neidhardt, J. Strobel, and T. Kohnen, "Tilt and decentration of three-piece foldable high-refractive silicone and hydrophobic acrylic intraocular lenses with 6-mm optics in an intraindividual comparison," Am. J. Ophthalmol. 140, 1051-1058 (2005).
[CrossRef] [PubMed]

Norrby, N. E.

J. T. Holladay, P. A. Piers, G. Koranyi, MoorenM. van der, and N. E. Norrby, "A new intraocular lens design to reduce spherical aberration of pseudophakic eyes," J. Refract. Surg. 18, 683-691 (2002).
[PubMed]

N. E. Norrby, L. W. Grossman, E. P. Geraghty, C. F. Kreiner, M. Mihori, A. S. Patel, V. Portney, and D. M. Silberman, "Determining the imaging quality of intraocular lenses," J. Cataract Refract. Surg. 24, 703-714 (1998).
[PubMed]

Norrby, S.

S. Norrby, "Sources of error in intraocular lens power calculation," J. Cataract Refract. Surg. 34, 368-376 (2008).
[CrossRef] [PubMed]

Nose, W.

K. M. Rocha, E. S. Soriano, M. R. Chalita, A. C. Yamada, K. Bottos, J. Bottos, L. Morimoto, and W. Nose, "Wavefront analysis and contrast sensitivity of aspheric and spherical intraocular lenses: a randomized prospective study," Am. J. Ophthalmol. 142, 750-756 (2006).
[CrossRef] [PubMed]

Olsen, T.

T. Olsen, "Improved accuracy of intraocular lens power calculation with the Zeiss IOLMaster," Acta Ophthalmol. Scand. 85, 84-87 (2007).
[CrossRef] [PubMed]

Packer, M.

M. Packer, I. H. Fine, R. S. Hoffman, and P. A. Piers, "Prospective randomized trial of an anterior surface modified prolate intraocular lens," J. Refract. Surg. 18, 692-696 (2002).
[PubMed]

Patel, A. S.

N. E. Norrby, L. W. Grossman, E. P. Geraghty, C. F. Kreiner, M. Mihori, A. S. Patel, V. Portney, and D. M. Silberman, "Determining the imaging quality of intraocular lenses," J. Cataract Refract. Surg. 24, 703-714 (1998).
[PubMed]

Piers, P. A.

M. Packer, I. H. Fine, R. S. Hoffman, and P. A. Piers, "Prospective randomized trial of an anterior surface modified prolate intraocular lens," J. Refract. Surg. 18, 692-696 (2002).
[PubMed]

J. T. Holladay, P. A. Piers, G. Koranyi, MoorenM. van der, and N. E. Norrby, "A new intraocular lens design to reduce spherical aberration of pseudophakic eyes," J. Refract. Surg. 18, 683-691 (2002).
[PubMed]

Pope, J. M.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, "Age-related changes in optical and biometric characteristics of emmetropic eyes," J. Vis. 8, 29-20 (2008).
[CrossRef] [PubMed]

Portney, V.

N. E. Norrby, L. W. Grossman, E. P. Geraghty, C. F. Kreiner, M. Mihori, A. S. Patel, V. Portney, and D. M. Silberman, "Determining the imaging quality of intraocular lenses," J. Cataract Refract. Surg. 24, 703-714 (1998).
[PubMed]

A. J. Lang, V. Lakshminarayanan, and V. Portney, "Phenomenological model for interpreting the clinical significance of the in vitro optical transfer function," J. Opt. Soc. Am. A 10, 1600-1610 (1993).
[CrossRef] [PubMed]

Rocha, K. M.

K. M. Rocha, E. S. Soriano, M. R. Chalita, A. C. Yamada, K. Bottos, J. Bottos, L. Morimoto, and W. Nose, "Wavefront analysis and contrast sensitivity of aspheric and spherical intraocular lenses: a randomized prospective study," Am. J. Ophthalmol. 142, 750-756 (2006).
[CrossRef] [PubMed]

Rosales, P.

S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jimenez-Alfaro, "Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism," Vision Res. 48, 70-79 (2008).
[CrossRef]

CastroA. de, P. Rosales, and S. Marcos, "Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging. Validation study," J. Cataract Refract. Surg. 33, 418-429 (2007).
[CrossRef]

P. Rosales and S. Marcos, "Customized computer model of eyes with intraocular lenses," Opt. Express 15, 2204-2218 (2007).
[CrossRef] [PubMed]

P. Rosales and S. Marcos, "Phakometry and lens tilt and decentration using a custom-developed Purkinje imaging apparatus: validation and measurements," J. Opt. Soc. Am. A Opt. Image Sci. Vis. 23, 509-520 (2006).
[CrossRef] [PubMed]

Santamaria, J.

Silberman, D. M.

N. E. Norrby, L. W. Grossman, E. P. Geraghty, C. F. Kreiner, M. Mihori, A. S. Patel, V. Portney, and D. M. Silberman, "Determining the imaging quality of intraocular lenses," J. Cataract Refract. Surg. 24, 703-714 (1998).
[PubMed]

Smith, G.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, "Age-related changes in optical and biometric characteristics of emmetropic eyes," J. Vis. 8, 29-20 (2008).
[CrossRef] [PubMed]

G. Smith and C. W. Lu, "The spherical aberration of intra-ocular lenses," Ophthalmic Physiol Opt. 8, 287-294 (1988).
[CrossRef] [PubMed]

P. M. Kiely, G. Smith, and L. G. Carney, "The mean shape of the human cornea," Optica Acta 29, 1027-1040 (1982).
[CrossRef]

Soriano, E. S.

K. M. Rocha, E. S. Soriano, M. R. Chalita, A. C. Yamada, K. Bottos, J. Bottos, L. Morimoto, and W. Nose, "Wavefront analysis and contrast sensitivity of aspheric and spherical intraocular lenses: a randomized prospective study," Am. J. Ophthalmol. 142, 750-756 (2006).
[CrossRef] [PubMed]

Strobel, J.

M. Baumeister, B. Neidhardt, J. Strobel, and T. Kohnen, "Tilt and decentration of three-piece foldable high-refractive silicone and hydrophobic acrylic intraocular lenses with 6-mm optics in an intraindividual comparison," Am. J. Ophthalmol. 140, 1051-1058 (2005).
[CrossRef] [PubMed]

Stulting, R. D.

J. Narvaez, G. Zimmerman, R. D. Stulting, and D. H. Chang, "Accuracy of intraocular lens power prediction using the Hoffer Q, Holladay 1, Holladay 2, and SRK/T formulas," J. Cataract Refract. Surg. 32, 2050-2053 (2006).
[CrossRef] [PubMed]

Swann, P. G.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, "Age-related changes in optical and biometric characteristics of emmetropic eyes," J. Vis. 8, 29-20 (2008).
[CrossRef] [PubMed]

Tabernero, J.

J. Tabernero, A. Benito, E. Alcon, and P. Artal, "Mechanism of compensation of aberrations in the human eye," J. Opt. Soc. Am. A Opt. Image Sci. Vis. 24, 3274-3283 (2007).
[CrossRef] [PubMed]

Thibos, L.

X. Zhang, M. Ye, A. Bradley, and L. Thibos, "Apodization by the Stiles-Crawford effect moderates the visual impact of retinal image defocus," J. Opt. Soc. Am. A Opt. Image Sci. Vis. 16, 812-820 (1999).
[CrossRef] [PubMed]

Thibos, L. N.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, "Accuracy and precision of objective refraction from wavefront aberrations," Cataract and Refractive Surgery Today 4, 329-351 (2004).

L. N. Thibos, A. Bradley, and X. Hong, "A statistical model of the aberration structure of normal, well-corrected eyes," Ophthalmic Physiol Opt. 22, 427-433 (2002).
[CrossRef] [PubMed]

X. Hong, N. Himebaugh, and L. N. Thibos, "On-eye evaluation of optical performance of rigid and soft contact lenses," Cataract and Refractive Surgery Today 78, 872-880 (2001).

L. N. Thibos, "Acuity perimetry and the sampling theory of visual resolution," Optom. Vis. Sci. 75, 399-406 (1998).
[CrossRef] [PubMed]

van der, M.

J. T. Holladay, P. A. Piers, G. Koranyi, MoorenM. van der, and N. E. Norrby, "A new intraocular lens design to reduce spherical aberration of pseudophakic eyes," J. Refract. Surg. 18, 683-691 (2002).
[PubMed]

Wang, L.

L. Wang and D. D. Koch, "Custom optimization of intraocular lens asphericity," J. Cataract Refract. Surg. 33, 1713-1720 (2007).
[CrossRef] [PubMed]

Wilson, C.

M. Guillon, D. P. Lydon, and C. Wilson, "Corneal topography: a clinical model," Ophthalmic Physiol Opt. 6, 47-56 (1986).
[CrossRef] [PubMed]

Wirtitsch, M. G.

M. G. Wirtitsch, O. Findl, R. Menapace, K. Kriechbaum, C. Koeppl, W. Buehl, and W. Drexler, "Effect of haptic design on change in axial lens position after cataract surgery," J. Cataract Refract. Surg. 30, 45-51 (2004).
[CrossRef] [PubMed]

Yamada, A. C.

K. M. Rocha, E. S. Soriano, M. R. Chalita, A. C. Yamada, K. Bottos, J. Bottos, L. Morimoto, and W. Nose, "Wavefront analysis and contrast sensitivity of aspheric and spherical intraocular lenses: a randomized prospective study," Am. J. Ophthalmol. 142, 750-756 (2006).
[CrossRef] [PubMed]

Ye, M.

X. Zhang, M. Ye, A. Bradley, and L. Thibos, "Apodization by the Stiles-Crawford effect moderates the visual impact of retinal image defocus," J. Opt. Soc. Am. A Opt. Image Sci. Vis. 16, 812-820 (1999).
[CrossRef] [PubMed]

Zhang, X.

X. Zhang, M. Ye, A. Bradley, and L. Thibos, "Apodization by the Stiles-Crawford effect moderates the visual impact of retinal image defocus," J. Opt. Soc. Am. A Opt. Image Sci. Vis. 16, 812-820 (1999).
[CrossRef] [PubMed]

Zimmerman, G.

J. Narvaez, G. Zimmerman, R. D. Stulting, and D. H. Chang, "Accuracy of intraocular lens power prediction using the Hoffer Q, Holladay 1, Holladay 2, and SRK/T formulas," J. Cataract Refract. Surg. 32, 2050-2053 (2006).
[CrossRef] [PubMed]

Acta Ophthalmol. Scand. (1)

T. Olsen, "Improved accuracy of intraocular lens power calculation with the Zeiss IOLMaster," Acta Ophthalmol. Scand. 85, 84-87 (2007).
[CrossRef] [PubMed]

Am. J. Ophthalmol. (2)

M. Baumeister, B. Neidhardt, J. Strobel, and T. Kohnen, "Tilt and decentration of three-piece foldable high-refractive silicone and hydrophobic acrylic intraocular lenses with 6-mm optics in an intraindividual comparison," Am. J. Ophthalmol. 140, 1051-1058 (2005).
[CrossRef] [PubMed]

K. M. Rocha, E. S. Soriano, M. R. Chalita, A. C. Yamada, K. Bottos, J. Bottos, L. Morimoto, and W. Nose, "Wavefront analysis and contrast sensitivity of aspheric and spherical intraocular lenses: a randomized prospective study," Am. J. Ophthalmol. 142, 750-756 (2006).
[CrossRef] [PubMed]

Cataract and Refractive Surgery Today (3)

T. Kohnen, "Measuring vision in refractive surgery," Cataract and Refractive Surgery Today 27, 1897-1898 (2001).
[CrossRef]

X. Hong, N. Himebaugh, and L. N. Thibos, "On-eye evaluation of optical performance of rigid and soft contact lenses," Cataract and Refractive Surgery Today 78, 872-880 (2001).

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, "Accuracy and precision of objective refraction from wavefront aberrations," Cataract and Refractive Surgery Today 4, 329-351 (2004).

J. Cataract Refract. Surg. (9)

N. E. Norrby, L. W. Grossman, E. P. Geraghty, C. F. Kreiner, M. Mihori, A. S. Patel, V. Portney, and D. M. Silberman, "Determining the imaging quality of intraocular lenses," J. Cataract Refract. Surg. 24, 703-714 (1998).
[PubMed]

K. Hayashi, H. Hayashi, F. Nakao, and F. Hayashi, "Intraocular lens tilt and decentration after implantation in eyes with glaucoma," J. Cataract Refract. Surg. 25, 1515-1520 (1999).
[CrossRef] [PubMed]

J. Narvaez, G. Zimmerman, R. D. Stulting, and D. H. Chang, "Accuracy of intraocular lens power prediction using the Hoffer Q, Holladay 1, Holladay 2, and SRK/T formulas," J. Cataract Refract. Surg. 32, 2050-2053 (2006).
[CrossRef] [PubMed]

N. sano-Kato, I. Toda, C. Sakai, Y. Hori-Komai, Y. Takano, M. Dogru, and K. Tsubota, "Pupil decentration and iris tilting detected by Orbscan: anatomic variations among healthy subjects and influence on outcomes of laser refractive surgeries," J. Cataract Refract. Surg. 31, 1938-1942 (2005).
[CrossRef]

J. T. Holladay, "Standardizing constants for ultrasonic biometry, keratometry, and intraocular lens power calculations," J. Cataract Refract. Surg. 23, 1356-1370 (1997).

M. G. Wirtitsch, O. Findl, R. Menapace, K. Kriechbaum, C. Koeppl, W. Buehl, and W. Drexler, "Effect of haptic design on change in axial lens position after cataract surgery," J. Cataract Refract. Surg. 30, 45-51 (2004).
[CrossRef] [PubMed]

L. Wang and D. D. Koch, "Custom optimization of intraocular lens asphericity," J. Cataract Refract. Surg. 33, 1713-1720 (2007).
[CrossRef] [PubMed]

S. Norrby, "Sources of error in intraocular lens power calculation," J. Cataract Refract. Surg. 34, 368-376 (2008).
[CrossRef] [PubMed]

CastroA. de, P. Rosales, and S. Marcos, "Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging. Validation study," J. Cataract Refract. Surg. 33, 418-429 (2007).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. A Opt. Image Sci. Vis. (4)

I. Escudero-Sanz and R. Navarro, "Off-axis aberrations of a wide-angle schematic eye model," J. Opt. Soc. Am. A Opt. Image Sci. Vis. 16, 1881-1891 (1999).
[CrossRef] [PubMed]

X. Zhang, M. Ye, A. Bradley, and L. Thibos, "Apodization by the Stiles-Crawford effect moderates the visual impact of retinal image defocus," J. Opt. Soc. Am. A Opt. Image Sci. Vis. 16, 812-820 (1999).
[CrossRef] [PubMed]

J. Tabernero, A. Benito, E. Alcon, and P. Artal, "Mechanism of compensation of aberrations in the human eye," J. Opt. Soc. Am. A Opt. Image Sci. Vis. 24, 3274-3283 (2007).
[CrossRef] [PubMed]

P. Rosales and S. Marcos, "Phakometry and lens tilt and decentration using a custom-developed Purkinje imaging apparatus: validation and measurements," J. Opt. Soc. Am. A Opt. Image Sci. Vis. 23, 509-520 (2006).
[CrossRef] [PubMed]

J. Physiol. (1)

F. W. Campbell and D. G. Green, "Optical and retinal factors affecting visual resolution," J. Physiol. 181, 576-593 (1965).
[PubMed]

J. Refract. Surg. (3)

H. H. Dietze and M. J. Cox, "Limitations of correcting spherical aberration with aspheric intraocular lenses," J. Refract. Surg. 21, S541-S546 (2005).
[PubMed]

J. T. Holladay, P. A. Piers, G. Koranyi, MoorenM. van der, and N. E. Norrby, "A new intraocular lens design to reduce spherical aberration of pseudophakic eyes," J. Refract. Surg. 18, 683-691 (2002).
[PubMed]

M. Packer, I. H. Fine, R. S. Hoffman, and P. A. Piers, "Prospective randomized trial of an anterior surface modified prolate intraocular lens," J. Refract. Surg. 18, 692-696 (2002).
[PubMed]

J. Vis. (1)

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, "Age-related changes in optical and biometric characteristics of emmetropic eyes," J. Vis. 8, 29-20 (2008).
[CrossRef] [PubMed]

Ophthalmic and Physiological Optics (1)

D. A. Achison, "Design of aspheric intraocular lenses," Ophthalmic and Physiological Optics 11, 137-146 (1991).
[CrossRef]

Ophthalmic Physiol Opt. (3)

M. Guillon, D. P. Lydon, and C. Wilson, "Corneal topography: a clinical model," Ophthalmic Physiol Opt. 6, 47-56 (1986).
[CrossRef] [PubMed]

G. Smith and C. W. Lu, "The spherical aberration of intra-ocular lenses," Ophthalmic Physiol Opt. 8, 287-294 (1988).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, and X. Hong, "A statistical model of the aberration structure of normal, well-corrected eyes," Ophthalmic Physiol Opt. 22, 427-433 (2002).
[CrossRef] [PubMed]

Ophthalmologica (1)

F. M. Mutlu, A. Bayer, C. Erduman, and M. Z. Bayraktar, "Comparison of tilt and decentration between phacoemulsification and phacotrabeculectomy," Ophthalmologica 219, 26-29 (2005).
[CrossRef] [PubMed]

Opt. Express (1)

Optica Acta (1)

P. M. Kiely, G. Smith, and L. G. Carney, "The mean shape of the human cornea," Optica Acta 29, 1027-1040 (1982).
[CrossRef]

Optom. Vis. Sci. (1)

L. N. Thibos, "Acuity perimetry and the sampling theory of visual resolution," Optom. Vis. Sci. 75, 399-406 (1998).
[CrossRef] [PubMed]

Vision Res. (1)

S. Marcos, P. Rosales, L. Llorente, S. Barbero, and I. Jimenez-Alfaro, "Balance of corneal horizontal coma by internal optics in eyes with intraocular artificial lenses: evidence of a passive mechanism," Vision Res. 48, 70-79 (2008).
[CrossRef]

Other (9)

X. Hong. Optical aberrations of human eyes and their impact on visual performances. 2001.

International Organization for Standardization, International Standard IS0 11979-211999 Technical Corrigendum 1 Ophthalmic implants - Intraocular lenses -Part 2: Optical properties and test methods (=International Organization for Standardization, Geneva, Switzerland 1999).

International Organization for Standardization. ISO 11979-3:2006 Ophthalmic implants -- Intraocular lenses -- Part 3: Mechanical properties and test methods. 2006.

Zemax Development Corporation. Xemax ray-tracing program. 2001.

X. Hong, M. Karakelle, and X. Zhang. Corrections of higher order aberrations in intraocular lenses. Alcon Manufacturing,LTD. [0268453 A1]. 11-22-2007. US.

R. P. Lehman, "Clinically Relevant Advantages in the Functional Performance of the AcrySof IQ IOL" (ASCRS, American Society of Cataract and Refractive Surgery Symposium, Chicago, IL, USA 2008).

M. Simpson. Postoperative intraocular lens location: Technical Report. 013:36830, 1-20. 1998.

C. S. Lee and M. J. Simpson, Diffractive multifocal ophthalmic lens. Alcon Laboratories, Inc. [5699142]. 12-16-0097. US.

Alcon Laboratories, Inc. AcrySof ReSTOR apodized diffractive aspheric IOL [package insert]. 1-16. 2007. Fort Worth, TX, USA.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Five lens designs with increasingly negative spherical aberration correction values (right) and corresponding average total eye spherical aberration values (left) (as root mean square [RMS] for a 6 mm entrance pupil).

Fig. 2.
Fig. 2.

The MTF performance of the spherical control lens design (6) and aspheric lens design (3) in the model human eye. The population mean radius was 7.72 mm. The 5 cornea radii tested had the following distances away from the population mean corneal radius: -2 SD (7.16 mm), -1 SD (7.44 mm), 0 SD (7.72 mm), +1 SD (8.00 mm) and +2 SD (8.28 mm). The corneal asphericity value was kept constant (-0.183). The calculation was performed for a 6.0 mm entrance pupil (5.2 mm at the IOL plane).

Fig. 3.
Fig. 3.

Four distributions of corneal asphericity, represented as conic constant, from representative studies. The blue line indicates the weighted average of the distributions. Kiely et al., 1982[15]; Guillon et al., 1986[16]; Hong et al., 2001[17]

Fig. 4.
Fig. 4.

The MTF performance of the spherical control lens design (6) and aspheric lens design (3) in the model human eye. The population mean asphericity was -0.183. The 5 corneal asphericity values tested had the following distances away from the population mean corneal asphericity: -2 SD (-0.503), -1 SD (-0.343), 0 SD (-0.183), +1 SD (-0.023) and +2 SD (+0.137). The corneal radius was kept constant at 7.72 mm. The calculation was performed for a 6.0 mm entrance pupil (5.2 mm at the IOL plane).

Fig. 5.
Fig. 5.

The MTF performance of the spherical control lens design (6) and aspheric lens design (3) in the model human eye. The population mean anterior chamber depth was 4.6 mm. The 5 anterior chamber depths tested had the following distances from the population mean: -2 SD (4.0 mm), -1 SD (4.3 mm), 0 SD (4.6 mm), +1 SD (4.9 mm) and +2 SD (5.2 mm). Other ocular parameters were kept constant. The calculation was performed for a 6.0 mm entrance pupil (5.2 mm at the IOL plane).

Fig. 6.
Fig. 6.

The MTF performance of the spherical control lens design (#6) and aspheric lens design (#3) in the model human eye. The calculation was performed with 3 different lens decentration values (0.0 mm, 0.25 mm and 0.5 mm) relative to the cornea. The calculation was performed for a 6.0 mm entrance pupil.

Fig. 7.
Fig. 7.

The MTF performance of the spherical control lens design (#6) and aspheric lens design (#3) in the model human eye. The calculation was performed for different degrees of lens tilt (0°, 2.5°, and 5°) relative to the cornea plane. The calculation was performed for a 6.0 mm entrance pupil (5.2 mm at the IOL plane).

Fig. 8.
Fig. 8.

The MTF performance of the spherical control lens design (6) and aspheric lens design (3) in the model human eye. Spherical refractive errors tested included 0 D, ±1/8 D, and ± 1/4 D. The calculation was performed for a 6.0 mm entrance pupil (5.2 mm at the IOL plane).

Fig. 9.
Fig. 9.

The MTF performance of the spherical control lens design (#6) and aspheric lens design (#3) in the model human eye. Cylindrical refractive errors tested included 0 D, ±1/8 D, and ± ¼ D. The calculation was performed for a 6.0 mm entrance pupil (5.2 mm at the IOL plane).

Tables (6)

Tables Icon

Table 1. Reported values of corneal radius and corneal asphericity

Tables Icon

Table 2. Selection and definition of variables for a suitable eye model

Tables Icon

Table 3. Monte Carlo Analysis for Lens Designs, Pupil Size 6.0 mm

Tables Icon

Table 4: Summary of Monte Carlo analysis for lens designs, Pupil Size 4.5 mm

Tables Icon

Table 5. Modulation Transfer Function Improvement and Percentage of Population Benefited

Tables Icon

Table 6. Rank Ordering of Lens Designs

Metrics