Abstract

We demonstrate that the inherent nonlinearity of a microstructured optical fiber (MOF) may be used to achieve label-free selective biosensing, thereby eliminating the need for post-processing of the fiber. This first nonlinear biosensor utilizes a change in the modulational instability (MI) gain spectrum (a shift of the Stokes- or anti-Stokes wavelength) caused by the selective capture of biomolecules by a sensor layer immobilised on the walls of the holes in the fiber. We find that such changes in the MI gain spectrum can be made detectable, and that engineering of the dispersion is important for optimizing the sensitivity. The nonlinear sensor shows a sensitivity of around 10.4nm/nm, defined as the shift in resonance wavelength per nm biolayer, which is a factor of 7.5 higher than the hitherto only demonstrated label-free MOF biosensor.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Bosch, A. J. R. Snchez, F. S. Rojas, and C. B. Ojeda, "Recent development in optical fiber biosensors," Sensors 70, 797-859 (2007).
    [CrossRef]
  2. L. Rindorf, P. E. Hoiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, "Towards biochips using microstructured optical fiber sensors," Anal. Bioanal. Chem. 385, 1370-1375 (2006).
    [CrossRef] [PubMed]
  3. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, "Sensitive optical biosensors for unlabeled targets: A review," Anal. Chimica Acta 620, 8-26 (2008).
    [CrossRef]
  4. J.-F. Masson, K. Hamersky, S. Beaudoin, and K. S. Booksh, "In vitro biochemical monitoring with fiber optics surface plasmon resonance sensors," Proc. SPIE 5261, 123 (2004).
    [CrossRef]
  5. D. A. Markov, K. Swinney, and D. J. Bornhop, "Label-free molecular interaction determinations with nanoscale interferometry," J. Am. Chem. Soc. 126, 16659 (2004).
    [CrossRef] [PubMed]
  6. T.-W Koo, S. Chan, and A. A. Berlin, "Single-molecule detection of biomolecules by surface-enhanced coherent anti-stokes Raman scattering," Opt. Lett. 30, 1024 (2005).
    [CrossRef] [PubMed]
  7. Company web site http://www.resrchintl.com/raptor-detection-system.html
  8. A. Hasegawa and W. F. Brinkman, "Tunable coherent IR and FIR sources utilizing modulational instability," IEEE J. Quantum. Electron. QE-16, 694-697 (1980).
    [CrossRef]
  9. G. P. Agrawal, Nonlinear Fiber Optics, 4th edn. (Burlington, MA, USA, 2007).
  10. P. M. Moselund, M. Frosz, C. Thomsen, and O. Bang, "Backseeding modulational instability and supercontinuum generation," Opt. Express 16, 11954-11968 (2008).
    [CrossRef] [PubMed]
  11. J. E. Sharping, M. Fiorentino, A. Coker, P. Kumar, and R. S. Windeler, "Four-wave mixing in microstructure fiber," Opt. Lett. 26, 1048 (2001).
    [CrossRef]
  12. J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, "Optical parametric oscillator based four-wave mixing in microstructure fiber," Opt. Lett. 27, 1675-1677 (2002).
    [CrossRef]
  13. N. I. Nikolov, T. Sørensen, O. Bang, and A. Bjarklev, "Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing," J. Opt. Soc. Am. B 20, 2329-2337 (2003).
    [CrossRef]
  14. P. St. J Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  15. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic bandgap guidance of light in air," Science 285, 1537-1539 (1999).
    [CrossRef] [PubMed]
  16. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Scalar modulational instability in the normal dispersion regime by use of a photonic crystal fiber," Opt. Lett. 28, 2225-2227 (2003).
    [CrossRef] [PubMed]
  17. T. M. Monro, D. J. Richardson, and P. J. Bennett, "Developing holey fibres for evanescent field devices," Electron. Lett. 35, 1188 (1999).
    [CrossRef]
  18. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibers," Meas. Sci. Technol. 12, 1854 (2001).
    [CrossRef]
  19. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, "Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions," Opt. Lett. 29, 1974-1976 (2004).
    [CrossRef] [PubMed]
  20. J. M. Fini, "Microstructure fibres for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004).
    [CrossRef]
  21. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen. H. Sorensen, T. P. Hansen, and H. R. Simonsen, "Gas sensing using air-guiding photonic crystal fibers," Opt. Express 17, 4080-4087 (2004).
    [CrossRef]
  22. M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. Martijn de Sterke, and N. A. P. Nicorovici, "Microstructured polymer optical fibre," Opt. Express 9, 319-327 (2001).
    [CrossRef] [PubMed]
  23. Q2. M. C. J. Large, A. Argyros, F. Cox, M. A. van Eijkelenborg, S. Ponrathnam, N. S. Pujari,I. M. Bassett, R. Lwin, and G. W. Barton, "Microstructured polymer optical fibres: New opportunities and challenges," Mol. Cryst. Liq. Cryst. 446, 219-231 (2006).
    [CrossRef]
  24. J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, "Selective detection of antibodies in microstructured polymer optical fibers," Opt. Express 13, 5883-5889 (2005).
    [CrossRef] [PubMed]
  25. F. M. Cox, A. Argyros, and M. C. J. Large, "Liquid-filled hollow core microstructured polymer optical fiber," Opt. Express 14, 4135-4140 (2006).
    [CrossRef] [PubMed]
  26. G. Emiliyanov, J. B. Jensen, O. Bang, A. Bjarklev, P. E. Hoiby, L. H. Pedersen, E. Kjaer, and L. Lindvold, "Localized biosensing with Topas microstructured polymer optical fiber," Opt. Lett. 32, 460 (2007); erratum ibid, 1059 (2007)
    [CrossRef] [PubMed]
  27. L. Rindorf and O. Bang, "Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing," J. Opt. Soc. Am. B 25, 310-324 (2008).
    [CrossRef]
  28. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Hoiby, and O. Bang, "Photonic crystal fiber long-period gratings for biochemical sensing," Opt. Express 14, 8224-8231 (2006).
    [CrossRef] [PubMed]
  29. F. Kajzar, "Third Harmonic Generation," Chapter 10 in Characterization Techniques and Tabulations for Organic Nonlinear Optical materials," M. G. Kuzyk, C. W. Dirk, eds., (Marcel Dekker, Inc., New York 1998).
  30. T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, "Chalcogenite holey fibres," Electron. Lett. 36, 1998-2000 (2000).
    [CrossRef]
  31. J.-J. Gau, E. H. Lan, B. Dunn, C.-M. Ho, and J. C. S. Woo, "A MEMS based amperometric detector for E. Coli bacteria using self-assembled monolayers," Biosens. Bioelectron. 16, 745-755 (2001).
    [CrossRef] [PubMed]
  32. L. Rindorf and O. Bang, "Highly sensitive refractometer with a photonic-crystal-fiber long-period grating," Opt. Lett. 33, 563-565 (2008).
    [CrossRef] [PubMed]
  33. IAPWS 5C: "Release on refractive index of ordinary substance as a function of wavelength, temperature and pressure" (September 1997) published by International Association of the Properties of Water and Steam (IAPWS). In this work a temperature of T = 293.15K and a density of water of ρ = 1000kg·m−3 has been used.
  34. Comsol Multiphysics finite element package, http://www.comsol.com.
  35. M. H. Frosz, T. Sørensen, and O. Bang, "Nano-engineering of a photonic crystal fiber for supercontinuum spectral shaping," J. Opt. Soc. Am. B 23, 1692-1699 (2006).
    [CrossRef]
  36. P. D. Rasmussen, J. Laegsgaard, and O. Bang, "Degenerate four wave mixing in solid core photonic bandgap fibers," Opt. Express 16, 4059-4068 (2008).
    [CrossRef] [PubMed]
  37. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
    [CrossRef]
  38. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Supercontinumm generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers," J. Opt. Soc. Am. B 19, 753-764 (2002),
    [CrossRef]
  39. M. H. Frosz, O. Bang, and A. Bjarklev, "Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation," Opt. Express 14, 9391-9407 (2006).
    [CrossRef] [PubMed]

2008 (5)

2007 (1)

M. E. Bosch, A. J. R. Snchez, F. S. Rojas, and C. B. Ojeda, "Recent development in optical fiber biosensors," Sensors 70, 797-859 (2007).
[CrossRef]

2006 (7)

L. Rindorf, P. E. Hoiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, "Towards biochips using microstructured optical fiber sensors," Anal. Bioanal. Chem. 385, 1370-1375 (2006).
[CrossRef] [PubMed]

Q2. M. C. J. Large, A. Argyros, F. Cox, M. A. van Eijkelenborg, S. Ponrathnam, N. S. Pujari,I. M. Bassett, R. Lwin, and G. W. Barton, "Microstructured polymer optical fibres: New opportunities and challenges," Mol. Cryst. Liq. Cryst. 446, 219-231 (2006).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

F. M. Cox, A. Argyros, and M. C. J. Large, "Liquid-filled hollow core microstructured polymer optical fiber," Opt. Express 14, 4135-4140 (2006).
[CrossRef] [PubMed]

M. H. Frosz, T. Sørensen, and O. Bang, "Nano-engineering of a photonic crystal fiber for supercontinuum spectral shaping," J. Opt. Soc. Am. B 23, 1692-1699 (2006).
[CrossRef]

L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Hoiby, and O. Bang, "Photonic crystal fiber long-period gratings for biochemical sensing," Opt. Express 14, 8224-8231 (2006).
[CrossRef] [PubMed]

M. H. Frosz, O. Bang, and A. Bjarklev, "Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation," Opt. Express 14, 9391-9407 (2006).
[CrossRef] [PubMed]

2005 (2)

2004 (5)

J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, "Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions," Opt. Lett. 29, 1974-1976 (2004).
[CrossRef] [PubMed]

J. M. Fini, "Microstructure fibres for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004).
[CrossRef]

T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen. H. Sorensen, T. P. Hansen, and H. R. Simonsen, "Gas sensing using air-guiding photonic crystal fibers," Opt. Express 17, 4080-4087 (2004).
[CrossRef]

J.-F. Masson, K. Hamersky, S. Beaudoin, and K. S. Booksh, "In vitro biochemical monitoring with fiber optics surface plasmon resonance sensors," Proc. SPIE 5261, 123 (2004).
[CrossRef]

D. A. Markov, K. Swinney, and D. J. Bornhop, "Label-free molecular interaction determinations with nanoscale interferometry," J. Am. Chem. Soc. 126, 16659 (2004).
[CrossRef] [PubMed]

2003 (3)

2002 (2)

2001 (4)

J. E. Sharping, M. Fiorentino, A. Coker, P. Kumar, and R. S. Windeler, "Four-wave mixing in microstructure fiber," Opt. Lett. 26, 1048 (2001).
[CrossRef]

M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. Martijn de Sterke, and N. A. P. Nicorovici, "Microstructured polymer optical fibre," Opt. Express 9, 319-327 (2001).
[CrossRef] [PubMed]

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibers," Meas. Sci. Technol. 12, 1854 (2001).
[CrossRef]

J.-J. Gau, E. H. Lan, B. Dunn, C.-M. Ho, and J. C. S. Woo, "A MEMS based amperometric detector for E. Coli bacteria using self-assembled monolayers," Biosens. Bioelectron. 16, 745-755 (2001).
[CrossRef] [PubMed]

2000 (1)

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, "Chalcogenite holey fibres," Electron. Lett. 36, 1998-2000 (2000).
[CrossRef]

1999 (2)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic bandgap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

T. M. Monro, D. J. Richardson, and P. J. Bennett, "Developing holey fibres for evanescent field devices," Electron. Lett. 35, 1188 (1999).
[CrossRef]

1980 (1)

A. Hasegawa and W. F. Brinkman, "Tunable coherent IR and FIR sources utilizing modulational instability," IEEE J. Quantum. Electron. QE-16, 694-697 (1980).
[CrossRef]

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic bandgap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Argyros, A.

Baggett, J. C.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibers," Meas. Sci. Technol. 12, 1854 (2001).
[CrossRef]

Bang, O.

L. Rindorf and O. Bang, "Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing," J. Opt. Soc. Am. B 25, 310-324 (2008).
[CrossRef]

L. Rindorf and O. Bang, "Highly sensitive refractometer with a photonic-crystal-fiber long-period grating," Opt. Lett. 33, 563-565 (2008).
[CrossRef] [PubMed]

P. D. Rasmussen, J. Laegsgaard, and O. Bang, "Degenerate four wave mixing in solid core photonic bandgap fibers," Opt. Express 16, 4059-4068 (2008).
[CrossRef] [PubMed]

P. M. Moselund, M. Frosz, C. Thomsen, and O. Bang, "Backseeding modulational instability and supercontinuum generation," Opt. Express 16, 11954-11968 (2008).
[CrossRef] [PubMed]

M. H. Frosz, O. Bang, and A. Bjarklev, "Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation," Opt. Express 14, 9391-9407 (2006).
[CrossRef] [PubMed]

L. Rindorf, P. E. Hoiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, "Towards biochips using microstructured optical fiber sensors," Anal. Bioanal. Chem. 385, 1370-1375 (2006).
[CrossRef] [PubMed]

M. H. Frosz, T. Sørensen, and O. Bang, "Nano-engineering of a photonic crystal fiber for supercontinuum spectral shaping," J. Opt. Soc. Am. B 23, 1692-1699 (2006).
[CrossRef]

L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Hoiby, and O. Bang, "Photonic crystal fiber long-period gratings for biochemical sensing," Opt. Express 14, 8224-8231 (2006).
[CrossRef] [PubMed]

J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, "Selective detection of antibodies in microstructured polymer optical fibers," Opt. Express 13, 5883-5889 (2005).
[CrossRef] [PubMed]

N. I. Nikolov, T. Sørensen, O. Bang, and A. Bjarklev, "Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing," J. Opt. Soc. Am. B 20, 2329-2337 (2003).
[CrossRef]

Barton, G. W.

Q2. M. C. J. Large, A. Argyros, F. Cox, M. A. van Eijkelenborg, S. Ponrathnam, N. S. Pujari,I. M. Bassett, R. Lwin, and G. W. Barton, "Microstructured polymer optical fibres: New opportunities and challenges," Mol. Cryst. Liq. Cryst. 446, 219-231 (2006).
[CrossRef]

Bassett, I.

Bassett, I. M.

Q2. M. C. J. Large, A. Argyros, F. Cox, M. A. van Eijkelenborg, S. Ponrathnam, N. S. Pujari,I. M. Bassett, R. Lwin, and G. W. Barton, "Microstructured polymer optical fibres: New opportunities and challenges," Mol. Cryst. Liq. Cryst. 446, 219-231 (2006).
[CrossRef]

Beaudoin, S.

J.-F. Masson, K. Hamersky, S. Beaudoin, and K. S. Booksh, "In vitro biochemical monitoring with fiber optics surface plasmon resonance sensors," Proc. SPIE 5261, 123 (2004).
[CrossRef]

Belardi, W.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibers," Meas. Sci. Technol. 12, 1854 (2001).
[CrossRef]

Bennett, P. J.

T. M. Monro, D. J. Richardson, and P. J. Bennett, "Developing holey fibres for evanescent field devices," Electron. Lett. 35, 1188 (1999).
[CrossRef]

Berlin, A. A.

Birks, T. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic bandgap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Bjarklev, A.

Booksh, K. S.

J.-F. Masson, K. Hamersky, S. Beaudoin, and K. S. Booksh, "In vitro biochemical monitoring with fiber optics surface plasmon resonance sensors," Proc. SPIE 5261, 123 (2004).
[CrossRef]

Bornhop, D. J.

D. A. Markov, K. Swinney, and D. J. Bornhop, "Label-free molecular interaction determinations with nanoscale interferometry," J. Am. Chem. Soc. 126, 16659 (2004).
[CrossRef] [PubMed]

Bosch, M. E.

M. E. Bosch, A. J. R. Snchez, F. S. Rojas, and C. B. Ojeda, "Recent development in optical fiber biosensors," Sensors 70, 797-859 (2007).
[CrossRef]

Brinkman, W. F.

A. Hasegawa and W. F. Brinkman, "Tunable coherent IR and FIR sources utilizing modulational instability," IEEE J. Quantum. Electron. QE-16, 694-697 (1980).
[CrossRef]

Broderick, N. G. R.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibers," Meas. Sci. Technol. 12, 1854 (2001).
[CrossRef]

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, "Chalcogenite holey fibres," Electron. Lett. 36, 1998-2000 (2000).
[CrossRef]

Carlsen, A.

Chan, S.

Chau, A. H. L.

Coen, S.

Coker, A.

Cox, F.

Q2. M. C. J. Large, A. Argyros, F. Cox, M. A. van Eijkelenborg, S. Ponrathnam, N. S. Pujari,I. M. Bassett, R. Lwin, and G. W. Barton, "Microstructured polymer optical fibres: New opportunities and challenges," Mol. Cryst. Liq. Cryst. 446, 219-231 (2006).
[CrossRef]

Cox, F. M.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic bandgap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Dufva, M.

Dunn, B.

J.-J. Gau, E. H. Lan, B. Dunn, C.-M. Ho, and J. C. S. Woo, "A MEMS based amperometric detector for E. Coli bacteria using self-assembled monolayers," Biosens. Bioelectron. 16, 745-755 (2001).
[CrossRef] [PubMed]

Emiliyanov, G.

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, "Sensitive optical biosensors for unlabeled targets: A review," Anal. Chimica Acta 620, 8-26 (2008).
[CrossRef]

Fini, J. M.

J. M. Fini, "Microstructure fibres for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004).
[CrossRef]

Fiorentino, M.

Fleming, S.

Folkenberg, J. R.

Frosz, M.

Frosz, M. H.

Furusawa, K.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibers," Meas. Sci. Technol. 12, 1854 (2001).
[CrossRef]

Gau, J.-J.

J.-J. Gau, E. H. Lan, B. Dunn, C.-M. Ho, and J. C. S. Woo, "A MEMS based amperometric detector for E. Coli bacteria using self-assembled monolayers," Biosens. Bioelectron. 16, 745-755 (2001).
[CrossRef] [PubMed]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Geschke, O.

L. Rindorf, P. E. Hoiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, "Towards biochips using microstructured optical fiber sensors," Anal. Bioanal. Chem. 385, 1370-1375 (2006).
[CrossRef] [PubMed]

Hamersky, K.

J.-F. Masson, K. Hamersky, S. Beaudoin, and K. S. Booksh, "In vitro biochemical monitoring with fiber optics surface plasmon resonance sensors," Proc. SPIE 5261, 123 (2004).
[CrossRef]

Hansen, T. P.

Harvey, J. D.

Hasegawa, A.

A. Hasegawa and W. F. Brinkman, "Tunable coherent IR and FIR sources utilizing modulational instability," IEEE J. Quantum. Electron. QE-16, 694-697 (1980).
[CrossRef]

Hewak, D. W.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, "Chalcogenite holey fibres," Electron. Lett. 36, 1998-2000 (2000).
[CrossRef]

Ho, C.-M.

J.-J. Gau, E. H. Lan, B. Dunn, C.-M. Ho, and J. C. S. Woo, "A MEMS based amperometric detector for E. Coli bacteria using self-assembled monolayers," Biosens. Bioelectron. 16, 745-755 (2001).
[CrossRef] [PubMed]

Hoiby, P. E.

Issa, N. A.

Jensen, J. B.

Knight, J. C.

Koo, T.-W

Kumar, P.

Laegsgaard, J.

Lan, E. H.

J.-J. Gau, E. H. Lan, B. Dunn, C.-M. Ho, and J. C. S. Woo, "A MEMS based amperometric detector for E. Coli bacteria using self-assembled monolayers," Biosens. Bioelectron. 16, 745-755 (2001).
[CrossRef] [PubMed]

Large, M. C. J.

Leonhardt, R.

Ludvigsen, H.

T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen. H. Sorensen, T. P. Hansen, and H. R. Simonsen, "Gas sensing using air-guiding photonic crystal fibers," Opt. Express 17, 4080-4087 (2004).
[CrossRef]

Lwin, R.

Q2. M. C. J. Large, A. Argyros, F. Cox, M. A. van Eijkelenborg, S. Ponrathnam, N. S. Pujari,I. M. Bassett, R. Lwin, and G. W. Barton, "Microstructured polymer optical fibres: New opportunities and challenges," Mol. Cryst. Liq. Cryst. 446, 219-231 (2006).
[CrossRef]

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic bandgap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Manos, S.

Markov, D. A.

D. A. Markov, K. Swinney, and D. J. Bornhop, "Label-free molecular interaction determinations with nanoscale interferometry," J. Am. Chem. Soc. 126, 16659 (2004).
[CrossRef] [PubMed]

Martijn de Sterke, C.

Masson, J.-F.

J.-F. Masson, K. Hamersky, S. Beaudoin, and K. S. Booksh, "In vitro biochemical monitoring with fiber optics surface plasmon resonance sensors," Proc. SPIE 5261, 123 (2004).
[CrossRef]

McPhedran, R. C.

Monro, T. M.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibers," Meas. Sci. Technol. 12, 1854 (2001).
[CrossRef]

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, "Chalcogenite holey fibres," Electron. Lett. 36, 1998-2000 (2000).
[CrossRef]

T. M. Monro, D. J. Richardson, and P. J. Bennett, "Developing holey fibres for evanescent field devices," Electron. Lett. 35, 1188 (1999).
[CrossRef]

Moselund, P. M.

Nicorovici, N. A. P.

Nielsen, K.

Nielsen, L. B.

Nikolov, N. I.

Noordegraaf, D.

Ojeda, C. B.

M. E. Bosch, A. J. R. Snchez, F. S. Rojas, and C. B. Ojeda, "Recent development in optical fiber biosensors," Sensors 70, 797-859 (2007).
[CrossRef]

Pedersen, L. H.

Petersen, J. C.

T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen. H. Sorensen, T. P. Hansen, and H. R. Simonsen, "Gas sensing using air-guiding photonic crystal fibers," Opt. Express 17, 4080-4087 (2004).
[CrossRef]

Ponrathnam, S.

Q2. M. C. J. Large, A. Argyros, F. Cox, M. A. van Eijkelenborg, S. Ponrathnam, N. S. Pujari,I. M. Bassett, R. Lwin, and G. W. Barton, "Microstructured polymer optical fibres: New opportunities and challenges," Mol. Cryst. Liq. Cryst. 446, 219-231 (2006).
[CrossRef]

Pujari, N. S.

Q2. M. C. J. Large, A. Argyros, F. Cox, M. A. van Eijkelenborg, S. Ponrathnam, N. S. Pujari,I. M. Bassett, R. Lwin, and G. W. Barton, "Microstructured polymer optical fibres: New opportunities and challenges," Mol. Cryst. Liq. Cryst. 446, 219-231 (2006).
[CrossRef]

Rasmussen, P. D.

Richardson, D. J.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibers," Meas. Sci. Technol. 12, 1854 (2001).
[CrossRef]

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, "Chalcogenite holey fibres," Electron. Lett. 36, 1998-2000 (2000).
[CrossRef]

T. M. Monro, D. J. Richardson, and P. J. Bennett, "Developing holey fibres for evanescent field devices," Electron. Lett. 35, 1188 (1999).
[CrossRef]

Riishede, J.

Rindorf, L.

Ritari, T.

T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen. H. Sorensen, T. P. Hansen, and H. R. Simonsen, "Gas sensing using air-guiding photonic crystal fibers," Opt. Express 17, 4080-4087 (2004).
[CrossRef]

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic bandgap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Rojas, F. S.

M. E. Bosch, A. J. R. Snchez, F. S. Rojas, and C. B. Ojeda, "Recent development in optical fiber biosensors," Sensors 70, 797-859 (2007).
[CrossRef]

Russell, P. St. J

P. St. J Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Russell, P. St. J.

Sharping, J. E.

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, "Sensitive optical biosensors for unlabeled targets: A review," Anal. Chimica Acta 620, 8-26 (2008).
[CrossRef]

Snchez, A. J. R.

M. E. Bosch, A. J. R. Snchez, F. S. Rojas, and C. B. Ojeda, "Recent development in optical fiber biosensors," Sensors 70, 797-859 (2007).
[CrossRef]

Sørensen, T.

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, "Sensitive optical biosensors for unlabeled targets: A review," Anal. Chimica Acta 620, 8-26 (2008).
[CrossRef]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, "Sensitive optical biosensors for unlabeled targets: A review," Anal. Chimica Acta 620, 8-26 (2008).
[CrossRef]

Swinney, K.

D. A. Markov, K. Swinney, and D. J. Bornhop, "Label-free molecular interaction determinations with nanoscale interferometry," J. Am. Chem. Soc. 126, 16659 (2004).
[CrossRef] [PubMed]

Thomsen, C.

Tuominen, J.

T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen. H. Sorensen, T. P. Hansen, and H. R. Simonsen, "Gas sensing using air-guiding photonic crystal fibers," Opt. Express 17, 4080-4087 (2004).
[CrossRef]

van Eijkelenborg, M. A.

Q2. M. C. J. Large, A. Argyros, F. Cox, M. A. van Eijkelenborg, S. Ponrathnam, N. S. Pujari,I. M. Bassett, R. Lwin, and G. W. Barton, "Microstructured polymer optical fibres: New opportunities and challenges," Mol. Cryst. Liq. Cryst. 446, 219-231 (2006).
[CrossRef]

M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. Martijn de Sterke, and N. A. P. Nicorovici, "Microstructured polymer optical fibre," Opt. Express 9, 319-327 (2001).
[CrossRef] [PubMed]

Wadsworth, W. J.

West, Y. D.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, "Chalcogenite holey fibres," Electron. Lett. 36, 1998-2000 (2000).
[CrossRef]

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, "Sensitive optical biosensors for unlabeled targets: A review," Anal. Chimica Acta 620, 8-26 (2008).
[CrossRef]

Windeler, R. S.

Wong, G. K. L.

Woo, J. C. S.

J.-J. Gau, E. H. Lan, B. Dunn, C.-M. Ho, and J. C. S. Woo, "A MEMS based amperometric detector for E. Coli bacteria using self-assembled monolayers," Biosens. Bioelectron. 16, 745-755 (2001).
[CrossRef] [PubMed]

Zagari, J.

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, "Sensitive optical biosensors for unlabeled targets: A review," Anal. Chimica Acta 620, 8-26 (2008).
[CrossRef]

Anal. Bioanal. Chem. (1)

L. Rindorf, P. E. Hoiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, "Towards biochips using microstructured optical fiber sensors," Anal. Bioanal. Chem. 385, 1370-1375 (2006).
[CrossRef] [PubMed]

Anal. Chimica Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, "Sensitive optical biosensors for unlabeled targets: A review," Anal. Chimica Acta 620, 8-26 (2008).
[CrossRef]

Biosens. Bioelectron. (1)

J.-J. Gau, E. H. Lan, B. Dunn, C.-M. Ho, and J. C. S. Woo, "A MEMS based amperometric detector for E. Coli bacteria using self-assembled monolayers," Biosens. Bioelectron. 16, 745-755 (2001).
[CrossRef] [PubMed]

Electron. Lett. (2)

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, "Chalcogenite holey fibres," Electron. Lett. 36, 1998-2000 (2000).
[CrossRef]

T. M. Monro, D. J. Richardson, and P. J. Bennett, "Developing holey fibres for evanescent field devices," Electron. Lett. 35, 1188 (1999).
[CrossRef]

IEEE J. Quantum. Electron. (1)

A. Hasegawa and W. F. Brinkman, "Tunable coherent IR and FIR sources utilizing modulational instability," IEEE J. Quantum. Electron. QE-16, 694-697 (1980).
[CrossRef]

J. Am. Chem. Soc. (1)

D. A. Markov, K. Swinney, and D. J. Bornhop, "Label-free molecular interaction determinations with nanoscale interferometry," J. Am. Chem. Soc. 126, 16659 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (4)

Meas. Sci. Technol. (2)

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibers," Meas. Sci. Technol. 12, 1854 (2001).
[CrossRef]

J. M. Fini, "Microstructure fibres for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

Q2. M. C. J. Large, A. Argyros, F. Cox, M. A. van Eijkelenborg, S. Ponrathnam, N. S. Pujari,I. M. Bassett, R. Lwin, and G. W. Barton, "Microstructured polymer optical fibres: New opportunities and challenges," Mol. Cryst. Liq. Cryst. 446, 219-231 (2006).
[CrossRef]

Opt. Express (8)

J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, "Selective detection of antibodies in microstructured polymer optical fibers," Opt. Express 13, 5883-5889 (2005).
[CrossRef] [PubMed]

F. M. Cox, A. Argyros, and M. C. J. Large, "Liquid-filled hollow core microstructured polymer optical fiber," Opt. Express 14, 4135-4140 (2006).
[CrossRef] [PubMed]

P. D. Rasmussen, J. Laegsgaard, and O. Bang, "Degenerate four wave mixing in solid core photonic bandgap fibers," Opt. Express 16, 4059-4068 (2008).
[CrossRef] [PubMed]

L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Hoiby, and O. Bang, "Photonic crystal fiber long-period gratings for biochemical sensing," Opt. Express 14, 8224-8231 (2006).
[CrossRef] [PubMed]

M. H. Frosz, O. Bang, and A. Bjarklev, "Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation," Opt. Express 14, 9391-9407 (2006).
[CrossRef] [PubMed]

T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen. H. Sorensen, T. P. Hansen, and H. R. Simonsen, "Gas sensing using air-guiding photonic crystal fibers," Opt. Express 17, 4080-4087 (2004).
[CrossRef]

M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. Martijn de Sterke, and N. A. P. Nicorovici, "Microstructured polymer optical fibre," Opt. Express 9, 319-327 (2001).
[CrossRef] [PubMed]

P. M. Moselund, M. Frosz, C. Thomsen, and O. Bang, "Backseeding modulational instability and supercontinuum generation," Opt. Express 16, 11954-11968 (2008).
[CrossRef] [PubMed]

Opt. Lett. (6)

Proc. SPIE (1)

J.-F. Masson, K. Hamersky, S. Beaudoin, and K. S. Booksh, "In vitro biochemical monitoring with fiber optics surface plasmon resonance sensors," Proc. SPIE 5261, 123 (2004).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Science (2)

P. St. J Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic bandgap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Sensors (1)

M. E. Bosch, A. J. R. Snchez, F. S. Rojas, and C. B. Ojeda, "Recent development in optical fiber biosensors," Sensors 70, 797-859 (2007).
[CrossRef]

Other (6)

Company web site http://www.resrchintl.com/raptor-detection-system.html

G. P. Agrawal, Nonlinear Fiber Optics, 4th edn. (Burlington, MA, USA, 2007).

F. Kajzar, "Third Harmonic Generation," Chapter 10 in Characterization Techniques and Tabulations for Organic Nonlinear Optical materials," M. G. Kuzyk, C. W. Dirk, eds., (Marcel Dekker, Inc., New York 1998).

IAPWS 5C: "Release on refractive index of ordinary substance as a function of wavelength, temperature and pressure" (September 1997) published by International Association of the Properties of Water and Steam (IAPWS). In this work a temperature of T = 293.15K and a density of water of ρ = 1000kg·m−3 has been used.

Comsol Multiphysics finite element package, http://www.comsol.com.

G. Emiliyanov, J. B. Jensen, O. Bang, A. Bjarklev, P. E. Hoiby, L. H. Pedersen, E. Kjaer, and L. Lindvold, "Localized biosensing with Topas microstructured polymer optical fiber," Opt. Lett. 32, 460 (2007); erratum ibid, 1059 (2007)
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Left: Triangular MOF with pitch, Λ, and hole diameter, d. Right: Hole with sensor layer of thickness t cap having captured a layer of biomolecules of thickness t bio. In this work t cap=40nm and t bio=5nm. Both layers are assumed to have a refractive index of n=1.45 and no material dispersion.

Fig. 2.
Fig. 2.

Material dispersion of silica with ZDW at 1272.7nm (solid) and water with ZDW at 1000.2nm (dashed). The dispersion at 1064nm is -27.4ps/(nm·km) for silica and 17.2ps/(nm·km) for water.

Fig. 3.
Fig. 3.

Dispersion of the HNL fiber with pitch Λ=3.45µm and hole size d=1.7µm (blue solid), the HNL fiber with a 40nm sensor layer (red dashed), and the HNL fiber with a 40nm sensor and a 5nm antibody layer (black dash-dotted). Left: Dispersion with air in the holes. Right: Dispersion with water in the holes.

Fig. 4.
Fig. 4.

Gain spectra of the HNL fiber with pitch Λ=3.45µm and hole size d=1.7µm, pumped at λ=1064nm with peak power P 0=500W. Clean HNL fiber (blue solid), HNL fiber with a 40nm sensor layer (red dashed), and HNL fiber with a 40nm sensor and a 5nm antibody layer (black dash-dotted). Left: gain spectrum with air in the holes. Right: gain spectrum with water in the holes and only the anti-Stokes band shown.

Fig. 5.
Fig. 5.

Stokes and anti-Stokes wavelengths vs. pump wavelength for the HNL fiber with peak power P 0=500W. Vertical lines mark the ZDW of the sensor, λcap, and the activated sensor, λbio. Solid (dashed) lines show the Stokes and anti-Stokes wavelengths of the sensor (activated sensor). The black dotted line indicates the pump wavelength. Blue (red) color indicates the Stokes (anti-Stokes) peak. Left: Air in the holes. Right: Water in the holes.

Fig. 6.
Fig. 6.

Wavelength shift vs. pump wavelength for the HNL fiber with peak power P 0=500W. The red dashed (blue solid) line shows the shift of the Stokes (anti-Stokes) peak. Vertical lines mark the ZDW of clean fiber, λz, the sensor, λcap, and the activated sensor, λbio. Left: Air in the holes. Right: Water in the holes.

Fig. 7.
Fig. 7.

Influence of peak pump power P 0 for the HNL fiber with air in the holes and pumping at λ0=1054nm. Left: Stokes and anti-Stokes wavelengths of sensor (solid blue) and activated sensor (dashed red). Middle: shift of Stokes (dashed red) and anti-Stokes (solid blue) wavelengths. Right: maximum gain of sensor (solid blue) and activated sensor (dashed red).

Fig. 8.
Fig. 8.

Hole diameter, d, and pitch, Λ, for which a triangular silica MOF has ZDWat λ0=1064nm. The solid red (blue) curve indicates the parameters with air (water) in the holes. Fibers with parameters above (below) this curve have ZDW above (below) λ0=1064nm. The solid straight line indicates the boundary d=Λ, below which the parameters are not physical. The dashed straight going through the HNL parameters indicates a scaling down of the commercial LMA-15 fiber (both indicated with a circle).

Fig. 9.
Fig. 9.

Sensor parameters vs. hole diameter d for optimized air-configuration when pumping at 1064nm with power P 0=500W. (a) Effective area of the sensor (b) Maximum gain of the sensor; (c) anti-Stokes (blue) and Stokes (red) wavelengths for sensor (solid) and activated sensor (dashed); (d) Shift of the anti-Stokes (blue) and Stokes (red) wavelengths.

Fig. 10.
Fig. 10.

Sensor parameters vs. hole diameter d for optimized air-configuration when pumping at 1064nm with power P 0=500W. (a) Effective area of the sensor (b) Maximum gain of the sensor; (c) anti-Stokes (blue) and Stokes (red) wavelengths for sensor (solid) and activated sensor (dashed); (d) Shift of the anti-Stokes (blue) and Stokes (red) wavelengths.

Fig. 11.
Fig. 11.

Evolution of the power spectral density, S(z,λ), in a MOF with hole size d=1.75µm and Λ=2.56µm (optimum in water configuration), pumped at 1064nm with 7ps intensity FWHM pulses with 500W peak power at a repetition rate of 80MHz. S(z,λ) at different propagations lengths for the sensor (a) and the activated sensor (b). (c) S(z,λ) after z=50cm for the sensor (blue) and the activated sensor (red). Vertical lines are MI predictions.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

g ( Ω ) = ( γ P 0 ) 2 ( κ 2 ) 2 , κ = 2 γ P 0 + Δ β
Δ β = m = 1 β 2 m ( 2 m ) ! Ω 2 m , β m = m β ω m ω = ω 0 ,
i A z + m = 2 i m β m m ! m A T m + γ A 2 A = 0 .
A ( 0 , t ) = P 0 exp ( t 2 2 T 0 2 )
λ min λ max S ( z , λ ) d λ = P av S ( z , λ ) = c f rep λ 2 A ˜ ( z , v ) 2 ,

Metrics