Abstract

A novel frequency tuning scheme for terahertz-wave parametric oscillators (TPOs) is proposed. We demonstrate that the generation of the tunable terahertz wave can be realized by continuously varying the incident pump wavelength at a fixed angle of incidence of pump relative to the TPO resonator axis, based on the variation of noncollinear phase-matching conditions between the pump and Stokes/THz waves in the process of simulated polariton scattering. Combined with the angle-tuning method, this potential pump-wavelength tuning technique can further extend the TPO tuning range, especially in low-frequency THz region. However, the stability of the output direction of THz waves from the Si prism under this tuning method has yet to be further improved. The characteristics of THz-wave parametric gain involved in this frequency tuning scheme are also studied.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. H. Siegel, "Terahertz technology," IEEE Trans. Microwave Theory Tech. 50, 910-928 (2002).
    [CrossRef]
  2. H. Auston, K. P. Cheung, and P. R. Smith, "Picosecond photoconducting Hertzian dipoles," Appl. Phys. Lett. 45, 284-286 (1984).
    [CrossRef]
  3. X. C. Zhang, B. B. Hu, J. T. Darrow and D. H. Auston, "Generation of femtosecond electromagnetic pulses from semiconductor surfaces," Appl. Phys. Lett. 56, 1011-1013 (1990).
    [CrossRef]
  4. K. Imai, K. Kawase, J. Shikata, K. Minamide, and H. Ito, "Injection-seeded terahertz-wave parametric oscillator," Appl. Phys. Lett. 78, 1026-1028 (2001).
    [CrossRef]
  5. J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, "Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO: LiNbO3 crystals," IEEE Trans. Microwave Theory Tech. 48, 653-661 (2000).
    [CrossRef]
  6. K. Kawase, J. Shikata, and H. Ito, "Terahertz wave parametric source," J. Phys. D: Appl. Phys. 34, R1-R14 (2001).
  7. J. Shikata, K. Kawase, M. Sato, T. Taniuchi, and H. Ito, "Characteristics of coherent terahertz wave generation from LiNbO3 optical parametric oscillator," Electronics and Communications in Japan, Part 2 82, 267-273 (1998).
  8. S. Hayashi, H. Minamide, T. Ikari, Y. Ogawa, J. Shikata, H. Ito, C. Otani, and K. Kawase, "Output power enhancement of a palmtop terahertz-wave parametric generator," Appl. Opt. 46, 117-123 (2007).
    [CrossRef]
  9. R. X. Guo, K. Akiyama, and H. Minamide, "Frequency-agile terahertz-wave spectrometer for high-resolution gas sensing," Appl. Phys. Lett. 90, 121127-1-121127-3 (2007).
    [CrossRef]
  10. M. Yamashita, Y. Ogawa, C. Otani, and K. Kawase, "Terahertz parametric sources and imaging applications," Proc. SPIE 6050, 60500J-1-60500J-9 (2006).
  11. T. J. Edwards, D. Walsh, M. B. Spurr, C. F. Rae, and M. H. Dunn, "Compact source of continuously and widely-tunable terahertz radiation," Opt. Express 14, 1582-1589 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-4-1582.
    [CrossRef] [PubMed]
  12. H. E. Puthoff, R. H. Pantell, B. G. Huth, and M. A. Chacon, "Near-forward Raman scattering in LiNbO3," J. Appl. Phys. 39, 2144-2146 (1968).
    [CrossRef]
  13. U. T. Schwarz and M. Maier, "Damping mechanisms of phonon polaritons, exploited by stimulated Raman gain measurements," Phys. Rev. B 58, 766-775 (1998).
    [CrossRef]
  14. K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, "Arrayed silicon prism coupler for a terahertz-wave parametric oscillator," Appl. Opt. 40, 1423-1426 (2001).
    [CrossRef]
  15. G. J. Edwards and M. Lawrence, "A temperature-dependent dispersion equation for congruently grown lithium niobate," Opt. Quantum Electron. 16, 373-375 (1984).
    [CrossRef]

2007 (1)

2006 (1)

2002 (1)

P. H. Siegel, "Terahertz technology," IEEE Trans. Microwave Theory Tech. 50, 910-928 (2002).
[CrossRef]

2001 (3)

K. Imai, K. Kawase, J. Shikata, K. Minamide, and H. Ito, "Injection-seeded terahertz-wave parametric oscillator," Appl. Phys. Lett. 78, 1026-1028 (2001).
[CrossRef]

K. Kawase, J. Shikata, and H. Ito, "Terahertz wave parametric source," J. Phys. D: Appl. Phys. 34, R1-R14 (2001).

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, "Arrayed silicon prism coupler for a terahertz-wave parametric oscillator," Appl. Opt. 40, 1423-1426 (2001).
[CrossRef]

2000 (1)

J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, "Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO: LiNbO3 crystals," IEEE Trans. Microwave Theory Tech. 48, 653-661 (2000).
[CrossRef]

1998 (2)

J. Shikata, K. Kawase, M. Sato, T. Taniuchi, and H. Ito, "Characteristics of coherent terahertz wave generation from LiNbO3 optical parametric oscillator," Electronics and Communications in Japan, Part 2 82, 267-273 (1998).

U. T. Schwarz and M. Maier, "Damping mechanisms of phonon polaritons, exploited by stimulated Raman gain measurements," Phys. Rev. B 58, 766-775 (1998).
[CrossRef]

1990 (1)

X. C. Zhang, B. B. Hu, J. T. Darrow and D. H. Auston, "Generation of femtosecond electromagnetic pulses from semiconductor surfaces," Appl. Phys. Lett. 56, 1011-1013 (1990).
[CrossRef]

1984 (2)

G. J. Edwards and M. Lawrence, "A temperature-dependent dispersion equation for congruently grown lithium niobate," Opt. Quantum Electron. 16, 373-375 (1984).
[CrossRef]

H. Auston, K. P. Cheung, and P. R. Smith, "Picosecond photoconducting Hertzian dipoles," Appl. Phys. Lett. 45, 284-286 (1984).
[CrossRef]

1968 (1)

H. E. Puthoff, R. H. Pantell, B. G. Huth, and M. A. Chacon, "Near-forward Raman scattering in LiNbO3," J. Appl. Phys. 39, 2144-2146 (1968).
[CrossRef]

Auston, D. H.

X. C. Zhang, B. B. Hu, J. T. Darrow and D. H. Auston, "Generation of femtosecond electromagnetic pulses from semiconductor surfaces," Appl. Phys. Lett. 56, 1011-1013 (1990).
[CrossRef]

Auston, H.

H. Auston, K. P. Cheung, and P. R. Smith, "Picosecond photoconducting Hertzian dipoles," Appl. Phys. Lett. 45, 284-286 (1984).
[CrossRef]

Chacon, M. A.

H. E. Puthoff, R. H. Pantell, B. G. Huth, and M. A. Chacon, "Near-forward Raman scattering in LiNbO3," J. Appl. Phys. 39, 2144-2146 (1968).
[CrossRef]

Cheung, K. P.

H. Auston, K. P. Cheung, and P. R. Smith, "Picosecond photoconducting Hertzian dipoles," Appl. Phys. Lett. 45, 284-286 (1984).
[CrossRef]

Darrow, J. T.

X. C. Zhang, B. B. Hu, J. T. Darrow and D. H. Auston, "Generation of femtosecond electromagnetic pulses from semiconductor surfaces," Appl. Phys. Lett. 56, 1011-1013 (1990).
[CrossRef]

Dunn, M. H.

Edwards, G. J.

G. J. Edwards and M. Lawrence, "A temperature-dependent dispersion equation for congruently grown lithium niobate," Opt. Quantum Electron. 16, 373-375 (1984).
[CrossRef]

Edwards, T. J.

Hayashi, S.

Hu, B. B.

X. C. Zhang, B. B. Hu, J. T. Darrow and D. H. Auston, "Generation of femtosecond electromagnetic pulses from semiconductor surfaces," Appl. Phys. Lett. 56, 1011-1013 (1990).
[CrossRef]

Huth, B. G.

H. E. Puthoff, R. H. Pantell, B. G. Huth, and M. A. Chacon, "Near-forward Raman scattering in LiNbO3," J. Appl. Phys. 39, 2144-2146 (1968).
[CrossRef]

Ikari, T.

Imai, K.

K. Imai, K. Kawase, J. Shikata, K. Minamide, and H. Ito, "Injection-seeded terahertz-wave parametric oscillator," Appl. Phys. Lett. 78, 1026-1028 (2001).
[CrossRef]

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, "Arrayed silicon prism coupler for a terahertz-wave parametric oscillator," Appl. Opt. 40, 1423-1426 (2001).
[CrossRef]

Ito, H.

S. Hayashi, H. Minamide, T. Ikari, Y. Ogawa, J. Shikata, H. Ito, C. Otani, and K. Kawase, "Output power enhancement of a palmtop terahertz-wave parametric generator," Appl. Opt. 46, 117-123 (2007).
[CrossRef]

K. Kawase, J. Shikata, and H. Ito, "Terahertz wave parametric source," J. Phys. D: Appl. Phys. 34, R1-R14 (2001).

K. Imai, K. Kawase, J. Shikata, K. Minamide, and H. Ito, "Injection-seeded terahertz-wave parametric oscillator," Appl. Phys. Lett. 78, 1026-1028 (2001).
[CrossRef]

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, "Arrayed silicon prism coupler for a terahertz-wave parametric oscillator," Appl. Opt. 40, 1423-1426 (2001).
[CrossRef]

J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, "Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO: LiNbO3 crystals," IEEE Trans. Microwave Theory Tech. 48, 653-661 (2000).
[CrossRef]

J. Shikata, K. Kawase, M. Sato, T. Taniuchi, and H. Ito, "Characteristics of coherent terahertz wave generation from LiNbO3 optical parametric oscillator," Electronics and Communications in Japan, Part 2 82, 267-273 (1998).

Karino, K.

J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, "Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO: LiNbO3 crystals," IEEE Trans. Microwave Theory Tech. 48, 653-661 (2000).
[CrossRef]

Kawase, K.

S. Hayashi, H. Minamide, T. Ikari, Y. Ogawa, J. Shikata, H. Ito, C. Otani, and K. Kawase, "Output power enhancement of a palmtop terahertz-wave parametric generator," Appl. Opt. 46, 117-123 (2007).
[CrossRef]

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, "Arrayed silicon prism coupler for a terahertz-wave parametric oscillator," Appl. Opt. 40, 1423-1426 (2001).
[CrossRef]

K. Imai, K. Kawase, J. Shikata, K. Minamide, and H. Ito, "Injection-seeded terahertz-wave parametric oscillator," Appl. Phys. Lett. 78, 1026-1028 (2001).
[CrossRef]

K. Kawase, J. Shikata, and H. Ito, "Terahertz wave parametric source," J. Phys. D: Appl. Phys. 34, R1-R14 (2001).

J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, "Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO: LiNbO3 crystals," IEEE Trans. Microwave Theory Tech. 48, 653-661 (2000).
[CrossRef]

J. Shikata, K. Kawase, M. Sato, T. Taniuchi, and H. Ito, "Characteristics of coherent terahertz wave generation from LiNbO3 optical parametric oscillator," Electronics and Communications in Japan, Part 2 82, 267-273 (1998).

Lawrence, M.

G. J. Edwards and M. Lawrence, "A temperature-dependent dispersion equation for congruently grown lithium niobate," Opt. Quantum Electron. 16, 373-375 (1984).
[CrossRef]

Maier, M.

U. T. Schwarz and M. Maier, "Damping mechanisms of phonon polaritons, exploited by stimulated Raman gain measurements," Phys. Rev. B 58, 766-775 (1998).
[CrossRef]

Minamide, H.

Minamide, K.

K. Imai, K. Kawase, J. Shikata, K. Minamide, and H. Ito, "Injection-seeded terahertz-wave parametric oscillator," Appl. Phys. Lett. 78, 1026-1028 (2001).
[CrossRef]

Ogawa, Y.

Otani, C.

Pantell, R. H.

H. E. Puthoff, R. H. Pantell, B. G. Huth, and M. A. Chacon, "Near-forward Raman scattering in LiNbO3," J. Appl. Phys. 39, 2144-2146 (1968).
[CrossRef]

Puthoff, H. E.

H. E. Puthoff, R. H. Pantell, B. G. Huth, and M. A. Chacon, "Near-forward Raman scattering in LiNbO3," J. Appl. Phys. 39, 2144-2146 (1968).
[CrossRef]

Rae, C. F.

Sato, M.

J. Shikata, K. Kawase, M. Sato, T. Taniuchi, and H. Ito, "Characteristics of coherent terahertz wave generation from LiNbO3 optical parametric oscillator," Electronics and Communications in Japan, Part 2 82, 267-273 (1998).

Schwarz, U. T.

U. T. Schwarz and M. Maier, "Damping mechanisms of phonon polaritons, exploited by stimulated Raman gain measurements," Phys. Rev. B 58, 766-775 (1998).
[CrossRef]

Shikata, J.

S. Hayashi, H. Minamide, T. Ikari, Y. Ogawa, J. Shikata, H. Ito, C. Otani, and K. Kawase, "Output power enhancement of a palmtop terahertz-wave parametric generator," Appl. Opt. 46, 117-123 (2007).
[CrossRef]

K. Kawase, J. Shikata, and H. Ito, "Terahertz wave parametric source," J. Phys. D: Appl. Phys. 34, R1-R14 (2001).

K. Imai, K. Kawase, J. Shikata, K. Minamide, and H. Ito, "Injection-seeded terahertz-wave parametric oscillator," Appl. Phys. Lett. 78, 1026-1028 (2001).
[CrossRef]

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, "Arrayed silicon prism coupler for a terahertz-wave parametric oscillator," Appl. Opt. 40, 1423-1426 (2001).
[CrossRef]

J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, "Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO: LiNbO3 crystals," IEEE Trans. Microwave Theory Tech. 48, 653-661 (2000).
[CrossRef]

J. Shikata, K. Kawase, M. Sato, T. Taniuchi, and H. Ito, "Characteristics of coherent terahertz wave generation from LiNbO3 optical parametric oscillator," Electronics and Communications in Japan, Part 2 82, 267-273 (1998).

Siegel, P. H.

P. H. Siegel, "Terahertz technology," IEEE Trans. Microwave Theory Tech. 50, 910-928 (2002).
[CrossRef]

Smith, P. R.

H. Auston, K. P. Cheung, and P. R. Smith, "Picosecond photoconducting Hertzian dipoles," Appl. Phys. Lett. 45, 284-286 (1984).
[CrossRef]

Spurr, M. B.

Taniuchi, T.

J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, "Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO: LiNbO3 crystals," IEEE Trans. Microwave Theory Tech. 48, 653-661 (2000).
[CrossRef]

J. Shikata, K. Kawase, M. Sato, T. Taniuchi, and H. Ito, "Characteristics of coherent terahertz wave generation from LiNbO3 optical parametric oscillator," Electronics and Communications in Japan, Part 2 82, 267-273 (1998).

Walsh, D.

Zhang, X. C.

X. C. Zhang, B. B. Hu, J. T. Darrow and D. H. Auston, "Generation of femtosecond electromagnetic pulses from semiconductor surfaces," Appl. Phys. Lett. 56, 1011-1013 (1990).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

H. Auston, K. P. Cheung, and P. R. Smith, "Picosecond photoconducting Hertzian dipoles," Appl. Phys. Lett. 45, 284-286 (1984).
[CrossRef]

X. C. Zhang, B. B. Hu, J. T. Darrow and D. H. Auston, "Generation of femtosecond electromagnetic pulses from semiconductor surfaces," Appl. Phys. Lett. 56, 1011-1013 (1990).
[CrossRef]

K. Imai, K. Kawase, J. Shikata, K. Minamide, and H. Ito, "Injection-seeded terahertz-wave parametric oscillator," Appl. Phys. Lett. 78, 1026-1028 (2001).
[CrossRef]

Electronics and Communications in Japan (1)

J. Shikata, K. Kawase, M. Sato, T. Taniuchi, and H. Ito, "Characteristics of coherent terahertz wave generation from LiNbO3 optical parametric oscillator," Electronics and Communications in Japan, Part 2 82, 267-273 (1998).

IEEE Trans. Microwave Theory Tech. (2)

P. H. Siegel, "Terahertz technology," IEEE Trans. Microwave Theory Tech. 50, 910-928 (2002).
[CrossRef]

J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, "Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO: LiNbO3 crystals," IEEE Trans. Microwave Theory Tech. 48, 653-661 (2000).
[CrossRef]

J. Appl. Phys. (1)

H. E. Puthoff, R. H. Pantell, B. G. Huth, and M. A. Chacon, "Near-forward Raman scattering in LiNbO3," J. Appl. Phys. 39, 2144-2146 (1968).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

K. Kawase, J. Shikata, and H. Ito, "Terahertz wave parametric source," J. Phys. D: Appl. Phys. 34, R1-R14 (2001).

Opt. Express (1)

Opt. Quantum Electron. (1)

G. J. Edwards and M. Lawrence, "A temperature-dependent dispersion equation for congruently grown lithium niobate," Opt. Quantum Electron. 16, 373-375 (1984).
[CrossRef]

Phys. Rev. B (1)

U. T. Schwarz and M. Maier, "Damping mechanisms of phonon polaritons, exploited by stimulated Raman gain measurements," Phys. Rev. B 58, 766-775 (1998).
[CrossRef]

Other (2)

R. X. Guo, K. Akiyama, and H. Minamide, "Frequency-agile terahertz-wave spectrometer for high-resolution gas sensing," Appl. Phys. Lett. 90, 121127-1-121127-3 (2007).
[CrossRef]

M. Yamashita, Y. Ogawa, C. Otani, and K. Kawase, "Terahertz parametric sources and imaging applications," Proc. SPIE 6050, 60500J-1-60500J-9 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of a typical angle-tuning TPO.

Fig. 2.
Fig. 2.

Dispersion curve of the 248 cm-1 A1-symmetry polariton mode in LiNbO3 (red one) with the phase-matching curves for the 1064 nm laser pump (blue ones), designated in terms of wave number.

Fig. 3.
Fig. 3.

Relation between the dispersion curve of the 248 cm-1 polariton mode in LiNbO3 and the phase-matching curves for the different pump wavelengths at a fixed phase-matching angle of 0.8°, designated in terms of wave number.

Fig. 4.
Fig. 4.

Pump wavelength dependence of THz output frequency at the different phase-matching angles.

Fig. 5.
Fig. 5.

THz-wave tuning range vs phase-matching angle under the pump wavelength of 0.71–1.5 µm.

Fig. 6.
Fig. 6.

Three-dimentional plot of the THz-wave gain coefficient as a function of the pump wavelength and fixed phase-matching angle at a pump intensity of 200 MW/cm2 based on the pump-wavelength tuning method.

Fig. 7.
Fig. 7.

Calculated radiation angle changes for THz-wave Si-prism coupler based on pumpwavelength tuning method: (a) pump wavelength dependence of the THz-wave radiation angle, (b) comparison with the angle-tuning method for the 1.064 µm laser pump.

Fig. 8.
Fig. 8.

Phase-matching angle as a function of incident pump wavelength at a fixed THz-wave output frequency of 1.5 THz.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

k Polariton 2 = ( ω 2 c 2 ) ε = 4 π 2 v 2 ε ( v )
ε ( v ) = ε + j S j v 0 j 2 v 0 j 2 v 2 i v Γ j
k T 2 = k p 2 + k s 2 2 k p k s cos θ
g T = α T 2 { [ 1 + 16 cos φ ( g 0 α T ) 2 ] 1 2 1 }
g 0 = π ω s ω T I p 2 c 3 n p n s n T ( d ' E + j S j ω 0 j 2 d ' Q j ω 0 j 2 ω T 2 )
α T = 2 Im k T
= 2 ω T c Im ( ε + j S j ω 0 j 2 ω 0 m j 2 ω T 2 i ω T Γ j + M ( ω T ) ) 1 2

Metrics