Abstract

We investigated low-hydrogen SiN films prepared by a low temperature (350 °C) PECVD method. The impact of SiH4/N2 flow ratio and radio frequency power on the hydrogen content in the SiN films was studied. In this work, we demonstrated a low-loss sub-micron SiN waveguide by using the corresponding optimal SiN films. The propagation loss was found to be as low as -2.1±0.2 dB/cm at 1550nm with waveguide cross-section of 700nm×400nm. The results suggest that the SiN films grown by PECVD with low hydrogen can be used in photonics integrated circuits for new generation communications applications.

©2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effect of precursors on propagation loss for plasma-enhanced chemical vapor deposition of SiNx:H waveguides

E. A. Douglas, Patrick Mahony, Andrew Starbuck, Andy Pomerene, Douglas C. Trotter, and Christopher T. DeRose
Opt. Mater. Express 6(9) 2892-2903 (2016)

Ultra-low temperature silicon nitride photonic integration platform

Zengkai Shao, Yujie Chen, Hui Chen, Yanfeng Zhang, Fangxing Zhang, Jian Jian, Zeming Fan, Lin Liu, Chunchuan Yang, Lidan Zhou, and Siyuan Yu
Opt. Express 24(3) 1865-1872 (2016)

Low-pressure chemical vapor deposition silicon–oxynitride films for integrated optics

W. Gleine and J. Müller
Appl. Opt. 31(12) 2036-2040 (1992)

References

  • View by:
  • |
  • |
  • |

  1. T. P. Ma, “Making silicon nitride film a viable gate dielectric,” IEEE. Trans. Electron. Devices 45, 680–690 (1998).
    [Crossref]
  2. C. R. Doerr, L. W. Stulz, R. Pafchek, K. Dreyer, and L. Zhang, “Potentially low-cost widely tunable laser consisting of a semiconductor optical amplifier connected directly to a silica waveguide grating router,” IEEE. Photon. Technol. Lett. 15, 1446–1448 (2003).
    [Crossref]
  3. R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layers for optical waveguide applications,” J. Electrochem. Soc. 147, 2237–41 (2000).
    [Crossref]
  4. O. P. Agnihotri, S. C. Jain, J. Poortmans, J. Szlufcik, G. Beaucarne, J. Nijs, and R. Mertens, “Advances in low temperature processing of silicon nitride based dielectrics and their applications in surface passivation and integrated optical devices,” Semicond. Sci. Technol. 15, 29–40 (2000).
    [Crossref]
  5. R. M. de Ridder, K. Worhoff, A. Driessen, P. V. Lambeck, and H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE. J. Sel. Top. Quantum. Electron. 4, 930–937 (1998).
    [Crossref]
  6. F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26, 33–46 (2004).
    [Crossref]
  7. F. L. Martinez, R. Ruiz-Merino, A. del Prado, E. San Andres, I. Martil, G. Gonzalez-Diaz, C. Jeynes, N. P. Barradas, L. Wang, and H. S. Reehal, “Bonding structure and hydrogen content in silicon nitride thin films deposited by the electron cyclotron resonance plasma method,” Thin Solid Films 459, 203–207 (2004).
    [Crossref]
  8. J. Yota, J. Hander, and A. A. Saleh, “A comparative study on inductively-coupled plasma high-density plasma, plasma-enhanced, and low pressure chemical vapor deposition silicon nitride films,” J. Vac. Sci. Technol. A 18, 372–6 (2000).
    [Crossref]
  9. K. N. Andersen, W. E. Svendsen, T. Stimpel-Lindner, T. Sulima, and H. Baumgartner, “Annealing and deposition effects of the chemical composition of silicon-rich nitride,” Appl. Surf. Sci. 243, 401–408 (2005).
    [Crossref]
  10. X. J. Liu, J. J. Zhang, X. W. Sun, Y. B. Pan, L. P. Huang, and C. Y. Jin, “Growth and properties of silicon nitride films prepared by low pressure chemical vapor deposition using trichlorosilane and ammonia,” Thin Solid Films 460, 72–77 (2004).
    [Crossref]
  11. H. F. W. Dekkers, G. Beaucarne, M. Hiller, H. Charifi, and A. Slaoui, “Molecular hydrogen formation in hydrogenated silicon nitride” Appl. Phys. Lett. 89, 211914 (2006).
    [Crossref]
  12. F. L. Martinez, A. del Prado, I. Martil, G. Gonzalez-Diaz, W. Bohne, W. Fuhs, J. Rohrich, B. Selle, and I. Sieber, “Molecular models and activation energies for bonding rearrangement in plasma-deposited a-SiNx:H dielectric thin films treated by rapid thermal annealing,” Phys. Rev. B (Condensed Matter and Materials Physics)  63, 245320–1 (2001).
    [Crossref]
  13. C. Boehme and G. Lucovsky,” Dissociation reactions of hydrogen in remote plasma-enhanced chemical vapor-deposition silicon nitride “J. Vac. Sci. Technol. A 19, 2622–2627 (2001).
    [Crossref]
  14. W. A. Lanford and M. J. Rand, “The hydrogen content of plasma-deposited silicon nitride,” J. Appl. Phys. 49, 2473–2477 (1978).
    [Crossref]
  15. M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86, 121111 (2005).
    [Crossref]
  16. H. T. Philipp, K. N. Andersen, W. Svendsen, and H. Ou, “Amorphous silicon rich silicon nitride optical waveguides for high density integrated optics,” Electron. Lett. 40, 419–421 (2004).
    [Crossref]
  17. T. Barwicz, M. A. Popovic, P. T. Rakich, M. R. Watts, H. A. Haus, E. P. Ippen, and H. I. Smith, “Microring-resonator-based add-drop filters in SiN: Fabrication and analysis,” Opt. Express 12, 1437–1442 (2004).
    [Crossref] [PubMed]
  18. N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si 3N4 waveguides,” Mat. Sci. Semicon. Proc. 7, 453–458 (2004).
    [Crossref]

2006 (1)

H. F. W. Dekkers, G. Beaucarne, M. Hiller, H. Charifi, and A. Slaoui, “Molecular hydrogen formation in hydrogenated silicon nitride” Appl. Phys. Lett. 89, 211914 (2006).
[Crossref]

2005 (2)

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86, 121111 (2005).
[Crossref]

K. N. Andersen, W. E. Svendsen, T. Stimpel-Lindner, T. Sulima, and H. Baumgartner, “Annealing and deposition effects of the chemical composition of silicon-rich nitride,” Appl. Surf. Sci. 243, 401–408 (2005).
[Crossref]

2004 (6)

X. J. Liu, J. J. Zhang, X. W. Sun, Y. B. Pan, L. P. Huang, and C. Y. Jin, “Growth and properties of silicon nitride films prepared by low pressure chemical vapor deposition using trichlorosilane and ammonia,” Thin Solid Films 460, 72–77 (2004).
[Crossref]

F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26, 33–46 (2004).
[Crossref]

F. L. Martinez, R. Ruiz-Merino, A. del Prado, E. San Andres, I. Martil, G. Gonzalez-Diaz, C. Jeynes, N. P. Barradas, L. Wang, and H. S. Reehal, “Bonding structure and hydrogen content in silicon nitride thin films deposited by the electron cyclotron resonance plasma method,” Thin Solid Films 459, 203–207 (2004).
[Crossref]

H. T. Philipp, K. N. Andersen, W. Svendsen, and H. Ou, “Amorphous silicon rich silicon nitride optical waveguides for high density integrated optics,” Electron. Lett. 40, 419–421 (2004).
[Crossref]

T. Barwicz, M. A. Popovic, P. T. Rakich, M. R. Watts, H. A. Haus, E. P. Ippen, and H. I. Smith, “Microring-resonator-based add-drop filters in SiN: Fabrication and analysis,” Opt. Express 12, 1437–1442 (2004).
[Crossref] [PubMed]

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si 3N4 waveguides,” Mat. Sci. Semicon. Proc. 7, 453–458 (2004).
[Crossref]

2003 (1)

C. R. Doerr, L. W. Stulz, R. Pafchek, K. Dreyer, and L. Zhang, “Potentially low-cost widely tunable laser consisting of a semiconductor optical amplifier connected directly to a silica waveguide grating router,” IEEE. Photon. Technol. Lett. 15, 1446–1448 (2003).
[Crossref]

2001 (2)

F. L. Martinez, A. del Prado, I. Martil, G. Gonzalez-Diaz, W. Bohne, W. Fuhs, J. Rohrich, B. Selle, and I. Sieber, “Molecular models and activation energies for bonding rearrangement in plasma-deposited a-SiNx:H dielectric thin films treated by rapid thermal annealing,” Phys. Rev. B (Condensed Matter and Materials Physics)  63, 245320–1 (2001).
[Crossref]

C. Boehme and G. Lucovsky,” Dissociation reactions of hydrogen in remote plasma-enhanced chemical vapor-deposition silicon nitride “J. Vac. Sci. Technol. A 19, 2622–2627 (2001).
[Crossref]

2000 (3)

R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layers for optical waveguide applications,” J. Electrochem. Soc. 147, 2237–41 (2000).
[Crossref]

O. P. Agnihotri, S. C. Jain, J. Poortmans, J. Szlufcik, G. Beaucarne, J. Nijs, and R. Mertens, “Advances in low temperature processing of silicon nitride based dielectrics and their applications in surface passivation and integrated optical devices,” Semicond. Sci. Technol. 15, 29–40 (2000).
[Crossref]

J. Yota, J. Hander, and A. A. Saleh, “A comparative study on inductively-coupled plasma high-density plasma, plasma-enhanced, and low pressure chemical vapor deposition silicon nitride films,” J. Vac. Sci. Technol. A 18, 372–6 (2000).
[Crossref]

1998 (2)

R. M. de Ridder, K. Worhoff, A. Driessen, P. V. Lambeck, and H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE. J. Sel. Top. Quantum. Electron. 4, 930–937 (1998).
[Crossref]

T. P. Ma, “Making silicon nitride film a viable gate dielectric,” IEEE. Trans. Electron. Devices 45, 680–690 (1998).
[Crossref]

1978 (1)

W. A. Lanford and M. J. Rand, “The hydrogen content of plasma-deposited silicon nitride,” J. Appl. Phys. 49, 2473–2477 (1978).
[Crossref]

Agnihotri, O. P.

O. P. Agnihotri, S. C. Jain, J. Poortmans, J. Szlufcik, G. Beaucarne, J. Nijs, and R. Mertens, “Advances in low temperature processing of silicon nitride based dielectrics and their applications in surface passivation and integrated optical devices,” Semicond. Sci. Technol. 15, 29–40 (2000).
[Crossref]

Albers, H.

R. M. de Ridder, K. Worhoff, A. Driessen, P. V. Lambeck, and H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE. J. Sel. Top. Quantum. Electron. 4, 930–937 (1998).
[Crossref]

Andersen, K. N.

K. N. Andersen, W. E. Svendsen, T. Stimpel-Lindner, T. Sulima, and H. Baumgartner, “Annealing and deposition effects of the chemical composition of silicon-rich nitride,” Appl. Surf. Sci. 243, 401–408 (2005).
[Crossref]

H. T. Philipp, K. N. Andersen, W. Svendsen, and H. Ou, “Amorphous silicon rich silicon nitride optical waveguides for high density integrated optics,” Electron. Lett. 40, 419–421 (2004).
[Crossref]

Ay, F.

F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26, 33–46 (2004).
[Crossref]

Aydinli, A.

F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26, 33–46 (2004).
[Crossref]

Barradas, N. P.

F. L. Martinez, R. Ruiz-Merino, A. del Prado, E. San Andres, I. Martil, G. Gonzalez-Diaz, C. Jeynes, N. P. Barradas, L. Wang, and H. S. Reehal, “Bonding structure and hydrogen content in silicon nitride thin films deposited by the electron cyclotron resonance plasma method,” Thin Solid Films 459, 203–207 (2004).
[Crossref]

Barwicz, T.

Baumgartner, H.

K. N. Andersen, W. E. Svendsen, T. Stimpel-Lindner, T. Sulima, and H. Baumgartner, “Annealing and deposition effects of the chemical composition of silicon-rich nitride,” Appl. Surf. Sci. 243, 401–408 (2005).
[Crossref]

Beaucarne, G.

H. F. W. Dekkers, G. Beaucarne, M. Hiller, H. Charifi, and A. Slaoui, “Molecular hydrogen formation in hydrogenated silicon nitride” Appl. Phys. Lett. 89, 211914 (2006).
[Crossref]

O. P. Agnihotri, S. C. Jain, J. Poortmans, J. Szlufcik, G. Beaucarne, J. Nijs, and R. Mertens, “Advances in low temperature processing of silicon nitride based dielectrics and their applications in surface passivation and integrated optical devices,” Semicond. Sci. Technol. 15, 29–40 (2000).
[Crossref]

Bellutti, P.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86, 121111 (2005).
[Crossref]

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si 3N4 waveguides,” Mat. Sci. Semicon. Proc. 7, 453–458 (2004).
[Crossref]

Beyeler, R.

R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layers for optical waveguide applications,” J. Electrochem. Soc. 147, 2237–41 (2000).
[Crossref]

Boehme, C.

C. Boehme and G. Lucovsky,” Dissociation reactions of hydrogen in remote plasma-enhanced chemical vapor-deposition silicon nitride “J. Vac. Sci. Technol. A 19, 2622–2627 (2001).
[Crossref]

Bohne, W.

F. L. Martinez, A. del Prado, I. Martil, G. Gonzalez-Diaz, W. Bohne, W. Fuhs, J. Rohrich, B. Selle, and I. Sieber, “Molecular models and activation energies for bonding rearrangement in plasma-deposited a-SiNx:H dielectric thin films treated by rapid thermal annealing,” Phys. Rev. B (Condensed Matter and Materials Physics)  63, 245320–1 (2001).
[Crossref]

Bona, G. L.

R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layers for optical waveguide applications,” J. Electrochem. Soc. 147, 2237–41 (2000).
[Crossref]

Charifi, H.

H. F. W. Dekkers, G. Beaucarne, M. Hiller, H. Charifi, and A. Slaoui, “Molecular hydrogen formation in hydrogenated silicon nitride” Appl. Phys. Lett. 89, 211914 (2006).
[Crossref]

Crivellari, M.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si 3N4 waveguides,” Mat. Sci. Semicon. Proc. 7, 453–458 (2004).
[Crossref]

Daldosso, N.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86, 121111 (2005).
[Crossref]

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si 3N4 waveguides,” Mat. Sci. Semicon. Proc. 7, 453–458 (2004).
[Crossref]

de Ridder, R. M.

R. M. de Ridder, K. Worhoff, A. Driessen, P. V. Lambeck, and H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE. J. Sel. Top. Quantum. Electron. 4, 930–937 (1998).
[Crossref]

Dekkers, H. F. W.

H. F. W. Dekkers, G. Beaucarne, M. Hiller, H. Charifi, and A. Slaoui, “Molecular hydrogen formation in hydrogenated silicon nitride” Appl. Phys. Lett. 89, 211914 (2006).
[Crossref]

del Prado, A.

F. L. Martinez, R. Ruiz-Merino, A. del Prado, E. San Andres, I. Martil, G. Gonzalez-Diaz, C. Jeynes, N. P. Barradas, L. Wang, and H. S. Reehal, “Bonding structure and hydrogen content in silicon nitride thin films deposited by the electron cyclotron resonance plasma method,” Thin Solid Films 459, 203–207 (2004).
[Crossref]

F. L. Martinez, A. del Prado, I. Martil, G. Gonzalez-Diaz, W. Bohne, W. Fuhs, J. Rohrich, B. Selle, and I. Sieber, “Molecular models and activation energies for bonding rearrangement in plasma-deposited a-SiNx:H dielectric thin films treated by rapid thermal annealing,” Phys. Rev. B (Condensed Matter and Materials Physics)  63, 245320–1 (2001).
[Crossref]

Doerr, C. R.

C. R. Doerr, L. W. Stulz, R. Pafchek, K. Dreyer, and L. Zhang, “Potentially low-cost widely tunable laser consisting of a semiconductor optical amplifier connected directly to a silica waveguide grating router,” IEEE. Photon. Technol. Lett. 15, 1446–1448 (2003).
[Crossref]

Dreyer, K.

C. R. Doerr, L. W. Stulz, R. Pafchek, K. Dreyer, and L. Zhang, “Potentially low-cost widely tunable laser consisting of a semiconductor optical amplifier connected directly to a silica waveguide grating router,” IEEE. Photon. Technol. Lett. 15, 1446–1448 (2003).
[Crossref]

Driessen, A.

R. M. de Ridder, K. Worhoff, A. Driessen, P. V. Lambeck, and H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE. J. Sel. Top. Quantum. Electron. 4, 930–937 (1998).
[Crossref]

Fuhs, W.

F. L. Martinez, A. del Prado, I. Martil, G. Gonzalez-Diaz, W. Bohne, W. Fuhs, J. Rohrich, B. Selle, and I. Sieber, “Molecular models and activation energies for bonding rearrangement in plasma-deposited a-SiNx:H dielectric thin films treated by rapid thermal annealing,” Phys. Rev. B (Condensed Matter and Materials Physics)  63, 245320–1 (2001).
[Crossref]

Germann, R.

R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layers for optical waveguide applications,” J. Electrochem. Soc. 147, 2237–41 (2000).
[Crossref]

Gonzalez-Diaz, G.

F. L. Martinez, R. Ruiz-Merino, A. del Prado, E. San Andres, I. Martil, G. Gonzalez-Diaz, C. Jeynes, N. P. Barradas, L. Wang, and H. S. Reehal, “Bonding structure and hydrogen content in silicon nitride thin films deposited by the electron cyclotron resonance plasma method,” Thin Solid Films 459, 203–207 (2004).
[Crossref]

F. L. Martinez, A. del Prado, I. Martil, G. Gonzalez-Diaz, W. Bohne, W. Fuhs, J. Rohrich, B. Selle, and I. Sieber, “Molecular models and activation energies for bonding rearrangement in plasma-deposited a-SiNx:H dielectric thin films treated by rapid thermal annealing,” Phys. Rev. B (Condensed Matter and Materials Physics)  63, 245320–1 (2001).
[Crossref]

Hander, J.

J. Yota, J. Hander, and A. A. Saleh, “A comparative study on inductively-coupled plasma high-density plasma, plasma-enhanced, and low pressure chemical vapor deposition silicon nitride films,” J. Vac. Sci. Technol. A 18, 372–6 (2000).
[Crossref]

Haus, H. A.

Hiller, M.

H. F. W. Dekkers, G. Beaucarne, M. Hiller, H. Charifi, and A. Slaoui, “Molecular hydrogen formation in hydrogenated silicon nitride” Appl. Phys. Lett. 89, 211914 (2006).
[Crossref]

Horst, F.

R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layers for optical waveguide applications,” J. Electrochem. Soc. 147, 2237–41 (2000).
[Crossref]

Huang, L. P.

X. J. Liu, J. J. Zhang, X. W. Sun, Y. B. Pan, L. P. Huang, and C. Y. Jin, “Growth and properties of silicon nitride films prepared by low pressure chemical vapor deposition using trichlorosilane and ammonia,” Thin Solid Films 460, 72–77 (2004).
[Crossref]

Ippen, E. P.

Jain, S. C.

O. P. Agnihotri, S. C. Jain, J. Poortmans, J. Szlufcik, G. Beaucarne, J. Nijs, and R. Mertens, “Advances in low temperature processing of silicon nitride based dielectrics and their applications in surface passivation and integrated optical devices,” Semicond. Sci. Technol. 15, 29–40 (2000).
[Crossref]

Jeynes, C.

F. L. Martinez, R. Ruiz-Merino, A. del Prado, E. San Andres, I. Martil, G. Gonzalez-Diaz, C. Jeynes, N. P. Barradas, L. Wang, and H. S. Reehal, “Bonding structure and hydrogen content in silicon nitride thin films deposited by the electron cyclotron resonance plasma method,” Thin Solid Films 459, 203–207 (2004).
[Crossref]

Jin, C. Y.

X. J. Liu, J. J. Zhang, X. W. Sun, Y. B. Pan, L. P. Huang, and C. Y. Jin, “Growth and properties of silicon nitride films prepared by low pressure chemical vapor deposition using trichlorosilane and ammonia,” Thin Solid Films 460, 72–77 (2004).
[Crossref]

Kompocholis, C.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86, 121111 (2005).
[Crossref]

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si 3N4 waveguides,” Mat. Sci. Semicon. Proc. 7, 453–458 (2004).
[Crossref]

Lambeck, P. V.

R. M. de Ridder, K. Worhoff, A. Driessen, P. V. Lambeck, and H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE. J. Sel. Top. Quantum. Electron. 4, 930–937 (1998).
[Crossref]

Lanford, W. A.

W. A. Lanford and M. J. Rand, “The hydrogen content of plasma-deposited silicon nitride,” J. Appl. Phys. 49, 2473–2477 (1978).
[Crossref]

Liu, X. J.

X. J. Liu, J. J. Zhang, X. W. Sun, Y. B. Pan, L. P. Huang, and C. Y. Jin, “Growth and properties of silicon nitride films prepared by low pressure chemical vapor deposition using trichlorosilane and ammonia,” Thin Solid Films 460, 72–77 (2004).
[Crossref]

Lucovsky, G.

C. Boehme and G. Lucovsky,” Dissociation reactions of hydrogen in remote plasma-enhanced chemical vapor-deposition silicon nitride “J. Vac. Sci. Technol. A 19, 2622–2627 (2001).
[Crossref]

Lui, A.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86, 121111 (2005).
[Crossref]

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si 3N4 waveguides,” Mat. Sci. Semicon. Proc. 7, 453–458 (2004).
[Crossref]

Ma, T. P.

T. P. Ma, “Making silicon nitride film a viable gate dielectric,” IEEE. Trans. Electron. Devices 45, 680–690 (1998).
[Crossref]

Martil, I.

F. L. Martinez, R. Ruiz-Merino, A. del Prado, E. San Andres, I. Martil, G. Gonzalez-Diaz, C. Jeynes, N. P. Barradas, L. Wang, and H. S. Reehal, “Bonding structure and hydrogen content in silicon nitride thin films deposited by the electron cyclotron resonance plasma method,” Thin Solid Films 459, 203–207 (2004).
[Crossref]

F. L. Martinez, A. del Prado, I. Martil, G. Gonzalez-Diaz, W. Bohne, W. Fuhs, J. Rohrich, B. Selle, and I. Sieber, “Molecular models and activation energies for bonding rearrangement in plasma-deposited a-SiNx:H dielectric thin films treated by rapid thermal annealing,” Phys. Rev. B (Condensed Matter and Materials Physics)  63, 245320–1 (2001).
[Crossref]

Martinez, F. L.

F. L. Martinez, R. Ruiz-Merino, A. del Prado, E. San Andres, I. Martil, G. Gonzalez-Diaz, C. Jeynes, N. P. Barradas, L. Wang, and H. S. Reehal, “Bonding structure and hydrogen content in silicon nitride thin films deposited by the electron cyclotron resonance plasma method,” Thin Solid Films 459, 203–207 (2004).
[Crossref]

F. L. Martinez, A. del Prado, I. Martil, G. Gonzalez-Diaz, W. Bohne, W. Fuhs, J. Rohrich, B. Selle, and I. Sieber, “Molecular models and activation energies for bonding rearrangement in plasma-deposited a-SiNx:H dielectric thin films treated by rapid thermal annealing,” Phys. Rev. B (Condensed Matter and Materials Physics)  63, 245320–1 (2001).
[Crossref]

Massarek, I.

R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layers for optical waveguide applications,” J. Electrochem. Soc. 147, 2237–41 (2000).
[Crossref]

Melchiorri, M.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86, 121111 (2005).
[Crossref]

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si 3N4 waveguides,” Mat. Sci. Semicon. Proc. 7, 453–458 (2004).
[Crossref]

Mertens, R.

O. P. Agnihotri, S. C. Jain, J. Poortmans, J. Szlufcik, G. Beaucarne, J. Nijs, and R. Mertens, “Advances in low temperature processing of silicon nitride based dielectrics and their applications in surface passivation and integrated optical devices,” Semicond. Sci. Technol. 15, 29–40 (2000).
[Crossref]

Nijs, J.

O. P. Agnihotri, S. C. Jain, J. Poortmans, J. Szlufcik, G. Beaucarne, J. Nijs, and R. Mertens, “Advances in low temperature processing of silicon nitride based dielectrics and their applications in surface passivation and integrated optical devices,” Semicond. Sci. Technol. 15, 29–40 (2000).
[Crossref]

Offrein, B. J.

R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layers for optical waveguide applications,” J. Electrochem. Soc. 147, 2237–41 (2000).
[Crossref]

Ou, H.

H. T. Philipp, K. N. Andersen, W. Svendsen, and H. Ou, “Amorphous silicon rich silicon nitride optical waveguides for high density integrated optics,” Electron. Lett. 40, 419–421 (2004).
[Crossref]

Pafchek, R.

C. R. Doerr, L. W. Stulz, R. Pafchek, K. Dreyer, and L. Zhang, “Potentially low-cost widely tunable laser consisting of a semiconductor optical amplifier connected directly to a silica waveguide grating router,” IEEE. Photon. Technol. Lett. 15, 1446–1448 (2003).
[Crossref]

Pan, Y. B.

X. J. Liu, J. J. Zhang, X. W. Sun, Y. B. Pan, L. P. Huang, and C. Y. Jin, “Growth and properties of silicon nitride films prepared by low pressure chemical vapor deposition using trichlorosilane and ammonia,” Thin Solid Films 460, 72–77 (2004).
[Crossref]

Pavesi, L.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86, 121111 (2005).
[Crossref]

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si 3N4 waveguides,” Mat. Sci. Semicon. Proc. 7, 453–458 (2004).
[Crossref]

Philipp, H. T.

H. T. Philipp, K. N. Andersen, W. Svendsen, and H. Ou, “Amorphous silicon rich silicon nitride optical waveguides for high density integrated optics,” Electron. Lett. 40, 419–421 (2004).
[Crossref]

Poortmans, J.

O. P. Agnihotri, S. C. Jain, J. Poortmans, J. Szlufcik, G. Beaucarne, J. Nijs, and R. Mertens, “Advances in low temperature processing of silicon nitride based dielectrics and their applications in surface passivation and integrated optical devices,” Semicond. Sci. Technol. 15, 29–40 (2000).
[Crossref]

Popovic, M. A.

Pucker, G.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86, 121111 (2005).
[Crossref]

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si 3N4 waveguides,” Mat. Sci. Semicon. Proc. 7, 453–458 (2004).
[Crossref]

Rakich, P. T.

Rand, M. J.

W. A. Lanford and M. J. Rand, “The hydrogen content of plasma-deposited silicon nitride,” J. Appl. Phys. 49, 2473–2477 (1978).
[Crossref]

Reehal, H. S.

F. L. Martinez, R. Ruiz-Merino, A. del Prado, E. San Andres, I. Martil, G. Gonzalez-Diaz, C. Jeynes, N. P. Barradas, L. Wang, and H. S. Reehal, “Bonding structure and hydrogen content in silicon nitride thin films deposited by the electron cyclotron resonance plasma method,” Thin Solid Films 459, 203–207 (2004).
[Crossref]

Riboli, F.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si 3N4 waveguides,” Mat. Sci. Semicon. Proc. 7, 453–458 (2004).
[Crossref]

Rohrich, J.

F. L. Martinez, A. del Prado, I. Martil, G. Gonzalez-Diaz, W. Bohne, W. Fuhs, J. Rohrich, B. Selle, and I. Sieber, “Molecular models and activation energies for bonding rearrangement in plasma-deposited a-SiNx:H dielectric thin films treated by rapid thermal annealing,” Phys. Rev. B (Condensed Matter and Materials Physics)  63, 245320–1 (2001).
[Crossref]

Ruiz-Merino, R.

F. L. Martinez, R. Ruiz-Merino, A. del Prado, E. San Andres, I. Martil, G. Gonzalez-Diaz, C. Jeynes, N. P. Barradas, L. Wang, and H. S. Reehal, “Bonding structure and hydrogen content in silicon nitride thin films deposited by the electron cyclotron resonance plasma method,” Thin Solid Films 459, 203–207 (2004).
[Crossref]

Saleh, A. A.

J. Yota, J. Hander, and A. A. Saleh, “A comparative study on inductively-coupled plasma high-density plasma, plasma-enhanced, and low pressure chemical vapor deposition silicon nitride films,” J. Vac. Sci. Technol. A 18, 372–6 (2000).
[Crossref]

Salemink, H. W. M.

R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layers for optical waveguide applications,” J. Electrochem. Soc. 147, 2237–41 (2000).
[Crossref]

San Andres, E.

F. L. Martinez, R. Ruiz-Merino, A. del Prado, E. San Andres, I. Martil, G. Gonzalez-Diaz, C. Jeynes, N. P. Barradas, L. Wang, and H. S. Reehal, “Bonding structure and hydrogen content in silicon nitride thin films deposited by the electron cyclotron resonance plasma method,” Thin Solid Films 459, 203–207 (2004).
[Crossref]

Sbrana, F.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86, 121111 (2005).
[Crossref]

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si 3N4 waveguides,” Mat. Sci. Semicon. Proc. 7, 453–458 (2004).
[Crossref]

Selle, B.

F. L. Martinez, A. del Prado, I. Martil, G. Gonzalez-Diaz, W. Bohne, W. Fuhs, J. Rohrich, B. Selle, and I. Sieber, “Molecular models and activation energies for bonding rearrangement in plasma-deposited a-SiNx:H dielectric thin films treated by rapid thermal annealing,” Phys. Rev. B (Condensed Matter and Materials Physics)  63, 245320–1 (2001).
[Crossref]

Sieber, I.

F. L. Martinez, A. del Prado, I. Martil, G. Gonzalez-Diaz, W. Bohne, W. Fuhs, J. Rohrich, B. Selle, and I. Sieber, “Molecular models and activation energies for bonding rearrangement in plasma-deposited a-SiNx:H dielectric thin films treated by rapid thermal annealing,” Phys. Rev. B (Condensed Matter and Materials Physics)  63, 245320–1 (2001).
[Crossref]

Slaoui, A.

H. F. W. Dekkers, G. Beaucarne, M. Hiller, H. Charifi, and A. Slaoui, “Molecular hydrogen formation in hydrogenated silicon nitride” Appl. Phys. Lett. 89, 211914 (2006).
[Crossref]

Smith, H. I.

Stimpel-Lindner, T.

K. N. Andersen, W. E. Svendsen, T. Stimpel-Lindner, T. Sulima, and H. Baumgartner, “Annealing and deposition effects of the chemical composition of silicon-rich nitride,” Appl. Surf. Sci. 243, 401–408 (2005).
[Crossref]

Stulz, L. W.

C. R. Doerr, L. W. Stulz, R. Pafchek, K. Dreyer, and L. Zhang, “Potentially low-cost widely tunable laser consisting of a semiconductor optical amplifier connected directly to a silica waveguide grating router,” IEEE. Photon. Technol. Lett. 15, 1446–1448 (2003).
[Crossref]

Sulima, T.

K. N. Andersen, W. E. Svendsen, T. Stimpel-Lindner, T. Sulima, and H. Baumgartner, “Annealing and deposition effects of the chemical composition of silicon-rich nitride,” Appl. Surf. Sci. 243, 401–408 (2005).
[Crossref]

Sun, X. W.

X. J. Liu, J. J. Zhang, X. W. Sun, Y. B. Pan, L. P. Huang, and C. Y. Jin, “Growth and properties of silicon nitride films prepared by low pressure chemical vapor deposition using trichlorosilane and ammonia,” Thin Solid Films 460, 72–77 (2004).
[Crossref]

Svendsen, W.

H. T. Philipp, K. N. Andersen, W. Svendsen, and H. Ou, “Amorphous silicon rich silicon nitride optical waveguides for high density integrated optics,” Electron. Lett. 40, 419–421 (2004).
[Crossref]

Svendsen, W. E.

K. N. Andersen, W. E. Svendsen, T. Stimpel-Lindner, T. Sulima, and H. Baumgartner, “Annealing and deposition effects of the chemical composition of silicon-rich nitride,” Appl. Surf. Sci. 243, 401–408 (2005).
[Crossref]

Szlufcik, J.

O. P. Agnihotri, S. C. Jain, J. Poortmans, J. Szlufcik, G. Beaucarne, J. Nijs, and R. Mertens, “Advances in low temperature processing of silicon nitride based dielectrics and their applications in surface passivation and integrated optical devices,” Semicond. Sci. Technol. 15, 29–40 (2000).
[Crossref]

Wang, L.

F. L. Martinez, R. Ruiz-Merino, A. del Prado, E. San Andres, I. Martil, G. Gonzalez-Diaz, C. Jeynes, N. P. Barradas, L. Wang, and H. S. Reehal, “Bonding structure and hydrogen content in silicon nitride thin films deposited by the electron cyclotron resonance plasma method,” Thin Solid Films 459, 203–207 (2004).
[Crossref]

Watts, M. R.

Worhoff, K.

R. M. de Ridder, K. Worhoff, A. Driessen, P. V. Lambeck, and H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE. J. Sel. Top. Quantum. Electron. 4, 930–937 (1998).
[Crossref]

Yota, J.

J. Yota, J. Hander, and A. A. Saleh, “A comparative study on inductively-coupled plasma high-density plasma, plasma-enhanced, and low pressure chemical vapor deposition silicon nitride films,” J. Vac. Sci. Technol. A 18, 372–6 (2000).
[Crossref]

Zhang, J. J.

X. J. Liu, J. J. Zhang, X. W. Sun, Y. B. Pan, L. P. Huang, and C. Y. Jin, “Growth and properties of silicon nitride films prepared by low pressure chemical vapor deposition using trichlorosilane and ammonia,” Thin Solid Films 460, 72–77 (2004).
[Crossref]

Zhang, L.

C. R. Doerr, L. W. Stulz, R. Pafchek, K. Dreyer, and L. Zhang, “Potentially low-cost widely tunable laser consisting of a semiconductor optical amplifier connected directly to a silica waveguide grating router,” IEEE. Photon. Technol. Lett. 15, 1446–1448 (2003).
[Crossref]

Appl. Phys. Lett. (2)

H. F. W. Dekkers, G. Beaucarne, M. Hiller, H. Charifi, and A. Slaoui, “Molecular hydrogen formation in hydrogenated silicon nitride” Appl. Phys. Lett. 89, 211914 (2006).
[Crossref]

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86, 121111 (2005).
[Crossref]

Appl. Surf. Sci. (1)

K. N. Andersen, W. E. Svendsen, T. Stimpel-Lindner, T. Sulima, and H. Baumgartner, “Annealing and deposition effects of the chemical composition of silicon-rich nitride,” Appl. Surf. Sci. 243, 401–408 (2005).
[Crossref]

Electron. Lett. (1)

H. T. Philipp, K. N. Andersen, W. Svendsen, and H. Ou, “Amorphous silicon rich silicon nitride optical waveguides for high density integrated optics,” Electron. Lett. 40, 419–421 (2004).
[Crossref]

IEEE. J. Sel. Top. Quantum. Electron. (1)

R. M. de Ridder, K. Worhoff, A. Driessen, P. V. Lambeck, and H. Albers, “Silicon oxynitride planar waveguiding structures for application in optical communication,” IEEE. J. Sel. Top. Quantum. Electron. 4, 930–937 (1998).
[Crossref]

IEEE. Photon. Technol. Lett. (1)

C. R. Doerr, L. W. Stulz, R. Pafchek, K. Dreyer, and L. Zhang, “Potentially low-cost widely tunable laser consisting of a semiconductor optical amplifier connected directly to a silica waveguide grating router,” IEEE. Photon. Technol. Lett. 15, 1446–1448 (2003).
[Crossref]

IEEE. Trans. Electron. Devices (1)

T. P. Ma, “Making silicon nitride film a viable gate dielectric,” IEEE. Trans. Electron. Devices 45, 680–690 (1998).
[Crossref]

J. Appl. Phys. (1)

W. A. Lanford and M. J. Rand, “The hydrogen content of plasma-deposited silicon nitride,” J. Appl. Phys. 49, 2473–2477 (1978).
[Crossref]

J. Electrochem. Soc. (1)

R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layers for optical waveguide applications,” J. Electrochem. Soc. 147, 2237–41 (2000).
[Crossref]

J. Vac. Sci. Technol. A (2)

J. Yota, J. Hander, and A. A. Saleh, “A comparative study on inductively-coupled plasma high-density plasma, plasma-enhanced, and low pressure chemical vapor deposition silicon nitride films,” J. Vac. Sci. Technol. A 18, 372–6 (2000).
[Crossref]

C. Boehme and G. Lucovsky,” Dissociation reactions of hydrogen in remote plasma-enhanced chemical vapor-deposition silicon nitride “J. Vac. Sci. Technol. A 19, 2622–2627 (2001).
[Crossref]

Mat. Sci. Semicon. Proc. (1)

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si 3N4 waveguides,” Mat. Sci. Semicon. Proc. 7, 453–458 (2004).
[Crossref]

Opt. Express (1)

Opt. Mater. (1)

F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26, 33–46 (2004).
[Crossref]

Phys. Rev. B (1)

F. L. Martinez, A. del Prado, I. Martil, G. Gonzalez-Diaz, W. Bohne, W. Fuhs, J. Rohrich, B. Selle, and I. Sieber, “Molecular models and activation energies for bonding rearrangement in plasma-deposited a-SiNx:H dielectric thin films treated by rapid thermal annealing,” Phys. Rev. B (Condensed Matter and Materials Physics)  63, 245320–1 (2001).
[Crossref]

Semicond. Sci. Technol. (1)

O. P. Agnihotri, S. C. Jain, J. Poortmans, J. Szlufcik, G. Beaucarne, J. Nijs, and R. Mertens, “Advances in low temperature processing of silicon nitride based dielectrics and their applications in surface passivation and integrated optical devices,” Semicond. Sci. Technol. 15, 29–40 (2000).
[Crossref]

Thin Solid Films (2)

F. L. Martinez, R. Ruiz-Merino, A. del Prado, E. San Andres, I. Martil, G. Gonzalez-Diaz, C. Jeynes, N. P. Barradas, L. Wang, and H. S. Reehal, “Bonding structure and hydrogen content in silicon nitride thin films deposited by the electron cyclotron resonance plasma method,” Thin Solid Films 459, 203–207 (2004).
[Crossref]

X. J. Liu, J. J. Zhang, X. W. Sun, Y. B. Pan, L. P. Huang, and C. Y. Jin, “Growth and properties of silicon nitride films prepared by low pressure chemical vapor deposition using trichlorosilane and ammonia,” Thin Solid Films 460, 72–77 (2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. AFM picture of the surface of the deposited SiO2 layer before and after CMP
Fig. 2.
Fig. 2. (a) The schematic structure of the waveguide cross-section; (b) SEM image of the SiN waveguide tip structure; (c) The cut-back pattern of the waveguides.
Fig. 3.
Fig. 3. FTIR absorbance spectra of typical and low hydrogen PECVD SiN films
Fig. 4.
Fig. 4. FTIR absorption spectra as a function of SiH4/N2 flow rates in low hydrogen PECVD. The inset shows the Si-H bond, N-H bond and total hydrogen concentration calculated by using the FITR spectroscopy.
Fig. 5.
Fig. 5. FTIR absorption spectra as a function of RF powers, where the SiH4/N2 flow rate are 80sccm/4000sccm The inset shows the Si-H bond, N-H bond and total hydrogen concentration calculated by using the FITR spectroscopy.
Fig. 6.
Fig. 6. Insertion loss measurements as a function of waveguide length of sample 5, at 1550nm. The propagation loss is calculated as -2.1 ± 0.2 dB/cm.

Tables (2)

Tables Icon

Table I Deposition parameters of SiN films

Tables Icon

Table-II Comparison of SiN Waveguides

Metrics