Abstract

A novel approach to specify symmetries and main optical axes in anisotropic polymeric films is proposed. This method is based on the analysis of the optical absorption via the pulsed laser photoacoustic (PLPA)-technique in a common polarizer film, while rotating the polarizer axis at normal incidence. Since the PLPA-signals are directly proportional to the optical absorption, it is shown that a symmetric and complementary Malus’s law can be obtained over full root mean square (RMS)- and correlation (CA)-analysis of the PLPA-signals. Such data processing reveals the main material directions of the constituting film molecules defining the symmetry structure of the sample. PLPA-results were compared to the pure optical transmission experiments and show unambiguous information, allowing this technique to be used in nonstandard and opaque polymeric films, where the analysis of the optical measurements represents a difficult task, and in general, in anisotropic media.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. K. Dalquist, "Process modifications for improved optical characteristics of K-type polarizer," Thesis (M. Eng.) MIT. Dept. of Mat. Sci. and Eng. (2003), http://hdl.handle.net/1721.1/7978R.
  2. C.- Guzmán, S. J. Pérez-Ruiz, M. Villagrán-Muniz, and J. M. Saniger-Blesa, "Thermal stability and phase transition by photoacoustic signal analysis," Anal. Sci. 17, 122 - 125 (2001).
  3. O. E. Martiìnez, Y. Cesa, N. Mingolo, and R. Romero, "Photoacoustic detection of phase transitions with a resonant piezoelectric scheme with extreme sensitivity to small volume changes," App. Phys. B 80, 365 - 371, (2005).
    [CrossRef]
  4. A. Hordvik and H. Schollosberg, "Photoacoustic technique for determining optical absorption coefficients in solids," Appl. Opt. 16, 101 - 107 (1977).
    [CrossRef] [PubMed]
  5. J. T. Dodgson, A. Mandelis, and C. Andreetta, "Optical absorption coefficient measurements in solids and liquids using correlation photoacoustic spectroscopy," Can. Jou. Phy. 64, 1074 - 1080 (1985).
    [CrossRef]
  6. Y. Jiang, S. Zhang, H. Shao, and C. Yuan, "Optical properties of Langmuir-Blodgett films investigated by a photoacoustic technique," Appl. Opt. 34, 169 - 173 (1995).
    [CrossRef] [PubMed]
  7. R. Srinivasan, M. Jayachandran, and K. Ramachandran, "Photoacoustic studies on optical and thermal properties of p-type and n-type nanostructured porous silicon for (100) and (111) orientations," Cryst. Res. Technol. 42, 266 - 274 (2007).
    [CrossRef]
  8. K. S. Katti and M. W. Urban, "Conductivity model and photoacoustic FT-IR surface depth profiling of heterogeneous polymers," Polymer 44, 3319 - 3325 (2003).
    [CrossRef]
  9. A. C. Bento, D. T. Dias, L. Olenka, A. N. Medina, and M. L. Baes, "On the Application of the Photoacoustic Methods for the Determination of Thermo-Optical Properties of Polymers," Braz. Jou. Phy. 32, 483 - 494 (2002).
    [CrossRef]
  10. N. G. C. Astrath, A. C. Bento, M. L. Baesso, A.F. Da Silva, R. Ahuja, C. Persson, S. Zhao, and C. G. Granqvist, "Thermal lens and photoacoustic spectroscopy to determine the thermo-optical properties of semiconductors," J. Physique. IV 125, 18 -183 (2005).
    [CrossRef]
  11. E. H. Land, "Some Aspects of the development of sheet polarizers," J. Opt. Soc. Am. 41, 957 - 963 (1951).
    [CrossRef]
  12. T. Miyazaki, S. Katayama, E. Funai, Y. Tsuji, amd S. Sakurai, "Role of adsorbed iodine into poly(vinyl alcohol) films drawn in KI/I2 solution," Polymer 467436 - 7442 (2005).
    [CrossRef]
  13. T. Miyazaki, A. Hoshiko, M. Akasaka, T. Shintani, and S. Sakurai, "SAXS studies on structural changes in a poly(vinyl alcohol) film during uniaxial stretching in water," Macromolecules 39, 2921 - 2929 (2006).
    [CrossRef]
  14. M. Bennett and H. E. Bennett, "Polarization," in Handbook of Optics (McGraw-Hill, New York, 1978), pp. 10.13-10.14

2007 (1)

R. Srinivasan, M. Jayachandran, and K. Ramachandran, "Photoacoustic studies on optical and thermal properties of p-type and n-type nanostructured porous silicon for (100) and (111) orientations," Cryst. Res. Technol. 42, 266 - 274 (2007).
[CrossRef]

2006 (1)

T. Miyazaki, A. Hoshiko, M. Akasaka, T. Shintani, and S. Sakurai, "SAXS studies on structural changes in a poly(vinyl alcohol) film during uniaxial stretching in water," Macromolecules 39, 2921 - 2929 (2006).
[CrossRef]

2005 (3)

T. Miyazaki, S. Katayama, E. Funai, Y. Tsuji, amd S. Sakurai, "Role of adsorbed iodine into poly(vinyl alcohol) films drawn in KI/I2 solution," Polymer 467436 - 7442 (2005).
[CrossRef]

N. G. C. Astrath, A. C. Bento, M. L. Baesso, A.F. Da Silva, R. Ahuja, C. Persson, S. Zhao, and C. G. Granqvist, "Thermal lens and photoacoustic spectroscopy to determine the thermo-optical properties of semiconductors," J. Physique. IV 125, 18 -183 (2005).
[CrossRef]

O. E. Martiìnez, Y. Cesa, N. Mingolo, and R. Romero, "Photoacoustic detection of phase transitions with a resonant piezoelectric scheme with extreme sensitivity to small volume changes," App. Phys. B 80, 365 - 371, (2005).
[CrossRef]

2003 (1)

K. S. Katti and M. W. Urban, "Conductivity model and photoacoustic FT-IR surface depth profiling of heterogeneous polymers," Polymer 44, 3319 - 3325 (2003).
[CrossRef]

2002 (1)

A. C. Bento, D. T. Dias, L. Olenka, A. N. Medina, and M. L. Baes, "On the Application of the Photoacoustic Methods for the Determination of Thermo-Optical Properties of Polymers," Braz. Jou. Phy. 32, 483 - 494 (2002).
[CrossRef]

2001 (1)

C.- Guzmán, S. J. Pérez-Ruiz, M. Villagrán-Muniz, and J. M. Saniger-Blesa, "Thermal stability and phase transition by photoacoustic signal analysis," Anal. Sci. 17, 122 - 125 (2001).

1995 (1)

1985 (1)

J. T. Dodgson, A. Mandelis, and C. Andreetta, "Optical absorption coefficient measurements in solids and liquids using correlation photoacoustic spectroscopy," Can. Jou. Phy. 64, 1074 - 1080 (1985).
[CrossRef]

1977 (1)

1951 (1)

Ahuja, R.

N. G. C. Astrath, A. C. Bento, M. L. Baesso, A.F. Da Silva, R. Ahuja, C. Persson, S. Zhao, and C. G. Granqvist, "Thermal lens and photoacoustic spectroscopy to determine the thermo-optical properties of semiconductors," J. Physique. IV 125, 18 -183 (2005).
[CrossRef]

Akasaka, M.

T. Miyazaki, A. Hoshiko, M. Akasaka, T. Shintani, and S. Sakurai, "SAXS studies on structural changes in a poly(vinyl alcohol) film during uniaxial stretching in water," Macromolecules 39, 2921 - 2929 (2006).
[CrossRef]

Andreetta, C.

J. T. Dodgson, A. Mandelis, and C. Andreetta, "Optical absorption coefficient measurements in solids and liquids using correlation photoacoustic spectroscopy," Can. Jou. Phy. 64, 1074 - 1080 (1985).
[CrossRef]

Astrath, N. G. C.

N. G. C. Astrath, A. C. Bento, M. L. Baesso, A.F. Da Silva, R. Ahuja, C. Persson, S. Zhao, and C. G. Granqvist, "Thermal lens and photoacoustic spectroscopy to determine the thermo-optical properties of semiconductors," J. Physique. IV 125, 18 -183 (2005).
[CrossRef]

Baes, M. L.

A. C. Bento, D. T. Dias, L. Olenka, A. N. Medina, and M. L. Baes, "On the Application of the Photoacoustic Methods for the Determination of Thermo-Optical Properties of Polymers," Braz. Jou. Phy. 32, 483 - 494 (2002).
[CrossRef]

Baesso, M. L.

N. G. C. Astrath, A. C. Bento, M. L. Baesso, A.F. Da Silva, R. Ahuja, C. Persson, S. Zhao, and C. G. Granqvist, "Thermal lens and photoacoustic spectroscopy to determine the thermo-optical properties of semiconductors," J. Physique. IV 125, 18 -183 (2005).
[CrossRef]

Bento, A. C.

N. G. C. Astrath, A. C. Bento, M. L. Baesso, A.F. Da Silva, R. Ahuja, C. Persson, S. Zhao, and C. G. Granqvist, "Thermal lens and photoacoustic spectroscopy to determine the thermo-optical properties of semiconductors," J. Physique. IV 125, 18 -183 (2005).
[CrossRef]

A. C. Bento, D. T. Dias, L. Olenka, A. N. Medina, and M. L. Baes, "On the Application of the Photoacoustic Methods for the Determination of Thermo-Optical Properties of Polymers," Braz. Jou. Phy. 32, 483 - 494 (2002).
[CrossRef]

Cesa, Y.

O. E. Martiìnez, Y. Cesa, N. Mingolo, and R. Romero, "Photoacoustic detection of phase transitions with a resonant piezoelectric scheme with extreme sensitivity to small volume changes," App. Phys. B 80, 365 - 371, (2005).
[CrossRef]

Da Silva, A.F.

N. G. C. Astrath, A. C. Bento, M. L. Baesso, A.F. Da Silva, R. Ahuja, C. Persson, S. Zhao, and C. G. Granqvist, "Thermal lens and photoacoustic spectroscopy to determine the thermo-optical properties of semiconductors," J. Physique. IV 125, 18 -183 (2005).
[CrossRef]

Dias, D. T.

A. C. Bento, D. T. Dias, L. Olenka, A. N. Medina, and M. L. Baes, "On the Application of the Photoacoustic Methods for the Determination of Thermo-Optical Properties of Polymers," Braz. Jou. Phy. 32, 483 - 494 (2002).
[CrossRef]

Dodgson, J. T.

J. T. Dodgson, A. Mandelis, and C. Andreetta, "Optical absorption coefficient measurements in solids and liquids using correlation photoacoustic spectroscopy," Can. Jou. Phy. 64, 1074 - 1080 (1985).
[CrossRef]

Funai, E.

T. Miyazaki, S. Katayama, E. Funai, Y. Tsuji, amd S. Sakurai, "Role of adsorbed iodine into poly(vinyl alcohol) films drawn in KI/I2 solution," Polymer 467436 - 7442 (2005).
[CrossRef]

Granqvist, C. G.

N. G. C. Astrath, A. C. Bento, M. L. Baesso, A.F. Da Silva, R. Ahuja, C. Persson, S. Zhao, and C. G. Granqvist, "Thermal lens and photoacoustic spectroscopy to determine the thermo-optical properties of semiconductors," J. Physique. IV 125, 18 -183 (2005).
[CrossRef]

Guzmán, C.-

C.- Guzmán, S. J. Pérez-Ruiz, M. Villagrán-Muniz, and J. M. Saniger-Blesa, "Thermal stability and phase transition by photoacoustic signal analysis," Anal. Sci. 17, 122 - 125 (2001).

Hordvik, A.

Hoshiko, A.

T. Miyazaki, A. Hoshiko, M. Akasaka, T. Shintani, and S. Sakurai, "SAXS studies on structural changes in a poly(vinyl alcohol) film during uniaxial stretching in water," Macromolecules 39, 2921 - 2929 (2006).
[CrossRef]

Jayachandran, M.

R. Srinivasan, M. Jayachandran, and K. Ramachandran, "Photoacoustic studies on optical and thermal properties of p-type and n-type nanostructured porous silicon for (100) and (111) orientations," Cryst. Res. Technol. 42, 266 - 274 (2007).
[CrossRef]

Jiang, Y.

Katayama, S.

T. Miyazaki, S. Katayama, E. Funai, Y. Tsuji, amd S. Sakurai, "Role of adsorbed iodine into poly(vinyl alcohol) films drawn in KI/I2 solution," Polymer 467436 - 7442 (2005).
[CrossRef]

Katti, K. S.

K. S. Katti and M. W. Urban, "Conductivity model and photoacoustic FT-IR surface depth profiling of heterogeneous polymers," Polymer 44, 3319 - 3325 (2003).
[CrossRef]

Land, E. H.

Mandelis, A.

J. T. Dodgson, A. Mandelis, and C. Andreetta, "Optical absorption coefficient measurements in solids and liquids using correlation photoacoustic spectroscopy," Can. Jou. Phy. 64, 1074 - 1080 (1985).
[CrossRef]

Martiìnez, O. E.

O. E. Martiìnez, Y. Cesa, N. Mingolo, and R. Romero, "Photoacoustic detection of phase transitions with a resonant piezoelectric scheme with extreme sensitivity to small volume changes," App. Phys. B 80, 365 - 371, (2005).
[CrossRef]

Medina, A. N.

A. C. Bento, D. T. Dias, L. Olenka, A. N. Medina, and M. L. Baes, "On the Application of the Photoacoustic Methods for the Determination of Thermo-Optical Properties of Polymers," Braz. Jou. Phy. 32, 483 - 494 (2002).
[CrossRef]

Mingolo, N.

O. E. Martiìnez, Y. Cesa, N. Mingolo, and R. Romero, "Photoacoustic detection of phase transitions with a resonant piezoelectric scheme with extreme sensitivity to small volume changes," App. Phys. B 80, 365 - 371, (2005).
[CrossRef]

Miyazaki, T.

T. Miyazaki, A. Hoshiko, M. Akasaka, T. Shintani, and S. Sakurai, "SAXS studies on structural changes in a poly(vinyl alcohol) film during uniaxial stretching in water," Macromolecules 39, 2921 - 2929 (2006).
[CrossRef]

T. Miyazaki, S. Katayama, E. Funai, Y. Tsuji, amd S. Sakurai, "Role of adsorbed iodine into poly(vinyl alcohol) films drawn in KI/I2 solution," Polymer 467436 - 7442 (2005).
[CrossRef]

Olenka, L.

A. C. Bento, D. T. Dias, L. Olenka, A. N. Medina, and M. L. Baes, "On the Application of the Photoacoustic Methods for the Determination of Thermo-Optical Properties of Polymers," Braz. Jou. Phy. 32, 483 - 494 (2002).
[CrossRef]

Pérez-Ruiz, S. J.

C.- Guzmán, S. J. Pérez-Ruiz, M. Villagrán-Muniz, and J. M. Saniger-Blesa, "Thermal stability and phase transition by photoacoustic signal analysis," Anal. Sci. 17, 122 - 125 (2001).

Persson, C.

N. G. C. Astrath, A. C. Bento, M. L. Baesso, A.F. Da Silva, R. Ahuja, C. Persson, S. Zhao, and C. G. Granqvist, "Thermal lens and photoacoustic spectroscopy to determine the thermo-optical properties of semiconductors," J. Physique. IV 125, 18 -183 (2005).
[CrossRef]

Ramachandran, K.

R. Srinivasan, M. Jayachandran, and K. Ramachandran, "Photoacoustic studies on optical and thermal properties of p-type and n-type nanostructured porous silicon for (100) and (111) orientations," Cryst. Res. Technol. 42, 266 - 274 (2007).
[CrossRef]

Romero, R.

O. E. Martiìnez, Y. Cesa, N. Mingolo, and R. Romero, "Photoacoustic detection of phase transitions with a resonant piezoelectric scheme with extreme sensitivity to small volume changes," App. Phys. B 80, 365 - 371, (2005).
[CrossRef]

Sakurai, S.

T. Miyazaki, A. Hoshiko, M. Akasaka, T. Shintani, and S. Sakurai, "SAXS studies on structural changes in a poly(vinyl alcohol) film during uniaxial stretching in water," Macromolecules 39, 2921 - 2929 (2006).
[CrossRef]

Saniger-Blesa, J. M.

C.- Guzmán, S. J. Pérez-Ruiz, M. Villagrán-Muniz, and J. M. Saniger-Blesa, "Thermal stability and phase transition by photoacoustic signal analysis," Anal. Sci. 17, 122 - 125 (2001).

Schollosberg, H.

Shao, H.

Shintani, T.

T. Miyazaki, A. Hoshiko, M. Akasaka, T. Shintani, and S. Sakurai, "SAXS studies on structural changes in a poly(vinyl alcohol) film during uniaxial stretching in water," Macromolecules 39, 2921 - 2929 (2006).
[CrossRef]

Srinivasan, R.

R. Srinivasan, M. Jayachandran, and K. Ramachandran, "Photoacoustic studies on optical and thermal properties of p-type and n-type nanostructured porous silicon for (100) and (111) orientations," Cryst. Res. Technol. 42, 266 - 274 (2007).
[CrossRef]

Tsuji, Y.

T. Miyazaki, S. Katayama, E. Funai, Y. Tsuji, amd S. Sakurai, "Role of adsorbed iodine into poly(vinyl alcohol) films drawn in KI/I2 solution," Polymer 467436 - 7442 (2005).
[CrossRef]

Urban, M. W.

K. S. Katti and M. W. Urban, "Conductivity model and photoacoustic FT-IR surface depth profiling of heterogeneous polymers," Polymer 44, 3319 - 3325 (2003).
[CrossRef]

Villagrán-Muniz, M.

C.- Guzmán, S. J. Pérez-Ruiz, M. Villagrán-Muniz, and J. M. Saniger-Blesa, "Thermal stability and phase transition by photoacoustic signal analysis," Anal. Sci. 17, 122 - 125 (2001).

Yuan, C.

Zhang, S.

Zhao, S.

N. G. C. Astrath, A. C. Bento, M. L. Baesso, A.F. Da Silva, R. Ahuja, C. Persson, S. Zhao, and C. G. Granqvist, "Thermal lens and photoacoustic spectroscopy to determine the thermo-optical properties of semiconductors," J. Physique. IV 125, 18 -183 (2005).
[CrossRef]

Anal. Sci. (1)

C.- Guzmán, S. J. Pérez-Ruiz, M. Villagrán-Muniz, and J. M. Saniger-Blesa, "Thermal stability and phase transition by photoacoustic signal analysis," Anal. Sci. 17, 122 - 125 (2001).

App. Phys. B (1)

O. E. Martiìnez, Y. Cesa, N. Mingolo, and R. Romero, "Photoacoustic detection of phase transitions with a resonant piezoelectric scheme with extreme sensitivity to small volume changes," App. Phys. B 80, 365 - 371, (2005).
[CrossRef]

Appl. Opt. (2)

Braz. Jou. Phy. (1)

A. C. Bento, D. T. Dias, L. Olenka, A. N. Medina, and M. L. Baes, "On the Application of the Photoacoustic Methods for the Determination of Thermo-Optical Properties of Polymers," Braz. Jou. Phy. 32, 483 - 494 (2002).
[CrossRef]

Can. Jou. Phy. (1)

J. T. Dodgson, A. Mandelis, and C. Andreetta, "Optical absorption coefficient measurements in solids and liquids using correlation photoacoustic spectroscopy," Can. Jou. Phy. 64, 1074 - 1080 (1985).
[CrossRef]

Cryst. Res. Technol. (1)

R. Srinivasan, M. Jayachandran, and K. Ramachandran, "Photoacoustic studies on optical and thermal properties of p-type and n-type nanostructured porous silicon for (100) and (111) orientations," Cryst. Res. Technol. 42, 266 - 274 (2007).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Physique. IV (1)

N. G. C. Astrath, A. C. Bento, M. L. Baesso, A.F. Da Silva, R. Ahuja, C. Persson, S. Zhao, and C. G. Granqvist, "Thermal lens and photoacoustic spectroscopy to determine the thermo-optical properties of semiconductors," J. Physique. IV 125, 18 -183 (2005).
[CrossRef]

Macromolecules (1)

T. Miyazaki, A. Hoshiko, M. Akasaka, T. Shintani, and S. Sakurai, "SAXS studies on structural changes in a poly(vinyl alcohol) film during uniaxial stretching in water," Macromolecules 39, 2921 - 2929 (2006).
[CrossRef]

Polymer (2)

T. Miyazaki, S. Katayama, E. Funai, Y. Tsuji, amd S. Sakurai, "Role of adsorbed iodine into poly(vinyl alcohol) films drawn in KI/I2 solution," Polymer 467436 - 7442 (2005).
[CrossRef]

K. S. Katti and M. W. Urban, "Conductivity model and photoacoustic FT-IR surface depth profiling of heterogeneous polymers," Polymer 44, 3319 - 3325 (2003).
[CrossRef]

Other (2)

M. Bennett and H. E. Bennett, "Polarization," in Handbook of Optics (McGraw-Hill, New York, 1978), pp. 10.13-10.14

S. K. Dalquist, "Process modifications for improved optical characteristics of K-type polarizer," Thesis (M. Eng.) MIT. Dept. of Mat. Sci. and Eng. (2003), http://hdl.handle.net/1721.1/7978R.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of the photoacoustic experimental setup implemented for the simultaneous PLPA and optical transmission measurements as function of the linear polarizer θ-angle film rotation.

Fig. 2.
Fig. 2.

UV-Vis absorption spectra of a commercial linear polarizer film and a common glass window plate implemented as control sample. The linear polarizer presents stronger absorption in the visible range; thus strong photoacoustic signals are expected at 532 nm for this sample.

Fig. 3.
Fig. 3.

Two unprocessed photoacoustic signals obtained from a commercial linear polarizer at θ angles of 166.0° and 256.0° (corresponding to the minimum and maximum optical absorption, respectively).

Fig. 4.
Fig. 4.

Pure optical laser transmission observed at 532 nm through the studied organic polarizer film: an excellent concordance with the traditional optical Malus’s law can be observed.

Fig. 5.
Fig. 5.

RMS-analysis of the PLPA-signals: the RMS-numerical processing permits an average of the PLPA-acoustic signals which is directly proportional to the optical absorption. This kind of analysis provides a reconstruction of an alternative opto-acoustical Malus’s law from the absorption point of view.

Fig. 6.
Fig. 6.

Correlation analysis of the PLPA-signals: The study of the macroscopic film structure can be performed by the analysis of the numerical correlation of consecutive the PLPA signals. Hence, the correlation processing reveals a periodic structure, where the structural anisotropy exposes basically the same main directions as in the RMS case.

Tables (1)

Tables Icon

Table 1. Symmetry directions (SD) observed in the linear polarizer sample by the optical transmission, RMS and CA-methodologies: SD1 and SD3 correspond to the minimum optical transmission axis (maximum acoustic transmission), and SD2 and SD4 correspond to the maxima optical transmission axis (minimum acoustic transmission). The three different analyses actually reveal the same anisotropy and point out to the orthogonality of the main symmetry axes

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P= I M I m I M + I m ,
I A = I M cos 2 θ + I M 1 P 1 + P sen 2 θ ,
w m , m + 1 ( k ) = j u m ( j ) u m + 1 ( j k )

Metrics