Abstract

In self-assembled multilayer arrays of micrometer-sized spheres that include small amounts of fluorescent particles, unique six-dot-triangular and seven-dot-hexagonal patterns have been known to appear in the fluorescence microscopic images. Although it has been suggested that these two types of patterns correspond to local domain structures, i.e., face centered cubic (fcc) or hexagonal closed packed (hcp), no conclusive evidence has been provided to support this claim. In this study, we systematically investigated the relationship between the propagation patterns and the arrangement of the particles. Through a cross-check between an experiment using well-defined clusters fabricated by a micromanipulation technique and a rigorous calculation based on the expansion of vector spherical harmonics, we confirmed that the six-dot-triangular and seven-dot-hexagonal patterns correspond to the fcc and hcp domains, respectively. Further, we also found that the propagation patterns depend on the size of the clusters. As a result of a quantitative discussion on the light propagation in clusters with various sizes, it was clarified that a sufficient domain size is necessary for the appearance of clear triangular or hexagonal patterns.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, "Strong Localization of Photons in Certain Disordered Dielectric Superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  3. S. Noda and T. Baba, Roadmap on Photonic Crystals (Kluwer Academic, Dordrecht, 2003).
  4. K. Inoue, M. Wada, K. Sakoda, A. Yamanaka, M. Hayashi, and J. W. Haus, "Fabrication of Two-Dimensional Photonic Band Structure with Near-Infrared Band Gap," Jpn. J. Appl. Phys. 33, 1463-1465 (1994).
    [CrossRef]
  5. T. F. Krauss, R. M. De La Rue, and S. Brand, "Two-dimensional photonic-bandgap structures operating at nearinfrared wavelengths," Nature (London) 383, 699-702 (1996).
    [CrossRef]
  6. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature (London) 394, 251-253 (1998).
    [CrossRef]
  7. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944-947 (2003).
    [CrossRef]
  8. A. Badolato, K. Hennessy,M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005).
    [CrossRef] [PubMed]
  9. T. Baba, N. Fukaya, and J. Yonekura, "Observation of light propagation in photonic crystal optical waveguides with bends," Electron. Lett. 35, 654-655 (1999).
    [CrossRef]
  10. N. Ikeda, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, J. S. Jensen, O. Sigmund, P. I. Borel, M. Kristensen, and K. Asakawa, "Topology optimized photonic crystal waveguide intersections with hightransmittance and low crosstalk," Electron. Lett. 42, 1031-1033 (2006).
    [CrossRef]
  11. R. J. P. Engelen, Y. Sugimoto, H. Gersen, N. Ikeda, K. Asakawa, and L. Kuipers, "Ultrafast evolution of photonic eigenstates in k-space," Nature Physics 3, 401-405 (2007).
    [CrossRef]
  12. V. N. Astratov, M. S. Skolnick, S. Brand, T. F. Krauss, O. Z. Karimov, R. M. Stevenson, D. M. Whittaker, I. Culshaw, and R. M. De la Rue, "Experimental technique to determine the band structure of two-dimensional photonic lattices," IEE Proc.: Optoelectron. 145, 398-402 (1998).
    [CrossRef]
  13. T. Yamasaki and T. Tsutsui, "Fabrication and Optical Properties of Two-Dimensional Ordered Arrays of Silica Microspheres," Jpn. J. Appl. Phys. 38, 5916-5921 (1999).
    [CrossRef]
  14. K. Ohtaka, Y. Suda, S. Nagano, T. Ueta, A. Imada, T. Koda, J. S. Bae, K. Mizuno, S. Yano, and Y. Segawa, "Photonic band effects in a two-dimensional array of dielectric spheres in the millimeter-wave region," Phys. Rev. B 61, 5267-5279 (2000).
    [CrossRef]
  15. H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, "Photonic band in two-dimensional lattices of micrometersized spheres mechanically arranged under a scanning electron microscope," J. Appl. Phys. 87, 7152-7158 (2000).
    [CrossRef]
  16. ˙I. ˙I. Tarhan, M. P. Zinkin, and G. H. Watson, "Interferometric technique for the measurement of photonic band structure in colloidal crystals," Opt. Lett. 20, 1571-1573 (1995).
    [CrossRef] [PubMed]
  17. J. Nakagawa, H. Kitano, F. Minami, T. Sawada, S. Yamaguchi, and K. Ohtaka, "Large pulse distortion in a 3D photonic crystal," J. Lumin. 108, 255-258 (2004).
    [CrossRef]
  18. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998).
    [CrossRef]
  19. T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, "Light Propagation within Colloidal Crystal Wire Fabricated by a Dewetting Process," Nano Lett. 8, 853-858 (2008).
    [CrossRef] [PubMed]
  20. T. Fujimura, K. Edamatsu, T. Itoh, R. Shimada, A. Imada, T. Koda, N. Chiba, H. Muramatsu, and T. Ataka, "Scanning near-field optical images of ordered polystyrene particle layers in transmission and luminescence excitation modes," Opt. Lett. 22, 489-491 (1997).
    [CrossRef] [PubMed]
  21. M. Haraguchi, T. Nakai, A. Shinya, T. Okamoto, M. Fukui, T. Koda, R. Shimada, K. Ohtaka, and K. Takeda, "Optical Modes in Two-dimensionally Ordered Dielectric Spheres," Jpn. J. Appl. Phys. 39, 1747-1751 (2000).
    [CrossRef]
  22. S. I. Matsushita, Y. Yagi, T. Miwa, D. A. Tryk, T. Koda, and A. Fujishima, "Light Propagation in Composite Two-Dimensional Arrays of Polystyrene Spherical Particles," Langmuir 16, 636-642 (2000).
    [CrossRef]
  23. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and Sons, New York, 1983).
  24. At an early stage of our research, we investigated light propagation in clusters solely composed of polystyrene (PSt) particles as in the paper by Matsushita et al. However, we found that non-fluorescent PSt particles become fluorescent upon electron beam (EB) irradiation during the micromanipulation. It was difficult to distinguish the luminescence from the dye-doped and undoped PSt particles. Since silica particles were found to be unaffected by the EB irradiation, we employed silica as non-fluorescent particles.
  25. N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, "Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates," Langmuir 8, 3183-3190 (1992).
    [CrossRef]
  26. F. Juillerat, P. Bowen, and H. Hofmann, "Formation and Drying of Colloidal Crystals Using Nanosized Silica Particles," Langmuir 22, 2249-2257 (2006).
    [CrossRef] [PubMed]
  27. H. Miyazaki and T. Sato, "Mechanical Assembly of Three-Dimensional Microstructures from Fine Particles," Adv. Robotics 11, 169-185 (1997).
    [CrossRef]
  28. H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, "Photonic band in two-dimensional lattices of micrometersized spheres mechanically arranged under a scanning electron microscope," J. Appl. Phys. 87, 7152 (2000).
    [CrossRef]
  29. F. Garcia-Santamaria, H. T. Miyazaki, A. Urquia, M. Ibisate, M. Belmonte, N. Shinya, F. Meseguer, and C. Lopez, "Nanorobotic manipulation of microspheres for on-chip diamond architectures," Adv. Mater. 14, 1144- 1147, (2002).
    [CrossRef]
  30. K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, "Microassembly of semiconductor three-dimensional photonic crystals," Nat. Mater. 2, 117-121 (2003).
    [CrossRef] [PubMed]
  31. H. T. Miyazaki, H. Miyazaki, N. Shinya, and K. Miyano, "Enhanced light diffraction from a double-layer microsphere lattice," Appl. Phys. Lett. 83, 3662-3664 (2003).
    [CrossRef]
  32. H. T. Miyazaki, H. Miyazaki, Y. Jimba, Y. Kurokawa, N. Shinya, and K. Miyano, "Light diffraction from a bilayer lattice of microspheres enhanced by specular resonance," J. Appl. Phys. 95, 793-805 (2004).
    [CrossRef]
  33. T. Kasaya and H. T. Miyazaki, "Graphical Templates for Accurate Micromanipulation in a Scanning Electron Microscope," Rev. Sci. Instrum., submitted.
    [PubMed]
  34. H. Miyazaki and Y. Jimba, "Ab initio tight-binding description of morphology-dependent resonance in a bisphere," Phys. Rev. B 62, 7976-7997 (2000).
    [CrossRef]
  35. The directions of the eight inverted points are [±1±1±1], [±1±1∓5], [±1∓5±1], and [∓5±1±1].
  36. The dye molecules doped in the PSt particles gradually degrade upon electron beam irradiation. Therefore, the time allowed for the manipulation is limited. Since the top layer of the class-2 or larger clusters is composed of a large number of particles, it was difficult to assemble sufficiently accurate lattices within the limited time.
  37. H. T. Miyazaki, H. Miyazaki, and K. Miyano, "Anomalous scattering from dielectric bispheres in the specular direction," Opt. Lett. 27, 1208-1210 (2002).
    [CrossRef]
  38. H. T. Miyazaki, H. Miyazaki, and K. Miyano, "Analysis on specular resonance in dielectric bispheres using rigorous and geometrical-optics theories," J. Opt. Soc. Am. A 20, 1771-1784 (2003).
    [CrossRef]
  39. A. Yamilov and H. Cao, "Density of resonant states and a manifestation of photonic band structure in small clusters of spherical particles," Phys. Rev. B 68, 085111 (2003).
    [CrossRef]
  40. K. Ohtaka and Yukito Tanabe, "Photonic Band Using Vector Spherical Waves. I. Various Properties of Bloch Electric Fields and Heavy Photons," J. Phys. Soc. Jpn. 65, 2265-2275 (1996).
    [CrossRef]
  41. T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, "Tight-Binding Photonic Molecule Modes of Resonant Bispheres," Phys. Rev. Lett. 82, 4623-4626 (1999).
    [CrossRef]

2008

T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, "Light Propagation within Colloidal Crystal Wire Fabricated by a Dewetting Process," Nano Lett. 8, 853-858 (2008).
[CrossRef] [PubMed]

2007

R. J. P. Engelen, Y. Sugimoto, H. Gersen, N. Ikeda, K. Asakawa, and L. Kuipers, "Ultrafast evolution of photonic eigenstates in k-space," Nature Physics 3, 401-405 (2007).
[CrossRef]

2006

N. Ikeda, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, J. S. Jensen, O. Sigmund, P. I. Borel, M. Kristensen, and K. Asakawa, "Topology optimized photonic crystal waveguide intersections with hightransmittance and low crosstalk," Electron. Lett. 42, 1031-1033 (2006).
[CrossRef]

F. Juillerat, P. Bowen, and H. Hofmann, "Formation and Drying of Colloidal Crystals Using Nanosized Silica Particles," Langmuir 22, 2249-2257 (2006).
[CrossRef] [PubMed]

2005

A. Badolato, K. Hennessy,M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

2004

H. T. Miyazaki, H. Miyazaki, Y. Jimba, Y. Kurokawa, N. Shinya, and K. Miyano, "Light diffraction from a bilayer lattice of microspheres enhanced by specular resonance," J. Appl. Phys. 95, 793-805 (2004).
[CrossRef]

J. Nakagawa, H. Kitano, F. Minami, T. Sawada, S. Yamaguchi, and K. Ohtaka, "Large pulse distortion in a 3D photonic crystal," J. Lumin. 108, 255-258 (2004).
[CrossRef]

2003

A. Yamilov and H. Cao, "Density of resonant states and a manifestation of photonic band structure in small clusters of spherical particles," Phys. Rev. B 68, 085111 (2003).
[CrossRef]

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, "Microassembly of semiconductor three-dimensional photonic crystals," Nat. Mater. 2, 117-121 (2003).
[CrossRef] [PubMed]

H. T. Miyazaki, H. Miyazaki, N. Shinya, and K. Miyano, "Enhanced light diffraction from a double-layer microsphere lattice," Appl. Phys. Lett. 83, 3662-3664 (2003).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944-947 (2003).
[CrossRef]

H. T. Miyazaki, H. Miyazaki, and K. Miyano, "Analysis on specular resonance in dielectric bispheres using rigorous and geometrical-optics theories," J. Opt. Soc. Am. A 20, 1771-1784 (2003).
[CrossRef]

2002

F. Garcia-Santamaria, H. T. Miyazaki, A. Urquia, M. Ibisate, M. Belmonte, N. Shinya, F. Meseguer, and C. Lopez, "Nanorobotic manipulation of microspheres for on-chip diamond architectures," Adv. Mater. 14, 1144- 1147, (2002).
[CrossRef]

H. T. Miyazaki, H. Miyazaki, and K. Miyano, "Anomalous scattering from dielectric bispheres in the specular direction," Opt. Lett. 27, 1208-1210 (2002).
[CrossRef]

2000

H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, "Photonic band in two-dimensional lattices of micrometersized spheres mechanically arranged under a scanning electron microscope," J. Appl. Phys. 87, 7152 (2000).
[CrossRef]

H. Miyazaki and Y. Jimba, "Ab initio tight-binding description of morphology-dependent resonance in a bisphere," Phys. Rev. B 62, 7976-7997 (2000).
[CrossRef]

K. Ohtaka, Y. Suda, S. Nagano, T. Ueta, A. Imada, T. Koda, J. S. Bae, K. Mizuno, S. Yano, and Y. Segawa, "Photonic band effects in a two-dimensional array of dielectric spheres in the millimeter-wave region," Phys. Rev. B 61, 5267-5279 (2000).
[CrossRef]

H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, "Photonic band in two-dimensional lattices of micrometersized spheres mechanically arranged under a scanning electron microscope," J. Appl. Phys. 87, 7152-7158 (2000).
[CrossRef]

M. Haraguchi, T. Nakai, A. Shinya, T. Okamoto, M. Fukui, T. Koda, R. Shimada, K. Ohtaka, and K. Takeda, "Optical Modes in Two-dimensionally Ordered Dielectric Spheres," Jpn. J. Appl. Phys. 39, 1747-1751 (2000).
[CrossRef]

S. I. Matsushita, Y. Yagi, T. Miwa, D. A. Tryk, T. Koda, and A. Fujishima, "Light Propagation in Composite Two-Dimensional Arrays of Polystyrene Spherical Particles," Langmuir 16, 636-642 (2000).
[CrossRef]

1999

T. Yamasaki and T. Tsutsui, "Fabrication and Optical Properties of Two-Dimensional Ordered Arrays of Silica Microspheres," Jpn. J. Appl. Phys. 38, 5916-5921 (1999).
[CrossRef]

T. Baba, N. Fukaya, and J. Yonekura, "Observation of light propagation in photonic crystal optical waveguides with bends," Electron. Lett. 35, 654-655 (1999).
[CrossRef]

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, "Tight-Binding Photonic Molecule Modes of Resonant Bispheres," Phys. Rev. Lett. 82, 4623-4626 (1999).
[CrossRef]

1998

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998).
[CrossRef]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature (London) 394, 251-253 (1998).
[CrossRef]

V. N. Astratov, M. S. Skolnick, S. Brand, T. F. Krauss, O. Z. Karimov, R. M. Stevenson, D. M. Whittaker, I. Culshaw, and R. M. De la Rue, "Experimental technique to determine the band structure of two-dimensional photonic lattices," IEE Proc.: Optoelectron. 145, 398-402 (1998).
[CrossRef]

1997

1996

K. Ohtaka and Yukito Tanabe, "Photonic Band Using Vector Spherical Waves. I. Various Properties of Bloch Electric Fields and Heavy Photons," J. Phys. Soc. Jpn. 65, 2265-2275 (1996).
[CrossRef]

T. F. Krauss, R. M. De La Rue, and S. Brand, "Two-dimensional photonic-bandgap structures operating at nearinfrared wavelengths," Nature (London) 383, 699-702 (1996).
[CrossRef]

1995

1994

K. Inoue, M. Wada, K. Sakoda, A. Yamanaka, M. Hayashi, and J. W. Haus, "Fabrication of Two-Dimensional Photonic Band Structure with Near-Infrared Band Gap," Jpn. J. Appl. Phys. 33, 1463-1465 (1994).
[CrossRef]

1992

N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, "Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates," Langmuir 8, 3183-3190 (1992).
[CrossRef]

1987

E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, "Strong Localization of Photons in Certain Disordered Dielectric Superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944-947 (2003).
[CrossRef]

Aoki, K.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, "Microassembly of semiconductor three-dimensional photonic crystals," Nat. Mater. 2, 117-121 (2003).
[CrossRef] [PubMed]

Aoyagi, Y.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, "Microassembly of semiconductor three-dimensional photonic crystals," Nat. Mater. 2, 117-121 (2003).
[CrossRef] [PubMed]

Asakawa, K.

R. J. P. Engelen, Y. Sugimoto, H. Gersen, N. Ikeda, K. Asakawa, and L. Kuipers, "Ultrafast evolution of photonic eigenstates in k-space," Nature Physics 3, 401-405 (2007).
[CrossRef]

N. Ikeda, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, J. S. Jensen, O. Sigmund, P. I. Borel, M. Kristensen, and K. Asakawa, "Topology optimized photonic crystal waveguide intersections with hightransmittance and low crosstalk," Electron. Lett. 42, 1031-1033 (2006).
[CrossRef]

Asano, T.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944-947 (2003).
[CrossRef]

Astratov, V. N.

V. N. Astratov, M. S. Skolnick, S. Brand, T. F. Krauss, O. Z. Karimov, R. M. Stevenson, D. M. Whittaker, I. Culshaw, and R. M. De la Rue, "Experimental technique to determine the band structure of two-dimensional photonic lattices," IEE Proc.: Optoelectron. 145, 398-402 (1998).
[CrossRef]

Ataka, T.

Atature, M.

A. Badolato, K. Hennessy,M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

Baba, T.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, "Microassembly of semiconductor three-dimensional photonic crystals," Nat. Mater. 2, 117-121 (2003).
[CrossRef] [PubMed]

T. Baba, N. Fukaya, and J. Yonekura, "Observation of light propagation in photonic crystal optical waveguides with bends," Electron. Lett. 35, 654-655 (1999).
[CrossRef]

Badolato, A.

A. Badolato, K. Hennessy,M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

Bae, J. S.

K. Ohtaka, Y. Suda, S. Nagano, T. Ueta, A. Imada, T. Koda, J. S. Bae, K. Mizuno, S. Yano, and Y. Segawa, "Photonic band effects in a two-dimensional array of dielectric spheres in the millimeter-wave region," Phys. Rev. B 61, 5267-5279 (2000).
[CrossRef]

Belmonte, M.

F. Garcia-Santamaria, H. T. Miyazaki, A. Urquia, M. Ibisate, M. Belmonte, N. Shinya, F. Meseguer, and C. Lopez, "Nanorobotic manipulation of microspheres for on-chip diamond architectures," Adv. Mater. 14, 1144- 1147, (2002).
[CrossRef]

Biswas, R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature (London) 394, 251-253 (1998).
[CrossRef]

Borel, P. I.

N. Ikeda, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, J. S. Jensen, O. Sigmund, P. I. Borel, M. Kristensen, and K. Asakawa, "Topology optimized photonic crystal waveguide intersections with hightransmittance and low crosstalk," Electron. Lett. 42, 1031-1033 (2006).
[CrossRef]

Bowen, P.

F. Juillerat, P. Bowen, and H. Hofmann, "Formation and Drying of Colloidal Crystals Using Nanosized Silica Particles," Langmuir 22, 2249-2257 (2006).
[CrossRef] [PubMed]

Brand, S.

V. N. Astratov, M. S. Skolnick, S. Brand, T. F. Krauss, O. Z. Karimov, R. M. Stevenson, D. M. Whittaker, I. Culshaw, and R. M. De la Rue, "Experimental technique to determine the band structure of two-dimensional photonic lattices," IEE Proc.: Optoelectron. 145, 398-402 (1998).
[CrossRef]

T. F. Krauss, R. M. De La Rue, and S. Brand, "Two-dimensional photonic-bandgap structures operating at nearinfrared wavelengths," Nature (London) 383, 699-702 (1996).
[CrossRef]

Bur, J.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature (London) 394, 251-253 (1998).
[CrossRef]

Cao, H.

A. Yamilov and H. Cao, "Density of resonant states and a manifestation of photonic band structure in small clusters of spherical particles," Phys. Rev. B 68, 085111 (2003).
[CrossRef]

Chiba, N.

Culshaw, I.

V. N. Astratov, M. S. Skolnick, S. Brand, T. F. Krauss, O. Z. Karimov, R. M. Stevenson, D. M. Whittaker, I. Culshaw, and R. M. De la Rue, "Experimental technique to determine the band structure of two-dimensional photonic lattices," IEE Proc.: Optoelectron. 145, 398-402 (1998).
[CrossRef]

De la Rue, R. M.

V. N. Astratov, M. S. Skolnick, S. Brand, T. F. Krauss, O. Z. Karimov, R. M. Stevenson, D. M. Whittaker, I. Culshaw, and R. M. De la Rue, "Experimental technique to determine the band structure of two-dimensional photonic lattices," IEE Proc.: Optoelectron. 145, 398-402 (1998).
[CrossRef]

T. F. Krauss, R. M. De La Rue, and S. Brand, "Two-dimensional photonic-bandgap structures operating at nearinfrared wavelengths," Nature (London) 383, 699-702 (1996).
[CrossRef]

Denkov, N. D.

N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, "Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates," Langmuir 8, 3183-3190 (1992).
[CrossRef]

Dreiser, J.

A. Badolato, K. Hennessy,M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

Edamatsu, K.

Engelen, R. J. P.

R. J. P. Engelen, Y. Sugimoto, H. Gersen, N. Ikeda, K. Asakawa, and L. Kuipers, "Ultrafast evolution of photonic eigenstates in k-space," Nature Physics 3, 401-405 (2007).
[CrossRef]

Fleming, J. G.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature (London) 394, 251-253 (1998).
[CrossRef]

Fujimura, T.

Fujishima, A.

S. I. Matsushita, Y. Yagi, T. Miwa, D. A. Tryk, T. Koda, and A. Fujishima, "Light Propagation in Composite Two-Dimensional Arrays of Polystyrene Spherical Particles," Langmuir 16, 636-642 (2000).
[CrossRef]

Fukaya, N.

T. Baba, N. Fukaya, and J. Yonekura, "Observation of light propagation in photonic crystal optical waveguides with bends," Electron. Lett. 35, 654-655 (1999).
[CrossRef]

Fukui, M.

M. Haraguchi, T. Nakai, A. Shinya, T. Okamoto, M. Fukui, T. Koda, R. Shimada, K. Ohtaka, and K. Takeda, "Optical Modes in Two-dimensionally Ordered Dielectric Spheres," Jpn. J. Appl. Phys. 39, 1747-1751 (2000).
[CrossRef]

Garcia-Santamaria, F.

F. Garcia-Santamaria, H. T. Miyazaki, A. Urquia, M. Ibisate, M. Belmonte, N. Shinya, F. Meseguer, and C. Lopez, "Nanorobotic manipulation of microspheres for on-chip diamond architectures," Adv. Mater. 14, 1144- 1147, (2002).
[CrossRef]

Gersen, H.

R. J. P. Engelen, Y. Sugimoto, H. Gersen, N. Ikeda, K. Asakawa, and L. Kuipers, "Ultrafast evolution of photonic eigenstates in k-space," Nature Physics 3, 401-405 (2007).
[CrossRef]

Haraguchi, M.

M. Haraguchi, T. Nakai, A. Shinya, T. Okamoto, M. Fukui, T. Koda, R. Shimada, K. Ohtaka, and K. Takeda, "Optical Modes in Two-dimensionally Ordered Dielectric Spheres," Jpn. J. Appl. Phys. 39, 1747-1751 (2000).
[CrossRef]

Haus, J. W.

K. Inoue, M. Wada, K. Sakoda, A. Yamanaka, M. Hayashi, and J. W. Haus, "Fabrication of Two-Dimensional Photonic Band Structure with Near-Infrared Band Gap," Jpn. J. Appl. Phys. 33, 1463-1465 (1994).
[CrossRef]

Hayashi, M.

K. Inoue, M. Wada, K. Sakoda, A. Yamanaka, M. Hayashi, and J. W. Haus, "Fabrication of Two-Dimensional Photonic Band Structure with Near-Infrared Band Gap," Jpn. J. Appl. Phys. 33, 1463-1465 (1994).
[CrossRef]

Hennessy, K.

A. Badolato, K. Hennessy,M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

Hetherington, D. L.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature (London) 394, 251-253 (1998).
[CrossRef]

Hirayama, H.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, "Microassembly of semiconductor three-dimensional photonic crystals," Nat. Mater. 2, 117-121 (2003).
[CrossRef] [PubMed]

Ho, K. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature (London) 394, 251-253 (1998).
[CrossRef]

Hofmann, H.

F. Juillerat, P. Bowen, and H. Hofmann, "Formation and Drying of Colloidal Crystals Using Nanosized Silica Particles," Langmuir 22, 2249-2257 (2006).
[CrossRef] [PubMed]

Hu, E.

A. Badolato, K. Hennessy,M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

Ibisate, M.

F. Garcia-Santamaria, H. T. Miyazaki, A. Urquia, M. Ibisate, M. Belmonte, N. Shinya, F. Meseguer, and C. Lopez, "Nanorobotic manipulation of microspheres for on-chip diamond architectures," Adv. Mater. 14, 1144- 1147, (2002).
[CrossRef]

Ikeda, N.

R. J. P. Engelen, Y. Sugimoto, H. Gersen, N. Ikeda, K. Asakawa, and L. Kuipers, "Ultrafast evolution of photonic eigenstates in k-space," Nature Physics 3, 401-405 (2007).
[CrossRef]

N. Ikeda, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, J. S. Jensen, O. Sigmund, P. I. Borel, M. Kristensen, and K. Asakawa, "Topology optimized photonic crystal waveguide intersections with hightransmittance and low crosstalk," Electron. Lett. 42, 1031-1033 (2006).
[CrossRef]

Imada, A.

K. Ohtaka, Y. Suda, S. Nagano, T. Ueta, A. Imada, T. Koda, J. S. Bae, K. Mizuno, S. Yano, and Y. Segawa, "Photonic band effects in a two-dimensional array of dielectric spheres in the millimeter-wave region," Phys. Rev. B 61, 5267-5279 (2000).
[CrossRef]

T. Fujimura, K. Edamatsu, T. Itoh, R. Shimada, A. Imada, T. Koda, N. Chiba, H. Muramatsu, and T. Ataka, "Scanning near-field optical images of ordered polystyrene particle layers in transmission and luminescence excitation modes," Opt. Lett. 22, 489-491 (1997).
[CrossRef] [PubMed]

Imamoglu, A.

A. Badolato, K. Hennessy,M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

Inoshita, K.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, "Microassembly of semiconductor three-dimensional photonic crystals," Nat. Mater. 2, 117-121 (2003).
[CrossRef] [PubMed]

Inoue, K.

K. Inoue, M. Wada, K. Sakoda, A. Yamanaka, M. Hayashi, and J. W. Haus, "Fabrication of Two-Dimensional Photonic Band Structure with Near-Infrared Band Gap," Jpn. J. Appl. Phys. 33, 1463-1465 (1994).
[CrossRef]

Itoh, T.

Ivanov, I. B.

N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, "Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates," Langmuir 8, 3183-3190 (1992).
[CrossRef]

Jensen, J. S.

N. Ikeda, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, J. S. Jensen, O. Sigmund, P. I. Borel, M. Kristensen, and K. Asakawa, "Topology optimized photonic crystal waveguide intersections with hightransmittance and low crosstalk," Electron. Lett. 42, 1031-1033 (2006).
[CrossRef]

Jimba, Y.

H. T. Miyazaki, H. Miyazaki, Y. Jimba, Y. Kurokawa, N. Shinya, and K. Miyano, "Light diffraction from a bilayer lattice of microspheres enhanced by specular resonance," J. Appl. Phys. 95, 793-805 (2004).
[CrossRef]

H. Miyazaki and Y. Jimba, "Ab initio tight-binding description of morphology-dependent resonance in a bisphere," Phys. Rev. B 62, 7976-7997 (2000).
[CrossRef]

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, "Tight-Binding Photonic Molecule Modes of Resonant Bispheres," Phys. Rev. Lett. 82, 4623-4626 (1999).
[CrossRef]

John, S.

S. John, "Strong Localization of Photons in Certain Disordered Dielectric Superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Juillerat, F.

F. Juillerat, P. Bowen, and H. Hofmann, "Formation and Drying of Colloidal Crystals Using Nanosized Silica Particles," Langmuir 22, 2249-2257 (2006).
[CrossRef] [PubMed]

Karimov, O. Z.

V. N. Astratov, M. S. Skolnick, S. Brand, T. F. Krauss, O. Z. Karimov, R. M. Stevenson, D. M. Whittaker, I. Culshaw, and R. M. De la Rue, "Experimental technique to determine the band structure of two-dimensional photonic lattices," IEE Proc.: Optoelectron. 145, 398-402 (1998).
[CrossRef]

Kasaya, T.

T. Kasaya and H. T. Miyazaki, "Graphical Templates for Accurate Micromanipulation in a Scanning Electron Microscope," Rev. Sci. Instrum., submitted.
[PubMed]

Kawakami, S.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998).
[CrossRef]

Kawashima, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998).
[CrossRef]

Kitano, H.

J. Nakagawa, H. Kitano, F. Minami, T. Sawada, S. Yamaguchi, and K. Ohtaka, "Large pulse distortion in a 3D photonic crystal," J. Lumin. 108, 255-258 (2004).
[CrossRef]

Koda, T.

M. Haraguchi, T. Nakai, A. Shinya, T. Okamoto, M. Fukui, T. Koda, R. Shimada, K. Ohtaka, and K. Takeda, "Optical Modes in Two-dimensionally Ordered Dielectric Spheres," Jpn. J. Appl. Phys. 39, 1747-1751 (2000).
[CrossRef]

S. I. Matsushita, Y. Yagi, T. Miwa, D. A. Tryk, T. Koda, and A. Fujishima, "Light Propagation in Composite Two-Dimensional Arrays of Polystyrene Spherical Particles," Langmuir 16, 636-642 (2000).
[CrossRef]

K. Ohtaka, Y. Suda, S. Nagano, T. Ueta, A. Imada, T. Koda, J. S. Bae, K. Mizuno, S. Yano, and Y. Segawa, "Photonic band effects in a two-dimensional array of dielectric spheres in the millimeter-wave region," Phys. Rev. B 61, 5267-5279 (2000).
[CrossRef]

T. Fujimura, K. Edamatsu, T. Itoh, R. Shimada, A. Imada, T. Koda, N. Chiba, H. Muramatsu, and T. Ataka, "Scanning near-field optical images of ordered polystyrene particle layers in transmission and luminescence excitation modes," Opt. Lett. 22, 489-491 (1997).
[CrossRef] [PubMed]

Kosaka, H.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998).
[CrossRef]

Kralchevsky, P. A.

N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, "Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates," Langmuir 8, 3183-3190 (1992).
[CrossRef]

Krauss, T. F.

V. N. Astratov, M. S. Skolnick, S. Brand, T. F. Krauss, O. Z. Karimov, R. M. Stevenson, D. M. Whittaker, I. Culshaw, and R. M. De la Rue, "Experimental technique to determine the band structure of two-dimensional photonic lattices," IEE Proc.: Optoelectron. 145, 398-402 (1998).
[CrossRef]

T. F. Krauss, R. M. De La Rue, and S. Brand, "Two-dimensional photonic-bandgap structures operating at nearinfrared wavelengths," Nature (London) 383, 699-702 (1996).
[CrossRef]

Kristensen, M.

N. Ikeda, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, J. S. Jensen, O. Sigmund, P. I. Borel, M. Kristensen, and K. Asakawa, "Topology optimized photonic crystal waveguide intersections with hightransmittance and low crosstalk," Electron. Lett. 42, 1031-1033 (2006).
[CrossRef]

Kuipers, L.

R. J. P. Engelen, Y. Sugimoto, H. Gersen, N. Ikeda, K. Asakawa, and L. Kuipers, "Ultrafast evolution of photonic eigenstates in k-space," Nature Physics 3, 401-405 (2007).
[CrossRef]

Kurokawa, Y.

H. T. Miyazaki, H. Miyazaki, Y. Jimba, Y. Kurokawa, N. Shinya, and K. Miyano, "Light diffraction from a bilayer lattice of microspheres enhanced by specular resonance," J. Appl. Phys. 95, 793-805 (2004).
[CrossRef]

Kurtz, S. R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature (London) 394, 251-253 (1998).
[CrossRef]

Kuwata-Gonokami, M.

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, "Tight-Binding Photonic Molecule Modes of Resonant Bispheres," Phys. Rev. Lett. 82, 4623-4626 (1999).
[CrossRef]

Lin, S. Y.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature (London) 394, 251-253 (1998).
[CrossRef]

Lopez, C.

F. Garcia-Santamaria, H. T. Miyazaki, A. Urquia, M. Ibisate, M. Belmonte, N. Shinya, F. Meseguer, and C. Lopez, "Nanorobotic manipulation of microspheres for on-chip diamond architectures," Adv. Mater. 14, 1144- 1147, (2002).
[CrossRef]

Matsushita, S. I.

S. I. Matsushita, Y. Yagi, T. Miwa, D. A. Tryk, T. Koda, and A. Fujishima, "Light Propagation in Composite Two-Dimensional Arrays of Polystyrene Spherical Particles," Langmuir 16, 636-642 (2000).
[CrossRef]

Meseguer, F.

F. Garcia-Santamaria, H. T. Miyazaki, A. Urquia, M. Ibisate, M. Belmonte, N. Shinya, F. Meseguer, and C. Lopez, "Nanorobotic manipulation of microspheres for on-chip diamond architectures," Adv. Mater. 14, 1144- 1147, (2002).
[CrossRef]

Minami, F.

J. Nakagawa, H. Kitano, F. Minami, T. Sawada, S. Yamaguchi, and K. Ohtaka, "Large pulse distortion in a 3D photonic crystal," J. Lumin. 108, 255-258 (2004).
[CrossRef]

Mitsui, T.

T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, "Light Propagation within Colloidal Crystal Wire Fabricated by a Dewetting Process," Nano Lett. 8, 853-858 (2008).
[CrossRef] [PubMed]

Miwa, T.

S. I. Matsushita, Y. Yagi, T. Miwa, D. A. Tryk, T. Koda, and A. Fujishima, "Light Propagation in Composite Two-Dimensional Arrays of Polystyrene Spherical Particles," Langmuir 16, 636-642 (2000).
[CrossRef]

Miyano, K.

H. T. Miyazaki, H. Miyazaki, Y. Jimba, Y. Kurokawa, N. Shinya, and K. Miyano, "Light diffraction from a bilayer lattice of microspheres enhanced by specular resonance," J. Appl. Phys. 95, 793-805 (2004).
[CrossRef]

H. T. Miyazaki, H. Miyazaki, N. Shinya, and K. Miyano, "Enhanced light diffraction from a double-layer microsphere lattice," Appl. Phys. Lett. 83, 3662-3664 (2003).
[CrossRef]

H. T. Miyazaki, H. Miyazaki, and K. Miyano, "Analysis on specular resonance in dielectric bispheres using rigorous and geometrical-optics theories," J. Opt. Soc. Am. A 20, 1771-1784 (2003).
[CrossRef]

H. T. Miyazaki, H. Miyazaki, and K. Miyano, "Anomalous scattering from dielectric bispheres in the specular direction," Opt. Lett. 27, 1208-1210 (2002).
[CrossRef]

Miyazaki, H.

H. T. Miyazaki, H. Miyazaki, Y. Jimba, Y. Kurokawa, N. Shinya, and K. Miyano, "Light diffraction from a bilayer lattice of microspheres enhanced by specular resonance," J. Appl. Phys. 95, 793-805 (2004).
[CrossRef]

H. T. Miyazaki, H. Miyazaki, and K. Miyano, "Analysis on specular resonance in dielectric bispheres using rigorous and geometrical-optics theories," J. Opt. Soc. Am. A 20, 1771-1784 (2003).
[CrossRef]

H. T. Miyazaki, H. Miyazaki, N. Shinya, and K. Miyano, "Enhanced light diffraction from a double-layer microsphere lattice," Appl. Phys. Lett. 83, 3662-3664 (2003).
[CrossRef]

H. T. Miyazaki, H. Miyazaki, and K. Miyano, "Anomalous scattering from dielectric bispheres in the specular direction," Opt. Lett. 27, 1208-1210 (2002).
[CrossRef]

H. Miyazaki and Y. Jimba, "Ab initio tight-binding description of morphology-dependent resonance in a bisphere," Phys. Rev. B 62, 7976-7997 (2000).
[CrossRef]

H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, "Photonic band in two-dimensional lattices of micrometersized spheres mechanically arranged under a scanning electron microscope," J. Appl. Phys. 87, 7152-7158 (2000).
[CrossRef]

H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, "Photonic band in two-dimensional lattices of micrometersized spheres mechanically arranged under a scanning electron microscope," J. Appl. Phys. 87, 7152 (2000).
[CrossRef]

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, "Tight-Binding Photonic Molecule Modes of Resonant Bispheres," Phys. Rev. Lett. 82, 4623-4626 (1999).
[CrossRef]

H. Miyazaki and T. Sato, "Mechanical Assembly of Three-Dimensional Microstructures from Fine Particles," Adv. Robotics 11, 169-185 (1997).
[CrossRef]

Miyazaki, H. T.

H. T. Miyazaki, H. Miyazaki, Y. Jimba, Y. Kurokawa, N. Shinya, and K. Miyano, "Light diffraction from a bilayer lattice of microspheres enhanced by specular resonance," J. Appl. Phys. 95, 793-805 (2004).
[CrossRef]

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, "Microassembly of semiconductor three-dimensional photonic crystals," Nat. Mater. 2, 117-121 (2003).
[CrossRef] [PubMed]

H. T. Miyazaki, H. Miyazaki, and K. Miyano, "Analysis on specular resonance in dielectric bispheres using rigorous and geometrical-optics theories," J. Opt. Soc. Am. A 20, 1771-1784 (2003).
[CrossRef]

H. T. Miyazaki, H. Miyazaki, N. Shinya, and K. Miyano, "Enhanced light diffraction from a double-layer microsphere lattice," Appl. Phys. Lett. 83, 3662-3664 (2003).
[CrossRef]

F. Garcia-Santamaria, H. T. Miyazaki, A. Urquia, M. Ibisate, M. Belmonte, N. Shinya, F. Meseguer, and C. Lopez, "Nanorobotic manipulation of microspheres for on-chip diamond architectures," Adv. Mater. 14, 1144- 1147, (2002).
[CrossRef]

H. T. Miyazaki, H. Miyazaki, and K. Miyano, "Anomalous scattering from dielectric bispheres in the specular direction," Opt. Lett. 27, 1208-1210 (2002).
[CrossRef]

H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, "Photonic band in two-dimensional lattices of micrometersized spheres mechanically arranged under a scanning electron microscope," J. Appl. Phys. 87, 7152-7158 (2000).
[CrossRef]

H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, "Photonic band in two-dimensional lattices of micrometersized spheres mechanically arranged under a scanning electron microscope," J. Appl. Phys. 87, 7152 (2000).
[CrossRef]

T. Kasaya and H. T. Miyazaki, "Graphical Templates for Accurate Micromanipulation in a Scanning Electron Microscope," Rev. Sci. Instrum., submitted.
[PubMed]

Mizuno, K.

K. Ohtaka, Y. Suda, S. Nagano, T. Ueta, A. Imada, T. Koda, J. S. Bae, K. Mizuno, S. Yano, and Y. Segawa, "Photonic band effects in a two-dimensional array of dielectric spheres in the millimeter-wave region," Phys. Rev. B 61, 5267-5279 (2000).
[CrossRef]

Mizutani, A.

N. Ikeda, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, J. S. Jensen, O. Sigmund, P. I. Borel, M. Kristensen, and K. Asakawa, "Topology optimized photonic crystal waveguide intersections with hightransmittance and low crosstalk," Electron. Lett. 42, 1031-1033 (2006).
[CrossRef]

Mukaiyama, T.

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, "Tight-Binding Photonic Molecule Modes of Resonant Bispheres," Phys. Rev. Lett. 82, 4623-4626 (1999).
[CrossRef]

Muramatsu, H.

Nagano, S.

K. Ohtaka, Y. Suda, S. Nagano, T. Ueta, A. Imada, T. Koda, J. S. Bae, K. Mizuno, S. Yano, and Y. Segawa, "Photonic band effects in a two-dimensional array of dielectric spheres in the millimeter-wave region," Phys. Rev. B 61, 5267-5279 (2000).
[CrossRef]

Nagayama, K.

N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, "Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates," Langmuir 8, 3183-3190 (1992).
[CrossRef]

Nakagawa, J.

J. Nakagawa, H. Kitano, F. Minami, T. Sawada, S. Yamaguchi, and K. Ohtaka, "Large pulse distortion in a 3D photonic crystal," J. Lumin. 108, 255-258 (2004).
[CrossRef]

Nakai, T.

M. Haraguchi, T. Nakai, A. Shinya, T. Okamoto, M. Fukui, T. Koda, R. Shimada, K. Ohtaka, and K. Takeda, "Optical Modes in Two-dimensionally Ordered Dielectric Spheres," Jpn. J. Appl. Phys. 39, 1747-1751 (2000).
[CrossRef]

Noda, S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944-947 (2003).
[CrossRef]

Notomi, M.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998).
[CrossRef]

Ohtaka, K.

J. Nakagawa, H. Kitano, F. Minami, T. Sawada, S. Yamaguchi, and K. Ohtaka, "Large pulse distortion in a 3D photonic crystal," J. Lumin. 108, 255-258 (2004).
[CrossRef]

H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, "Photonic band in two-dimensional lattices of micrometersized spheres mechanically arranged under a scanning electron microscope," J. Appl. Phys. 87, 7152 (2000).
[CrossRef]

H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, "Photonic band in two-dimensional lattices of micrometersized spheres mechanically arranged under a scanning electron microscope," J. Appl. Phys. 87, 7152-7158 (2000).
[CrossRef]

M. Haraguchi, T. Nakai, A. Shinya, T. Okamoto, M. Fukui, T. Koda, R. Shimada, K. Ohtaka, and K. Takeda, "Optical Modes in Two-dimensionally Ordered Dielectric Spheres," Jpn. J. Appl. Phys. 39, 1747-1751 (2000).
[CrossRef]

K. Ohtaka, Y. Suda, S. Nagano, T. Ueta, A. Imada, T. Koda, J. S. Bae, K. Mizuno, S. Yano, and Y. Segawa, "Photonic band effects in a two-dimensional array of dielectric spheres in the millimeter-wave region," Phys. Rev. B 61, 5267-5279 (2000).
[CrossRef]

K. Ohtaka and Yukito Tanabe, "Photonic Band Using Vector Spherical Waves. I. Various Properties of Bloch Electric Fields and Heavy Photons," J. Phys. Soc. Jpn. 65, 2265-2275 (1996).
[CrossRef]

Oikawa, H.

T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, "Light Propagation within Colloidal Crystal Wire Fabricated by a Dewetting Process," Nano Lett. 8, 853-858 (2008).
[CrossRef] [PubMed]

Okamoto, T.

M. Haraguchi, T. Nakai, A. Shinya, T. Okamoto, M. Fukui, T. Koda, R. Shimada, K. Ohtaka, and K. Takeda, "Optical Modes in Two-dimensionally Ordered Dielectric Spheres," Jpn. J. Appl. Phys. 39, 1747-1751 (2000).
[CrossRef]

Onodera, T.

T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, "Light Propagation within Colloidal Crystal Wire Fabricated by a Dewetting Process," Nano Lett. 8, 853-858 (2008).
[CrossRef] [PubMed]

Ozaki, N.

N. Ikeda, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, J. S. Jensen, O. Sigmund, P. I. Borel, M. Kristensen, and K. Asakawa, "Topology optimized photonic crystal waveguide intersections with hightransmittance and low crosstalk," Electron. Lett. 42, 1031-1033 (2006).
[CrossRef]

Petroff, P. M.

A. Badolato, K. Hennessy,M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

Sakoda, K.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, "Microassembly of semiconductor three-dimensional photonic crystals," Nat. Mater. 2, 117-121 (2003).
[CrossRef] [PubMed]

K. Inoue, M. Wada, K. Sakoda, A. Yamanaka, M. Hayashi, and J. W. Haus, "Fabrication of Two-Dimensional Photonic Band Structure with Near-Infrared Band Gap," Jpn. J. Appl. Phys. 33, 1463-1465 (1994).
[CrossRef]

Sato, T.

H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, "Photonic band in two-dimensional lattices of micrometersized spheres mechanically arranged under a scanning electron microscope," J. Appl. Phys. 87, 7152-7158 (2000).
[CrossRef]

H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, "Photonic band in two-dimensional lattices of micrometersized spheres mechanically arranged under a scanning electron microscope," J. Appl. Phys. 87, 7152 (2000).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998).
[CrossRef]

H. Miyazaki and T. Sato, "Mechanical Assembly of Three-Dimensional Microstructures from Fine Particles," Adv. Robotics 11, 169-185 (1997).
[CrossRef]

Sawada, T.

J. Nakagawa, H. Kitano, F. Minami, T. Sawada, S. Yamaguchi, and K. Ohtaka, "Large pulse distortion in a 3D photonic crystal," J. Lumin. 108, 255-258 (2004).
[CrossRef]

Segawa, Y.

K. Ohtaka, Y. Suda, S. Nagano, T. Ueta, A. Imada, T. Koda, J. S. Bae, K. Mizuno, S. Yano, and Y. Segawa, "Photonic band effects in a two-dimensional array of dielectric spheres in the millimeter-wave region," Phys. Rev. B 61, 5267-5279 (2000).
[CrossRef]

Shimada, R.

M. Haraguchi, T. Nakai, A. Shinya, T. Okamoto, M. Fukui, T. Koda, R. Shimada, K. Ohtaka, and K. Takeda, "Optical Modes in Two-dimensionally Ordered Dielectric Spheres," Jpn. J. Appl. Phys. 39, 1747-1751 (2000).
[CrossRef]

T. Fujimura, K. Edamatsu, T. Itoh, R. Shimada, A. Imada, T. Koda, N. Chiba, H. Muramatsu, and T. Ataka, "Scanning near-field optical images of ordered polystyrene particle layers in transmission and luminescence excitation modes," Opt. Lett. 22, 489-491 (1997).
[CrossRef] [PubMed]

Shinya, A.

M. Haraguchi, T. Nakai, A. Shinya, T. Okamoto, M. Fukui, T. Koda, R. Shimada, K. Ohtaka, and K. Takeda, "Optical Modes in Two-dimensionally Ordered Dielectric Spheres," Jpn. J. Appl. Phys. 39, 1747-1751 (2000).
[CrossRef]

Shinya, N.

H. T. Miyazaki, H. Miyazaki, Y. Jimba, Y. Kurokawa, N. Shinya, and K. Miyano, "Light diffraction from a bilayer lattice of microspheres enhanced by specular resonance," J. Appl. Phys. 95, 793-805 (2004).
[CrossRef]

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, "Microassembly of semiconductor three-dimensional photonic crystals," Nat. Mater. 2, 117-121 (2003).
[CrossRef] [PubMed]

H. T. Miyazaki, H. Miyazaki, N. Shinya, and K. Miyano, "Enhanced light diffraction from a double-layer microsphere lattice," Appl. Phys. Lett. 83, 3662-3664 (2003).
[CrossRef]

F. Garcia-Santamaria, H. T. Miyazaki, A. Urquia, M. Ibisate, M. Belmonte, N. Shinya, F. Meseguer, and C. Lopez, "Nanorobotic manipulation of microspheres for on-chip diamond architectures," Adv. Mater. 14, 1144- 1147, (2002).
[CrossRef]

Sigalas, M. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature (London) 394, 251-253 (1998).
[CrossRef]

Sigmund, O.

N. Ikeda, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, J. S. Jensen, O. Sigmund, P. I. Borel, M. Kristensen, and K. Asakawa, "Topology optimized photonic crystal waveguide intersections with hightransmittance and low crosstalk," Electron. Lett. 42, 1031-1033 (2006).
[CrossRef]

Skolnick, M. S.

V. N. Astratov, M. S. Skolnick, S. Brand, T. F. Krauss, O. Z. Karimov, R. M. Stevenson, D. M. Whittaker, I. Culshaw, and R. M. De la Rue, "Experimental technique to determine the band structure of two-dimensional photonic lattices," IEE Proc.: Optoelectron. 145, 398-402 (1998).
[CrossRef]

Smith, B. K.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature (London) 394, 251-253 (1998).
[CrossRef]

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944-947 (2003).
[CrossRef]

Stevenson, R. M.

V. N. Astratov, M. S. Skolnick, S. Brand, T. F. Krauss, O. Z. Karimov, R. M. Stevenson, D. M. Whittaker, I. Culshaw, and R. M. De la Rue, "Experimental technique to determine the band structure of two-dimensional photonic lattices," IEE Proc.: Optoelectron. 145, 398-402 (1998).
[CrossRef]

Suda, Y.

K. Ohtaka, Y. Suda, S. Nagano, T. Ueta, A. Imada, T. Koda, J. S. Bae, K. Mizuno, S. Yano, and Y. Segawa, "Photonic band effects in a two-dimensional array of dielectric spheres in the millimeter-wave region," Phys. Rev. B 61, 5267-5279 (2000).
[CrossRef]

Sugimoto, Y.

R. J. P. Engelen, Y. Sugimoto, H. Gersen, N. Ikeda, K. Asakawa, and L. Kuipers, "Ultrafast evolution of photonic eigenstates in k-space," Nature Physics 3, 401-405 (2007).
[CrossRef]

N. Ikeda, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, J. S. Jensen, O. Sigmund, P. I. Borel, M. Kristensen, and K. Asakawa, "Topology optimized photonic crystal waveguide intersections with hightransmittance and low crosstalk," Electron. Lett. 42, 1031-1033 (2006).
[CrossRef]

Takata, Y.

N. Ikeda, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, J. S. Jensen, O. Sigmund, P. I. Borel, M. Kristensen, and K. Asakawa, "Topology optimized photonic crystal waveguide intersections with hightransmittance and low crosstalk," Electron. Lett. 42, 1031-1033 (2006).
[CrossRef]

Takaya, Y.

T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, "Light Propagation within Colloidal Crystal Wire Fabricated by a Dewetting Process," Nano Lett. 8, 853-858 (2008).
[CrossRef] [PubMed]

Takeda, K.

M. Haraguchi, T. Nakai, A. Shinya, T. Okamoto, M. Fukui, T. Koda, R. Shimada, K. Ohtaka, and K. Takeda, "Optical Modes in Two-dimensionally Ordered Dielectric Spheres," Jpn. J. Appl. Phys. 39, 1747-1751 (2000).
[CrossRef]

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, "Tight-Binding Photonic Molecule Modes of Resonant Bispheres," Phys. Rev. Lett. 82, 4623-4626 (1999).
[CrossRef]

Tamamura, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998).
[CrossRef]

Tanabe, Yukito

K. Ohtaka and Yukito Tanabe, "Photonic Band Using Vector Spherical Waves. I. Various Properties of Bloch Electric Fields and Heavy Photons," J. Phys. Soc. Jpn. 65, 2265-2275 (1996).
[CrossRef]

Tarhan, ?I. ?I.

Tomita, A.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998).
[CrossRef]

Tryk, D. A.

S. I. Matsushita, Y. Yagi, T. Miwa, D. A. Tryk, T. Koda, and A. Fujishima, "Light Propagation in Composite Two-Dimensional Arrays of Polystyrene Spherical Particles," Langmuir 16, 636-642 (2000).
[CrossRef]

Tsutsui, T.

T. Yamasaki and T. Tsutsui, "Fabrication and Optical Properties of Two-Dimensional Ordered Arrays of Silica Microspheres," Jpn. J. Appl. Phys. 38, 5916-5921 (1999).
[CrossRef]

Ueta, T.

K. Ohtaka, Y. Suda, S. Nagano, T. Ueta, A. Imada, T. Koda, J. S. Bae, K. Mizuno, S. Yano, and Y. Segawa, "Photonic band effects in a two-dimensional array of dielectric spheres in the millimeter-wave region," Phys. Rev. B 61, 5267-5279 (2000).
[CrossRef]

Urquia, A.

F. Garcia-Santamaria, H. T. Miyazaki, A. Urquia, M. Ibisate, M. Belmonte, N. Shinya, F. Meseguer, and C. Lopez, "Nanorobotic manipulation of microspheres for on-chip diamond architectures," Adv. Mater. 14, 1144- 1147, (2002).
[CrossRef]

Velev, O. D.

N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, "Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates," Langmuir 8, 3183-3190 (1992).
[CrossRef]

Wada, M.

K. Inoue, M. Wada, K. Sakoda, A. Yamanaka, M. Hayashi, and J. W. Haus, "Fabrication of Two-Dimensional Photonic Band Structure with Near-Infrared Band Gap," Jpn. J. Appl. Phys. 33, 1463-1465 (1994).
[CrossRef]

Wakayama, Y.

T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, "Light Propagation within Colloidal Crystal Wire Fabricated by a Dewetting Process," Nano Lett. 8, 853-858 (2008).
[CrossRef] [PubMed]

Watanabe, Y.

N. Ikeda, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, J. S. Jensen, O. Sigmund, P. I. Borel, M. Kristensen, and K. Asakawa, "Topology optimized photonic crystal waveguide intersections with hightransmittance and low crosstalk," Electron. Lett. 42, 1031-1033 (2006).
[CrossRef]

Watson, G. H.

Whittaker, D. M.

V. N. Astratov, M. S. Skolnick, S. Brand, T. F. Krauss, O. Z. Karimov, R. M. Stevenson, D. M. Whittaker, I. Culshaw, and R. M. De la Rue, "Experimental technique to determine the band structure of two-dimensional photonic lattices," IEE Proc.: Optoelectron. 145, 398-402 (1998).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Yagi, Y.

S. I. Matsushita, Y. Yagi, T. Miwa, D. A. Tryk, T. Koda, and A. Fujishima, "Light Propagation in Composite Two-Dimensional Arrays of Polystyrene Spherical Particles," Langmuir 16, 636-642 (2000).
[CrossRef]

Yamaguchi, S.

J. Nakagawa, H. Kitano, F. Minami, T. Sawada, S. Yamaguchi, and K. Ohtaka, "Large pulse distortion in a 3D photonic crystal," J. Lumin. 108, 255-258 (2004).
[CrossRef]

Yamanaka, A.

K. Inoue, M. Wada, K. Sakoda, A. Yamanaka, M. Hayashi, and J. W. Haus, "Fabrication of Two-Dimensional Photonic Band Structure with Near-Infrared Band Gap," Jpn. J. Appl. Phys. 33, 1463-1465 (1994).
[CrossRef]

Yamasaki, T.

T. Yamasaki and T. Tsutsui, "Fabrication and Optical Properties of Two-Dimensional Ordered Arrays of Silica Microspheres," Jpn. J. Appl. Phys. 38, 5916-5921 (1999).
[CrossRef]

Yamilov, A.

A. Yamilov and H. Cao, "Density of resonant states and a manifestation of photonic band structure in small clusters of spherical particles," Phys. Rev. B 68, 085111 (2003).
[CrossRef]

Yano, S.

K. Ohtaka, Y. Suda, S. Nagano, T. Ueta, A. Imada, T. Koda, J. S. Bae, K. Mizuno, S. Yano, and Y. Segawa, "Photonic band effects in a two-dimensional array of dielectric spheres in the millimeter-wave region," Phys. Rev. B 61, 5267-5279 (2000).
[CrossRef]

Yonekura, J.

T. Baba, N. Fukaya, and J. Yonekura, "Observation of light propagation in photonic crystal optical waveguides with bends," Electron. Lett. 35, 654-655 (1999).
[CrossRef]

Yoshimura, H.

N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, "Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates," Langmuir 8, 3183-3190 (1992).
[CrossRef]

Zinkin, M. P.

Zubrzycki, W.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature (London) 394, 251-253 (1998).
[CrossRef]

Adv. Mater.

F. Garcia-Santamaria, H. T. Miyazaki, A. Urquia, M. Ibisate, M. Belmonte, N. Shinya, F. Meseguer, and C. Lopez, "Nanorobotic manipulation of microspheres for on-chip diamond architectures," Adv. Mater. 14, 1144- 1147, (2002).
[CrossRef]

Adv. Robotics

H. Miyazaki and T. Sato, "Mechanical Assembly of Three-Dimensional Microstructures from Fine Particles," Adv. Robotics 11, 169-185 (1997).
[CrossRef]

Appl. Phys. Lett.

H. T. Miyazaki, H. Miyazaki, N. Shinya, and K. Miyano, "Enhanced light diffraction from a double-layer microsphere lattice," Appl. Phys. Lett. 83, 3662-3664 (2003).
[CrossRef]

Electron. Lett.

T. Baba, N. Fukaya, and J. Yonekura, "Observation of light propagation in photonic crystal optical waveguides with bends," Electron. Lett. 35, 654-655 (1999).
[CrossRef]

N. Ikeda, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, J. S. Jensen, O. Sigmund, P. I. Borel, M. Kristensen, and K. Asakawa, "Topology optimized photonic crystal waveguide intersections with hightransmittance and low crosstalk," Electron. Lett. 42, 1031-1033 (2006).
[CrossRef]

IEE Proc.: Optoelectron.

V. N. Astratov, M. S. Skolnick, S. Brand, T. F. Krauss, O. Z. Karimov, R. M. Stevenson, D. M. Whittaker, I. Culshaw, and R. M. De la Rue, "Experimental technique to determine the band structure of two-dimensional photonic lattices," IEE Proc.: Optoelectron. 145, 398-402 (1998).
[CrossRef]

J. Appl. Phys.

H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, "Photonic band in two-dimensional lattices of micrometersized spheres mechanically arranged under a scanning electron microscope," J. Appl. Phys. 87, 7152-7158 (2000).
[CrossRef]

H. T. Miyazaki, H. Miyazaki, Y. Jimba, Y. Kurokawa, N. Shinya, and K. Miyano, "Light diffraction from a bilayer lattice of microspheres enhanced by specular resonance," J. Appl. Phys. 95, 793-805 (2004).
[CrossRef]

H. T. Miyazaki, H. Miyazaki, K. Ohtaka, and T. Sato, "Photonic band in two-dimensional lattices of micrometersized spheres mechanically arranged under a scanning electron microscope," J. Appl. Phys. 87, 7152 (2000).
[CrossRef]

J. Lumin.

J. Nakagawa, H. Kitano, F. Minami, T. Sawada, S. Yamaguchi, and K. Ohtaka, "Large pulse distortion in a 3D photonic crystal," J. Lumin. 108, 255-258 (2004).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. Soc. Jpn.

K. Ohtaka and Yukito Tanabe, "Photonic Band Using Vector Spherical Waves. I. Various Properties of Bloch Electric Fields and Heavy Photons," J. Phys. Soc. Jpn. 65, 2265-2275 (1996).
[CrossRef]

Jpn. J. Appl. Phys.

M. Haraguchi, T. Nakai, A. Shinya, T. Okamoto, M. Fukui, T. Koda, R. Shimada, K. Ohtaka, and K. Takeda, "Optical Modes in Two-dimensionally Ordered Dielectric Spheres," Jpn. J. Appl. Phys. 39, 1747-1751 (2000).
[CrossRef]

T. Yamasaki and T. Tsutsui, "Fabrication and Optical Properties of Two-Dimensional Ordered Arrays of Silica Microspheres," Jpn. J. Appl. Phys. 38, 5916-5921 (1999).
[CrossRef]

K. Inoue, M. Wada, K. Sakoda, A. Yamanaka, M. Hayashi, and J. W. Haus, "Fabrication of Two-Dimensional Photonic Band Structure with Near-Infrared Band Gap," Jpn. J. Appl. Phys. 33, 1463-1465 (1994).
[CrossRef]

Langmuir

N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, "Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates," Langmuir 8, 3183-3190 (1992).
[CrossRef]

F. Juillerat, P. Bowen, and H. Hofmann, "Formation and Drying of Colloidal Crystals Using Nanosized Silica Particles," Langmuir 22, 2249-2257 (2006).
[CrossRef] [PubMed]

S. I. Matsushita, Y. Yagi, T. Miwa, D. A. Tryk, T. Koda, and A. Fujishima, "Light Propagation in Composite Two-Dimensional Arrays of Polystyrene Spherical Particles," Langmuir 16, 636-642 (2000).
[CrossRef]

Nano Lett.

T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, "Light Propagation within Colloidal Crystal Wire Fabricated by a Dewetting Process," Nano Lett. 8, 853-858 (2008).
[CrossRef] [PubMed]

Nat. Mater.

K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, "Microassembly of semiconductor three-dimensional photonic crystals," Nat. Mater. 2, 117-121 (2003).
[CrossRef] [PubMed]

Nature (London)

T. F. Krauss, R. M. De La Rue, and S. Brand, "Two-dimensional photonic-bandgap structures operating at nearinfrared wavelengths," Nature (London) 383, 699-702 (1996).
[CrossRef]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature (London) 394, 251-253 (1998).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature (London) 425, 944-947 (2003).
[CrossRef]

Nature Physics

R. J. P. Engelen, Y. Sugimoto, H. Gersen, N. Ikeda, K. Asakawa, and L. Kuipers, "Ultrafast evolution of photonic eigenstates in k-space," Nature Physics 3, 401-405 (2007).
[CrossRef]

Opt. Lett.

Phys. Rev. B

A. Yamilov and H. Cao, "Density of resonant states and a manifestation of photonic band structure in small clusters of spherical particles," Phys. Rev. B 68, 085111 (2003).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998).
[CrossRef]

H. Miyazaki and Y. Jimba, "Ab initio tight-binding description of morphology-dependent resonance in a bisphere," Phys. Rev. B 62, 7976-7997 (2000).
[CrossRef]

K. Ohtaka, Y. Suda, S. Nagano, T. Ueta, A. Imada, T. Koda, J. S. Bae, K. Mizuno, S. Yano, and Y. Segawa, "Photonic band effects in a two-dimensional array of dielectric spheres in the millimeter-wave region," Phys. Rev. B 61, 5267-5279 (2000).
[CrossRef]

Phys. Rev. Lett.

E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, "Strong Localization of Photons in Certain Disordered Dielectric Superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, "Tight-Binding Photonic Molecule Modes of Resonant Bispheres," Phys. Rev. Lett. 82, 4623-4626 (1999).
[CrossRef]

Rev. Sci. Instrum.

T. Kasaya and H. T. Miyazaki, "Graphical Templates for Accurate Micromanipulation in a Scanning Electron Microscope," Rev. Sci. Instrum., submitted.
[PubMed]

Science

A. Badolato, K. Hennessy,M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

Other

S. Noda and T. Baba, Roadmap on Photonic Crystals (Kluwer Academic, Dordrecht, 2003).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and Sons, New York, 1983).

At an early stage of our research, we investigated light propagation in clusters solely composed of polystyrene (PSt) particles as in the paper by Matsushita et al. However, we found that non-fluorescent PSt particles become fluorescent upon electron beam (EB) irradiation during the micromanipulation. It was difficult to distinguish the luminescence from the dye-doped and undoped PSt particles. Since silica particles were found to be unaffected by the EB irradiation, we employed silica as non-fluorescent particles.

The directions of the eight inverted points are [±1±1±1], [±1±1∓5], [±1∓5±1], and [∓5±1±1].

The dye molecules doped in the PSt particles gradually degrade upon electron beam irradiation. Therefore, the time allowed for the manipulation is limited. Since the top layer of the class-2 or larger clusters is composed of a large number of particles, it was difficult to assemble sufficiently accurate lattices within the limited time.

Supplementary Material (4)

» Media 1: MOV (24 KB)     
» Media 2: MOV (25 KB)     
» Media 3: MOV (33 KB)     
» Media 4: MOV (37 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

The observation of light propagation in photonic clusters. (a) The setup of the photonic cluster and the objective lens. The fluorescent particle in the photonic cluster is excited by a 532-nm laser and the fluorescence is observed through the glass substrate. The z-axis is set as the direction from the cluster to the objective lens. (b) A magnified image around the cluster. The propagation was systematically observed by moving the focal plane at various z positions.

Fig. 2.
Fig. 2.

The self-assembled array of the mixture of non-fluorescent silica particles and a small amount of fluorescent PSt particles. In all images, the bar indicates 3 µm. (a) An SEM image of the array. (b) A magnified image of (a); spheres of the lower layer can be observed at the interstitial points of the top-layer array. (c) A fluorescence micrograph of the self-assembled array shown in (a). The plane of the focus is presumably positioned slightly inside the surface of the array. The circles indicate the triangular and hexagonal patterns. (d) and (e) show magnified images of the circles shown in (c). images.

Fig. 3.
Fig. 3.

SEM micrographs of the class-1 photonic clusters assembled by micromanipulation. The fluorescent particles are indicated by red circles. (a) The fcc cluster and (b) the hcp cluster. (c) (Media 1), (d) (Media 2) Propagation images observed at various z positions are shown at the center, along with the patterns in the self-assembled array at the right-hand side. The illustrations presenting the position of the focal plane are shown on the left-hand side. The bars indicate 1 µm in (a) and (b) and 3 µm in (c) and (d).

Fig. 4.
Fig. 4.

(a), (b) SEM micrographs of class-2 photonic clusters, and (c) (Media 3) and (d) (Media 4) propagation images. Refer to the caption of Fig. 3 for details.

Fig. 5.
Fig. 5.

(a) The Brillouin zone of an fcc lattice utilized for the reasonable determination of the positions of the oscillating dipoles. The z-axis of the cluster is aligned to agree with one of the 〈111〉 directions. The one-sixth piece of the cluster is shown in green. (b) The points in the eight 〈111〉 directions on the surface of the fluorescent particle are indicated in blue. (c) The eight 〈111〉 directions after 180° rotation are indicated in blue.

Fig. 6.
Fig. 6.

Comparison of the light propagation images in the class-1 fcc cluster obtained in the experiment and that obtained in the calculation. From left to right: the illustrations presenting the position of the focal plane, experimental results, calculation results (blue indicates zero and red indicates the maximum), and the three-value map obtained by digitizing the calculation result. The distribution of the light intensity was obtained in the range of z=-3H/2-+H at a step of H/2. Black dashed lines in the calculation images of (b) and (d) indicate the positions of the spheres of the second and first layers. The portions in the cluster between the focal plane and the objective lens are indicated in green in the illustrations on the left-hand side. The triangular patterns are seen in both the experiment and calculation at z=H/2 and H. The color scales in the experiment and calculation are common for (a)–(f).

Fig. 7.
Fig. 7.

Comparison of the light propagation images in the class-1 hcp cluster obtained in the experiment and that obtained in the calculation. Refer to the caption of Fig. 6 for details. The hexagonal pattern and the wing-shaped patterns (yellow lines) are observed in both of the experiment and calculation at z=H and 0, respectively. The appearance of an intense spot at the center at z=0 (green circle) is a characteristic feature for the clusters comprising non-fluorescent silica particles.

Fig. 8.
Fig. 8.

Comparison of the light propagation images in the class-2 fcc cluster obtained in the experiment and that obtained in the calculation. From left to right: the illustrations presenting the position of the focal plane, experimental results, calculation results (blue indicates zero and red indicates the maximum), and the three-value map obtained by digitizing the calculation result. The distribution of the light intensity was obtained in the range of z=0-+H at a step of H/2. Black dashed lines in the calculation image of (a) indicates the position of the spheres of the first layer. The portions in the cluster between the focal plane and the objective lens are indicated in green in the illustrations on the left-hand side. The color scales in the experiment and calculation are common for (a)–(c) and also for Figs. 13 (a)–(c).

Fig. 9.
Fig. 9.

Comparison of the light propagation images in the class-2 hcp cluster obtained in the experiment and that obtained in the calculation. Refer to the caption of Fig. 8 for details. The one-third part at the upper left of the experimental image is indicated by the white lines in (c). The color scales in the experiment and calculation are common for (a)–(c) and also for Figs. 14 (a)–(c).

Fig. 10.
Fig. 10.

Scanning micrographs of the clusters in which all the non-fluorescent particles in the third layer are removed from the class-2 clusters; these clusters are referred to as class-1.5 clusters. The fluorescent particles are indicated by red circles. The bars indicate 1 µm. (a) fcc and (b) hcp. The arrows in (b) show the possible propagation paths that dominate the emergence of the three bright spots shown in Fig. 12.

Fig. 11.
Fig. 11.

Comparison of the light propagation images in the class-1.5 fcc cluster obtained in the experiment and that obtained in the calculation. Refer to the caption of Fig. 8 for details. The color scales in the experiment and calculation are common for (a)–(c).

Fig. 12.
Fig. 12.

Comparison of the light propagation images in the class-1.5 hcp cluster obtained in the experiment and that obtained in the calculation. Refer to the caption of Fig. 8 for details. The color scales in the experiment and calculation are common for (a)–(c).

Fig. 13.
Fig. 13.

Comparison of the six-dot-triangular patterns in the experimental images for the self-assembled array and in the calculated light propagation images for the fcc clusters of class 3 and class 4. From left to right: the illustrations presenting the position of the focal plane, triangular patterns in the self-assembled array, and calculation results (blue indicates zero and red indicates the maximum) of class 3 and class 4. The z values in the self-assembled array are determined in the same manner as that shown in Fig. 3. The distribution of the light intensity was obtained in the range of z=0-+H at a step of H/2. Black dashed lines in the calculation image of (a) indicate the positions of the spheres of the first layer. The portions in the cluster between the focal plane and the objective lens are indicated in green in the illustrations on the left-hand side. The color scales in the experiment and calculation are common for (a)–(c) and also for Figs. 8 (a)–(c).

Fig. 14.
Fig. 14.

Comparison of the seven-dot-hexagonal patterns in the experimental images for the self-assembled array and in the calculated light propagation images for the fcc clusters of class 3 and class 4. Refer to the caption of Fig. 13 for details. The color scales in the experiment and calculation are common for (a)–(c) and also for Figs. 9 (a)–(c).

Fig. 15.
Fig. 15.

(a) The relationship between the integrated intensities of the two propagation modes (central and outward propagations) and the cluster sizes. (b) Similar to (a), except that the vertical axis shows the intensities per sphere. The red and blue lines correspond to the fcc and hcp clusters, respectively. The solid lines indicate the central propagation and the dashed lines indicate the outward propagation. The intensity ratio of the central propagation to the outward propagation in (b) gives the contrast of the triangular or hexagonal patterns to the background intensity in the propagation images.

Metrics