Abstract

A self-referenced octave-spanning Ti:sapphire laser with 2.166 GHz repetition rate is demonstrated. The laser features both direct generation of octave-spanning spectra and a dual-output design for nonintrusive carrier-envelope (CE) phase-stabilization. Only a few percent of total power containing 1f and 2f spectral components is coupled out through a specially designed laser mirror and generates a >50 dB CE beat note in 100 kHz resolution bandwidth without perturbing the main output that still delivers octave-spanning spectra and 750 mW of output power.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Udem, R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology," Nature 416, 233-237 (2002).
    [CrossRef] [PubMed]
  2. Z. Jiang, D. E. Leaird, and A. M. Weiner, "Line-by-line pulse shaping control for optical arbitrary waveform generation," Opt. Express 13, 10431-10439 (2005).
    [CrossRef] [PubMed]
  3. C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, "A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1)," Nature 452, 610-612 (2008).
    [CrossRef] [PubMed]
  4. A. Bartels, T. Dekorsy, and H. Kurz, "Femtosecond Ti : sapphire ring laser with a 2-GHz repetition rate and its application in time-resolved spectroscopy," Opt. Lett. 24, 996-998 (1999).
    [CrossRef]
  5. A. Bartels, and H. Kurz, "Generation of a broadband continuum by a Ti : sapphire femtosecond oscillator with a 1-GHz repetition rate," Opt. Lett. 27, 1839-1841 (2002).
    [CrossRef]
  6. T. M. Fortier, A. Bartels, and S. A. Diddams, "Octave-spanning Ti : sapphire laser with a repetition rate > 1 GHz for optical frequency measurements and comparisons," Opt. Lett. 31, 1011-1013 (2006).
    [CrossRef] [PubMed]
  7. A. Bartels, R. Gebs, M. S. Kirchner, and S. A. Diddams, "Spectrally resolved optical frequency comb from a self-referenced 5 GHz femtosecond laser," Opt. Lett. 32, 2553-2555 (2007).
    [CrossRef] [PubMed]
  8. A. Benedick, J. R. Birge, R. Ell, O. D. Mucke, M. Y. Sander, and F. X. Kärtner, "Octave Spanning 1 GHz Ti:sapphire Oscillator For HeNe CH4-based Frequency Combs and Clocks," Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference (CLEOE-IQEC 2007 European), 17-22 June 2007, Munich, Germany (2007).
  9. G. T. Nogueira, B. Xu, Y. Coello, M. Dantus, and F. C. Cruz, "Broadband 2.12 GHz Ti:sapphire laser compressed to 5.9 femtoseconds using MIIPS," Opt. Express 16, 10033-10038 (2008).
    [CrossRef] [PubMed]
  10. A. Bartels, D. Heinecke, and S. A. Diddams, "Passively mode-locked 10 GHz femtosecond Ti:sapphire laser," Opt. Lett. 33, 1905-1907 (2008).
    [CrossRef] [PubMed]
  11. F. X. Kärtner, U. Morgner, R. Ell, T. Schibli, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, "Ultrabroadband double-chirped mirror pairs for generation of octave spectra," J. Opt. Soc. Am. B 18, 882-885 (2001).
    [CrossRef]
  12. H. M. Crespo, J. R. Birge, M. Y. Sander, E. L. Falcao-Filho, A. Benedick, and F. X. Kärtner, "Phase stabilization of sub-two-cycle pulses from primsless octave-spanning Ti:sapphire lasers," J. Opt. Soc. Am. B 25, B147-B154 (2008).
    [CrossRef]
  13. Y. Chen, F. X. Kärtner, U. Morgner, S. H. Cho, H. A. Haus, E. P. Ippen, and J. G. Fujimoto, "Dispersion-managed mode locking," J. Opt. Soc. Am. B 16, 1999-2004 (1999).
    [CrossRef]
  14. D. Z. Anderson, "Alignment of Resonant Optical Cavities," Appl. Opt. 23, 2944-2949 (1984).
    [CrossRef] [PubMed]
  15. L. J. Chen, A. J. Benedick, J. R. Birge, M. Y. Sander, and F. X. Kärtner, "2GHz Octave-Spanning Ti:sapphire Laser with Non-intrusive Carrier-envelope Phase Stabilization," Paper WZ1, The 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS 2008), 9-13 Nov 2008, Newport Beach, CA. (2008)
  16. M. Y. Sander, H. M. Crespo, J. R. Birge, and F. X. Kärtner, "Modeling of octave-spanning sub-two cycle Titanium:sapphire lasers: simulation and experiment," Paper THUIIIc.8, Ultrafast Phenomena (UP) 2008, Stresa, Italy, Jun 2008. (2008).
  17. L. Matos, O. D. Mucke, J. Chen, and F. X. Kärtner, "Carrier-envelope phase dynamics and noise analysis in octave-spanning Ti : sapphire lasers," Opt. Express 14, 2497-2511 (2006).
    [CrossRef] [PubMed]
  18. O. D. Mucke, R. Ell, A. Winter, J. W. Kim, J. R. Birge, L. Matos, and F. X. Kärtner, "Self-referenced 200 MHz octave-spanning Ti : sapphire laser with 50 attosecond carrier-envelope phase jitter," Opt. Express 13, 5163-5169 (2005).
    [CrossRef] [PubMed]
  19. T. Fuji, J. Rauschenberger, A. Apolonski, V. S. Yakovlev, G. Tempea, T. Udem, C. Gohle, T. W. Hänsch, W. Lehnert, M. Scherer, and F. Krausz, "Monolithic carrier-envelope phase-stabilization scheme," Opt. Lett. 30, 332-334 (2005).
    [CrossRef] [PubMed]

2008 (4)

2007 (1)

2006 (2)

2005 (3)

2002 (2)

2001 (1)

1999 (2)

1984 (1)

Anderson, D. Z.

Angelow, G.

Apolonski, A.

Bartels, A.

Benedick, A.

Benedick, A. J.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, "A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1)," Nature 452, 610-612 (2008).
[CrossRef] [PubMed]

Birge, J. R.

Chen, J.

Chen, Y.

Cho, S. H.

Coello, Y.

Crespo, H. M.

Cruz, F. C.

Dantus, M.

Dekorsy, T.

Diddams, S. A.

Ell, R.

Falcao-Filho, E. L.

Fendel, P.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, "A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1)," Nature 452, 610-612 (2008).
[CrossRef] [PubMed]

Fortier, T. M.

Fuji, T.

Fujimoto, J. G.

Gebs, R.

Glenday, A. G.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, "A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1)," Nature 452, 610-612 (2008).
[CrossRef] [PubMed]

Gohle, C.

Hänsch, T. W.

Haus, H. A.

Heinecke, D.

Holzwarth, R.

T. Udem, R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology," Nature 416, 233-237 (2002).
[CrossRef] [PubMed]

Ippen, E. P.

Jiang, Z.

Kärtner, F. X.

Kim, J. W.

Kirchner, M. S.

Krausz, F.

Kurz, H.

Leaird, D. E.

Lehnert, W.

Li, C. H.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, "A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1)," Nature 452, 610-612 (2008).
[CrossRef] [PubMed]

Matos, L.

Morgner, U.

Mucke, O. D.

Nogueira, G. T.

Phillips, D. F.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, "A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1)," Nature 452, 610-612 (2008).
[CrossRef] [PubMed]

Rauschenberger, J.

Sander, M. Y.

Sasselov, D.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, "A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1)," Nature 452, 610-612 (2008).
[CrossRef] [PubMed]

Scherer, M.

Scheuer, V.

Schibli, T.

Szentgyorgyi, A.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, "A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1)," Nature 452, 610-612 (2008).
[CrossRef] [PubMed]

Tempea, G.

Tschudi, T.

Udem, T.

Walsworth, R. L.

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, "A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1)," Nature 452, 610-612 (2008).
[CrossRef] [PubMed]

Weiner, A. M.

Winter, A.

Xu, B.

Yakovlev, V. S.

Appl. Opt. (1)

J. Opt. Soc. Am. B (3)

Nature (2)

C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, "A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1)," Nature 452, 610-612 (2008).
[CrossRef] [PubMed]

T. Udem, R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology," Nature 416, 233-237 (2002).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (6)

Other (3)

A. Benedick, J. R. Birge, R. Ell, O. D. Mucke, M. Y. Sander, and F. X. Kärtner, "Octave Spanning 1 GHz Ti:sapphire Oscillator For HeNe CH4-based Frequency Combs and Clocks," Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference (CLEOE-IQEC 2007 European), 17-22 June 2007, Munich, Germany (2007).

L. J. Chen, A. J. Benedick, J. R. Birge, M. Y. Sander, and F. X. Kärtner, "2GHz Octave-Spanning Ti:sapphire Laser with Non-intrusive Carrier-envelope Phase Stabilization," Paper WZ1, The 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS 2008), 9-13 Nov 2008, Newport Beach, CA. (2008)

M. Y. Sander, H. M. Crespo, J. R. Birge, and F. X. Kärtner, "Modeling of octave-spanning sub-two cycle Titanium:sapphire lasers: simulation and experiment," Paper THUIIIc.8, Ultrafast Phenomena (UP) 2008, Stresa, Italy, Jun 2008. (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Setup of CE phase stabilized octave-spanning Ti:sapphire (Ti:S) laser and phase-locking electronics. The four-mirror cavity is formed by two pairs of DCM, (M1,M2) and (M3,M4). M1 and M2 are concave mirrors (ROC=2.5cm). M4 is a convex mirror (ROC=50 cm). AOM, acousto-optic modulator; L1, pump lens (f=4 cm); FS OC, wedged fused silica output coupler; SM1-3, silver mirrors; DM, dichroic mirror; L2–L3, lens (f=20mm); IF, interference filter centered at 580nm; PBS, polarization beamsplitter; APD, avalanche photodetector; DPD, digital phase detector; S, power splitter; LO, local oscillator; LPF, low-pass filter; VSA, vector signal analyzer; RF-SA, RF spectrum analyzer.

Fig. 2.
Fig. 2.

Calculated total intra cavity GDD (red solid curve) and individual GDD for each component including 2.2mm Ti:Sa (black dashed curve), 1.83mm BaF2 (purple short dotted curve), 2.12mm FS (blue short dashed curve), 15cm air (green dotted curve), and 2 DCM pairs (gray dash dotted curve).

Fig. 3.
Fig. 3.

RF spectrum of pulse train detected with a 10 GHz photo detector: With high resolution at the fundamental repetition rate of 2.166 GHz; inset shows full spectrum up to 16 GHz.

Fig. 4.
Fig. 4.

Output spectra of (a) 1f–2f output beam (black curve) and (b) main output beam (red curve) from the laser. The filled area between two curves visualizes that the spectral components of 1f–2f output below 600 nm and above 1120 nm are stronger than in the main output.

Fig. 5.
Fig. 5.

(a). RF spectrum of the free-running CE-beat (RWB=100 kHz) showing a SNR of ~50 dB. (b). RF spectrum of the locked CE-beat signal in log scale (red dotted curve) and linear scale (black solid curve) showing a resolution-limited linewidth of 10 Hz. (c). Power spectral density (PSD) of the residual carrier-envelope phase fluctuations (black curve) and integrated carrier-envelope phase error (red curve). The accumulated phase error integrated from 0.1 Hz to 1 MHz is 0.187 rad.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ rms = [ 1 MHz f S ϕ ( f ' ) d f ' ] 1 2

Metrics