Abstract

A novel technique for distributed detection and localization of vibrational disturbances is presented. It is based on a serial array of identical low-finesse Fabry-Perot interferometers interrogated at a fixed wavelength by DFB diode laser intensity modulated at 10 KHz. Interferometers are formed directly in the single mode SMF-28 fiber by pairs of fiber Bragg gratings with reflectivity <0.05% each. A simple signal processing based on the Fourier transform of detected signals and evaluation of phases for different signal components enables localization of a perturbed interferometer with a high accuracy. In experiment, a localization accuracy of 10 meters has been demonstrated for 5 km long fiber after 1 s of averaging. The system has the capability of using well in excess of 100 interferometers in a single fiber channel. A simple sensor configuration and the use of low-frequency components make it potentially inexpensive and suitable for applications where a continuous monitoring of long structures has to be performed for appearance of vibrations.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. K. Kirkendall and A. Dandridge, "Overview of high performance fibre-optic sensing," J. Phys. D: Appl. Phys. 37, R197-R216 (2004).
    [CrossRef]
  2. L. Alasaarela, P. Karioja and H. Kopola, "Comparison of distributed fiber optic sensing methods for location and quantity information measurements," Opt. Eng. 41, 181-189 (2002).
    [CrossRef]
  3. G. A. Cranch, R. Crickmore, C. K. Kirdendall, A. Bautista, K. Daley, S. Motley, J. Salzano, J. Latchem, and P. J. Nash, "Acoustic performance of a large-aperture, seabed, fiber-optic hydrophone array," J. Acoust. Soc. Am. 115, 2848-2858 (2004).
    [CrossRef]
  4. G. A. Cranch, P. J. Nash, and C. K. Kirdendall, "Large-scale remote interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications," IEEE Sens. J. 3, 19-30 (2003).
    [CrossRef]
  5. J. P. F. Wooler and RogerI. Crickmore, "Fibre optic sensors for seismic intruder detection," Proc. SPIE 5855, 278-281 (2005).
    [CrossRef]
  6. J. P. F. Wooler and R. I. Crickmore, "Fiber-optic microphones for battlefield acoustics," Appl. Opt. 46, 2486-2491 (2007).
    [CrossRef] [PubMed]
  7. J. C. Juarez and H. F. Taylor, "Field test of a distributed fiber-optic intrusion sensor system for long perimeters," Appl. Opt. 46, 1968-1971 (2007).
    [CrossRef] [PubMed]
  8. Z. Zhang and X. Bao, "Distributed optical fiber vibration sensor based on spectrum analysis of Polarization-OTDR system," Opt. Express 16, 10240-10247 (2008).
    [CrossRef] [PubMed]
  9. J. P. Dakin, D. A. J. Pearce, A. P. Strong, and C. A. Wade, "A novel distributed fibre sensing system enabling location of disturbance in Sanqac loop interferometer," Proc. SPIE 838, 325-328 (1987).
  10. S. J. Russell, K. R. C. Brady, and J. P. Dakin, "Real-time location of multiple time-varying strain disturbances, acting over a 40-km fiber section, using a novel dual-Sagnac interferometer," J. Lightwave Technol. 19, 205-213 (2001).
    [CrossRef]
  11. A. A. Chtcherbakov, P. L. Swart and S. J. Spammer, "Mach-Zehnder and modified Sagnac-distributed fiber-optic impact sensor," Appl. Opt. 37, 3432-3437 (1998).
    [CrossRef]
  12. Q. Sun, D. Liu, J. Wang, and H. Liu, "Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer," Opt. Commun. 281, 1538-1544 (2008).
    [CrossRef]
  13. S.-C. Huang, W.-W. Lin, M.-T. Tsai, and M.-H. Chen, "Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks," Sens. Actuators A 135, 570-579 (2007).
    [CrossRef]
  14. G. Hong, B. Jia, and H. Tang, "Location of a wideband perturbation using a fiber Fox-Smith interferometer," J. Lightwave Technol. 25, 3057-3061 (2007).
    [CrossRef]

2008 (2)

Z. Zhang and X. Bao, "Distributed optical fiber vibration sensor based on spectrum analysis of Polarization-OTDR system," Opt. Express 16, 10240-10247 (2008).
[CrossRef] [PubMed]

Q. Sun, D. Liu, J. Wang, and H. Liu, "Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer," Opt. Commun. 281, 1538-1544 (2008).
[CrossRef]

2007 (4)

2005 (1)

J. P. F. Wooler and RogerI. Crickmore, "Fibre optic sensors for seismic intruder detection," Proc. SPIE 5855, 278-281 (2005).
[CrossRef]

J. P. F. Wooler and RogerI. Crickmore, "Fibre optic sensors for seismic intruder detection," Proc. SPIE 5855, 278-281 (2005).
[CrossRef]

2004 (2)

C. K. Kirkendall and A. Dandridge, "Overview of high performance fibre-optic sensing," J. Phys. D: Appl. Phys. 37, R197-R216 (2004).
[CrossRef]

G. A. Cranch, R. Crickmore, C. K. Kirdendall, A. Bautista, K. Daley, S. Motley, J. Salzano, J. Latchem, and P. J. Nash, "Acoustic performance of a large-aperture, seabed, fiber-optic hydrophone array," J. Acoust. Soc. Am. 115, 2848-2858 (2004).
[CrossRef]

2003 (1)

G. A. Cranch, P. J. Nash, and C. K. Kirdendall, "Large-scale remote interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications," IEEE Sens. J. 3, 19-30 (2003).
[CrossRef]

2002 (1)

L. Alasaarela, P. Karioja and H. Kopola, "Comparison of distributed fiber optic sensing methods for location and quantity information measurements," Opt. Eng. 41, 181-189 (2002).
[CrossRef]

2001 (1)

1998 (1)

1987 (1)

J. P. Dakin, D. A. J. Pearce, A. P. Strong, and C. A. Wade, "A novel distributed fibre sensing system enabling location of disturbance in Sanqac loop interferometer," Proc. SPIE 838, 325-328 (1987).

Alasaarela, L.

L. Alasaarela, P. Karioja and H. Kopola, "Comparison of distributed fiber optic sensing methods for location and quantity information measurements," Opt. Eng. 41, 181-189 (2002).
[CrossRef]

Bao, X.

Bautista, A.

G. A. Cranch, R. Crickmore, C. K. Kirdendall, A. Bautista, K. Daley, S. Motley, J. Salzano, J. Latchem, and P. J. Nash, "Acoustic performance of a large-aperture, seabed, fiber-optic hydrophone array," J. Acoust. Soc. Am. 115, 2848-2858 (2004).
[CrossRef]

Brady, K. R. C.

Chen, M.-H.

S.-C. Huang, W.-W. Lin, M.-T. Tsai, and M.-H. Chen, "Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks," Sens. Actuators A 135, 570-579 (2007).
[CrossRef]

Chtcherbakov, A. A.

Cranch, G. A.

G. A. Cranch, R. Crickmore, C. K. Kirdendall, A. Bautista, K. Daley, S. Motley, J. Salzano, J. Latchem, and P. J. Nash, "Acoustic performance of a large-aperture, seabed, fiber-optic hydrophone array," J. Acoust. Soc. Am. 115, 2848-2858 (2004).
[CrossRef]

G. A. Cranch, P. J. Nash, and C. K. Kirdendall, "Large-scale remote interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications," IEEE Sens. J. 3, 19-30 (2003).
[CrossRef]

Crickmore, R.

G. A. Cranch, R. Crickmore, C. K. Kirdendall, A. Bautista, K. Daley, S. Motley, J. Salzano, J. Latchem, and P. J. Nash, "Acoustic performance of a large-aperture, seabed, fiber-optic hydrophone array," J. Acoust. Soc. Am. 115, 2848-2858 (2004).
[CrossRef]

Crickmore, R. I.

Dakin, J. P.

S. J. Russell, K. R. C. Brady, and J. P. Dakin, "Real-time location of multiple time-varying strain disturbances, acting over a 40-km fiber section, using a novel dual-Sagnac interferometer," J. Lightwave Technol. 19, 205-213 (2001).
[CrossRef]

J. P. Dakin, D. A. J. Pearce, A. P. Strong, and C. A. Wade, "A novel distributed fibre sensing system enabling location of disturbance in Sanqac loop interferometer," Proc. SPIE 838, 325-328 (1987).

Daley, K.

G. A. Cranch, R. Crickmore, C. K. Kirdendall, A. Bautista, K. Daley, S. Motley, J. Salzano, J. Latchem, and P. J. Nash, "Acoustic performance of a large-aperture, seabed, fiber-optic hydrophone array," J. Acoust. Soc. Am. 115, 2848-2858 (2004).
[CrossRef]

Dandridge, A.

C. K. Kirkendall and A. Dandridge, "Overview of high performance fibre-optic sensing," J. Phys. D: Appl. Phys. 37, R197-R216 (2004).
[CrossRef]

Hong, G.

Huang, S.-C.

S.-C. Huang, W.-W. Lin, M.-T. Tsai, and M.-H. Chen, "Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks," Sens. Actuators A 135, 570-579 (2007).
[CrossRef]

Jia, B.

Juarez, J. C.

Karioja, P.

L. Alasaarela, P. Karioja and H. Kopola, "Comparison of distributed fiber optic sensing methods for location and quantity information measurements," Opt. Eng. 41, 181-189 (2002).
[CrossRef]

Kirdendall, C. K.

G. A. Cranch, R. Crickmore, C. K. Kirdendall, A. Bautista, K. Daley, S. Motley, J. Salzano, J. Latchem, and P. J. Nash, "Acoustic performance of a large-aperture, seabed, fiber-optic hydrophone array," J. Acoust. Soc. Am. 115, 2848-2858 (2004).
[CrossRef]

G. A. Cranch, P. J. Nash, and C. K. Kirdendall, "Large-scale remote interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications," IEEE Sens. J. 3, 19-30 (2003).
[CrossRef]

Kirkendall, C. K.

C. K. Kirkendall and A. Dandridge, "Overview of high performance fibre-optic sensing," J. Phys. D: Appl. Phys. 37, R197-R216 (2004).
[CrossRef]

Kopola, H.

L. Alasaarela, P. Karioja and H. Kopola, "Comparison of distributed fiber optic sensing methods for location and quantity information measurements," Opt. Eng. 41, 181-189 (2002).
[CrossRef]

Latchem, J.

G. A. Cranch, R. Crickmore, C. K. Kirdendall, A. Bautista, K. Daley, S. Motley, J. Salzano, J. Latchem, and P. J. Nash, "Acoustic performance of a large-aperture, seabed, fiber-optic hydrophone array," J. Acoust. Soc. Am. 115, 2848-2858 (2004).
[CrossRef]

Lin, W.-W.

S.-C. Huang, W.-W. Lin, M.-T. Tsai, and M.-H. Chen, "Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks," Sens. Actuators A 135, 570-579 (2007).
[CrossRef]

Liu, D.

Q. Sun, D. Liu, J. Wang, and H. Liu, "Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer," Opt. Commun. 281, 1538-1544 (2008).
[CrossRef]

Liu, H.

Q. Sun, D. Liu, J. Wang, and H. Liu, "Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer," Opt. Commun. 281, 1538-1544 (2008).
[CrossRef]

Motley, S.

G. A. Cranch, R. Crickmore, C. K. Kirdendall, A. Bautista, K. Daley, S. Motley, J. Salzano, J. Latchem, and P. J. Nash, "Acoustic performance of a large-aperture, seabed, fiber-optic hydrophone array," J. Acoust. Soc. Am. 115, 2848-2858 (2004).
[CrossRef]

Nash, P. J.

G. A. Cranch, R. Crickmore, C. K. Kirdendall, A. Bautista, K. Daley, S. Motley, J. Salzano, J. Latchem, and P. J. Nash, "Acoustic performance of a large-aperture, seabed, fiber-optic hydrophone array," J. Acoust. Soc. Am. 115, 2848-2858 (2004).
[CrossRef]

G. A. Cranch, P. J. Nash, and C. K. Kirdendall, "Large-scale remote interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications," IEEE Sens. J. 3, 19-30 (2003).
[CrossRef]

Pearce, D. A. J.

J. P. Dakin, D. A. J. Pearce, A. P. Strong, and C. A. Wade, "A novel distributed fibre sensing system enabling location of disturbance in Sanqac loop interferometer," Proc. SPIE 838, 325-328 (1987).

Roger, J. P. F.

J. P. F. Wooler and RogerI. Crickmore, "Fibre optic sensors for seismic intruder detection," Proc. SPIE 5855, 278-281 (2005).
[CrossRef]

Russell, S. J.

Salzano, J.

G. A. Cranch, R. Crickmore, C. K. Kirdendall, A. Bautista, K. Daley, S. Motley, J. Salzano, J. Latchem, and P. J. Nash, "Acoustic performance of a large-aperture, seabed, fiber-optic hydrophone array," J. Acoust. Soc. Am. 115, 2848-2858 (2004).
[CrossRef]

Spammer, S. J.

Strong, A. P.

J. P. Dakin, D. A. J. Pearce, A. P. Strong, and C. A. Wade, "A novel distributed fibre sensing system enabling location of disturbance in Sanqac loop interferometer," Proc. SPIE 838, 325-328 (1987).

Sun, Q.

Q. Sun, D. Liu, J. Wang, and H. Liu, "Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer," Opt. Commun. 281, 1538-1544 (2008).
[CrossRef]

Swart, P. L.

Tang, H.

Taylor, H. F.

Tsai, M.-T.

S.-C. Huang, W.-W. Lin, M.-T. Tsai, and M.-H. Chen, "Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks," Sens. Actuators A 135, 570-579 (2007).
[CrossRef]

Wade, C. A.

J. P. Dakin, D. A. J. Pearce, A. P. Strong, and C. A. Wade, "A novel distributed fibre sensing system enabling location of disturbance in Sanqac loop interferometer," Proc. SPIE 838, 325-328 (1987).

Wang, J.

Q. Sun, D. Liu, J. Wang, and H. Liu, "Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer," Opt. Commun. 281, 1538-1544 (2008).
[CrossRef]

Wooler, J. P. F.

J. P. F. Wooler and R. I. Crickmore, "Fiber-optic microphones for battlefield acoustics," Appl. Opt. 46, 2486-2491 (2007).
[CrossRef] [PubMed]

J. P. F. Wooler and RogerI. Crickmore, "Fibre optic sensors for seismic intruder detection," Proc. SPIE 5855, 278-281 (2005).
[CrossRef]

Zhang, Z.

Appl. Opt. (3)

IEEE Sens. J. (1)

G. A. Cranch, P. J. Nash, and C. K. Kirdendall, "Large-scale remote interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications," IEEE Sens. J. 3, 19-30 (2003).
[CrossRef]

J. Acoust. Soc. Am. (1)

G. A. Cranch, R. Crickmore, C. K. Kirdendall, A. Bautista, K. Daley, S. Motley, J. Salzano, J. Latchem, and P. J. Nash, "Acoustic performance of a large-aperture, seabed, fiber-optic hydrophone array," J. Acoust. Soc. Am. 115, 2848-2858 (2004).
[CrossRef]

J. Lightwave Technol. (2)

J. Phys. D: Appl. Phys. (1)

C. K. Kirkendall and A. Dandridge, "Overview of high performance fibre-optic sensing," J. Phys. D: Appl. Phys. 37, R197-R216 (2004).
[CrossRef]

Opt. Commun. (1)

Q. Sun, D. Liu, J. Wang, and H. Liu, "Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer," Opt. Commun. 281, 1538-1544 (2008).
[CrossRef]

Opt. Eng. (1)

L. Alasaarela, P. Karioja and H. Kopola, "Comparison of distributed fiber optic sensing methods for location and quantity information measurements," Opt. Eng. 41, 181-189 (2002).
[CrossRef]

Opt. Express (1)

Proc. SPIE (2)

J. P. Dakin, D. A. J. Pearce, A. P. Strong, and C. A. Wade, "A novel distributed fibre sensing system enabling location of disturbance in Sanqac loop interferometer," Proc. SPIE 838, 325-328 (1987).

J. P. F. Wooler and RogerI. Crickmore, "Fibre optic sensors for seismic intruder detection," Proc. SPIE 5855, 278-281 (2005).
[CrossRef]

Sens. Actuators A (1)

S.-C. Huang, W.-W. Lin, M.-T. Tsai, and M.-H. Chen, "Fiber optic in-line distributed sensor for detection and localization of the pipeline leaks," Sens. Actuators A 135, 570-579 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup.

Fig. 2.
Fig. 2.

Scheme for applying dynamic strain to a fiber interferometer.

Fig. 3.
Fig. 3.

Examples of a power spectrum of the photo-detector signal. (a). No dynamic strain was applied. (b). Vibration at frequency of 1 kHz was applied to an interferometer.

Fig. 4.
Fig. 4.

Positional results after a series of discrete 20-msec measurements (samples) of the position of a perturbed interferometer. Three different interferometers were excited one after another and series of 25 samples was taken for each position of the disturbance. Solid lines represent averaged result for each position of disturbance. For comparison, positions of the interferometers measured with OTDR are shown by dotted lines.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

R s = 1 + cos ( L 0 k ) ,
k = 2 π λ .
L ( t ) = L 0 + δ L cos ( ω s t + ϕ s ) ,
R s ( t ) = 1 + cos { [ L 0 + δ L cos ( ω s t + ϕ s ) ] k }
R s ( t ) 1 + cos ( L 0 k ) δ L k sin ( L 0 k ) cos ( ω s t + ϕ s ) .
S ( t ) = 1 + A cos ( ω m t ) .
S refl ( t ) = 1 + cos ( L 0 k ) + A [ 1 + cos ( L 0 k ) ] cos [ ω m ( t 2 τ ) ]
δ L k sin ( L 0 k ) cos [ ω s ( t τ ) + ϕ s ]
A δ L k sin ( L 0 k ) cos [ ω m ( t 2 τ ) ] cos [ ω s ( t τ ) + ϕ s ] ,
S refl ( t ) = a + a A cos [ ω m ( t 2 τ ) ] b cos [ ω s ( t τ ) + ϕ s ]
A b cos [ ω m ( t 2 τ ) ] cos [ ω s ( t τ ) + ϕ s ]
+ r [ 1 + A cos ( ω m t + ϕ R ( t ) ) ]
π b e i ( ω S τ ϕ S ) .
π A [ ae 2 i ω m τ + re i ϕ R ] .
π A b e i ( ϕ s 2 ω m τ + ω s τ ) 2 ,
π A b e i ( ϕ S + 2 ω m τ + ω S τ ) 2 .
ϕ ( ω m + ω s ) ϕ ( ω s ) = ϕ p = 2 ω m τ ,
d p = ϕ p c 2 ω m n ,
ω m τ < π .

Metrics