Abstract

We report on the design, fabrication and characterization of silica square-lattice hollow core photonic crystal fibers optimized for low loss guidance over an extended frequency range in the mid-IR region of the optical spectrum. The fiber’s linear optical properties include an ultra-low group velocity dispersion and a polarization cross-coupling as low as -13.4dB over 10m of fiber.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. StJ. Russell, "Ultimate low loss of hollow-core photonic crystal fibers," Opt. Express 13, 236-244 (2005).
    [CrossRef] [PubMed]
  2. F. Benabid, G. Bouwmans, J. C. Knight, P. St J. Russell, and F. Couny, "Ultra-high efficiency laser wavelength conversion in gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen," Phys. Rev. Lett. 93, 123903 (2004).
    [CrossRef] [PubMed]
  3. S. Ghosh, J. Sharping, D. G. Ouzounov, and A. L. Gaeta, "Resonant Optical Interactions with Molecules Confined in Photonic Band-Gap Fibers," Phys. Rev. Lett. 94, 093902 (2005).
    [CrossRef] [PubMed]
  4. F. Benabid, P. S. Light, F. Couny, and P. S. J. Russell, "Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF," Opt. Express 13, 5694 (2005).
    [CrossRef] [PubMed]
  5. S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, "Low-Light-Level Optical Interactions with Rubidium Vapor in a Photonic Band-Gap Fiber," Phys. Rev. Lett. 97, 023603 (2006).
    [CrossRef] [PubMed]
  6. P. S. Light, F. Benabid, F. Couny, M. Maric, and A. N. Luiten, "Electromagnetically induced transparency in Rb-filled coated hollow-core photonic crystal fiber," Opt. Lett. 32, 1323-1325 (2007).
    [CrossRef] [PubMed]
  7. F. Couny, F. Benabid, P. J. Roberts, M. T. Burnett, and S. A. Maier, "Identification of Bloch-modes in hollow-core photonic crystal fiber cladding," Opt. Express 15, 325-338 (2007).
    [CrossRef] [PubMed]
  8. F. Benabid, "Hollow-core photonic bandgap fibers: new guidance for new science and technology," Philos. Trans. R. Soc. London Ser. A 364, 3439-3462 (2006).
    [CrossRef]
  9. F. Benabid, J. C. Knight, G. Antonopoulos, and P. StJ. Russell, "Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber," Science 298, 399-402 (2002).
    [CrossRef] [PubMed]
  10. F. Couny, F. Benabid, and P. S. Light, "Large-pitch kagome-structured hollow-core photonic crystal fiber," Opt. Lett. 31, 3574-3576 (2006).
    [CrossRef] [PubMed]
  11. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, "Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs," Science 318, 1118-1121 (2007).
    [CrossRef] [PubMed]
  12. G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, P. St J. Russell, "Models for guidance in kagome-structured hollow-core photonic crystal fibers," Opt. Express 15, 12680-12685 (2007).
    [CrossRef] [PubMed]
  13. J. v. Neumann and E. Wigner, Phys. Z. 30, 465 (1929).
  14. B. Beaudou, F. Couny, F. Benabid, and P. J. Roberts, "Large Pitch Hollow Core Honeycomb Fiber," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies(Optical Society of America, 2008), p. JFC6.
  15. F. Couny, P. J. Roberts, F. Benabid, and T. A. Birks, "Square-Lattice Large-Pitch Hollow-Core Photonic Crystal Fiber," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies(Optical Society of America, 2008), p. CThEE7.
    [PubMed]
  16. A. Argyros, S. G. Leon-Saval, J. Pla, and A. Docherty, "Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibers," Opt. Express 16, 5642-5648 (2008).
    [CrossRef] [PubMed]
  17. F. Poletti and D. J. Richardson, "Hollow-core photonic bandgap fibers based on a square lattice cladding," Opt. Lett. 32, 2282-2284 (2007)
    [CrossRef] [PubMed]
  18. E. A. J. Marcatili and R. A. Schmeltzer, "Hollow Metallic and Dielectric Wave-guides for Long Distance Optical Transmission and Lasers," Bell Syst. Tech. J.1783-1809 (1964).
  19. M. Wegmuller, M. Legré, N. Gisin, T. Hansen, C. Jakobsen, and J. Broeng, "Experimental investigation of the polarization properties of a hollow core photonic bandgap fiber for 1550 nm," Opt. Express 13, 1457-1467 (2005).
    [CrossRef] [PubMed]

2008 (1)

2007 (5)

2006 (3)

F. Benabid, "Hollow-core photonic bandgap fibers: new guidance for new science and technology," Philos. Trans. R. Soc. London Ser. A 364, 3439-3462 (2006).
[CrossRef]

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, "Low-Light-Level Optical Interactions with Rubidium Vapor in a Photonic Band-Gap Fiber," Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef] [PubMed]

F. Couny, F. Benabid, and P. S. Light, "Large-pitch kagome-structured hollow-core photonic crystal fiber," Opt. Lett. 31, 3574-3576 (2006).
[CrossRef] [PubMed]

2005 (4)

2004 (1)

F. Benabid, G. Bouwmans, J. C. Knight, P. St J. Russell, and F. Couny, "Ultra-high efficiency laser wavelength conversion in gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen," Phys. Rev. Lett. 93, 123903 (2004).
[CrossRef] [PubMed]

2002 (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. StJ. Russell, "Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber," Science 298, 399-402 (2002).
[CrossRef] [PubMed]

1929 (1)

J. v. Neumann and E. Wigner, Phys. Z. 30, 465 (1929).

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. StJ. Russell, "Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber," Science 298, 399-402 (2002).
[CrossRef] [PubMed]

Argyros, A.

Benabid, F.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, "Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs," Science 318, 1118-1121 (2007).
[CrossRef] [PubMed]

P. S. Light, F. Benabid, F. Couny, M. Maric, and A. N. Luiten, "Electromagnetically induced transparency in Rb-filled coated hollow-core photonic crystal fiber," Opt. Lett. 32, 1323-1325 (2007).
[CrossRef] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, M. T. Burnett, and S. A. Maier, "Identification of Bloch-modes in hollow-core photonic crystal fiber cladding," Opt. Express 15, 325-338 (2007).
[CrossRef] [PubMed]

F. Couny, F. Benabid, and P. S. Light, "Large-pitch kagome-structured hollow-core photonic crystal fiber," Opt. Lett. 31, 3574-3576 (2006).
[CrossRef] [PubMed]

F. Benabid, "Hollow-core photonic bandgap fibers: new guidance for new science and technology," Philos. Trans. R. Soc. London Ser. A 364, 3439-3462 (2006).
[CrossRef]

F. Benabid, P. S. Light, F. Couny, and P. S. J. Russell, "Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF," Opt. Express 13, 5694 (2005).
[CrossRef] [PubMed]

F. Benabid, G. Bouwmans, J. C. Knight, P. St J. Russell, and F. Couny, "Ultra-high efficiency laser wavelength conversion in gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen," Phys. Rev. Lett. 93, 123903 (2004).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. StJ. Russell, "Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber," Science 298, 399-402 (2002).
[CrossRef] [PubMed]

Bhagwat, A. R.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, "Low-Light-Level Optical Interactions with Rubidium Vapor in a Photonic Band-Gap Fiber," Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef] [PubMed]

Birks, T. A.

Bouwmans, G.

F. Benabid, G. Bouwmans, J. C. Knight, P. St J. Russell, and F. Couny, "Ultra-high efficiency laser wavelength conversion in gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen," Phys. Rev. Lett. 93, 123903 (2004).
[CrossRef] [PubMed]

Broeng, J.

Burger, S.

Burnett, M. T.

Couny, F.

Docherty, A.

Farr, L.

Gaeta, A. L.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, "Low-Light-Level Optical Interactions with Rubidium Vapor in a Photonic Band-Gap Fiber," Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef] [PubMed]

S. Ghosh, J. Sharping, D. G. Ouzounov, and A. L. Gaeta, "Resonant Optical Interactions with Molecules Confined in Photonic Band-Gap Fibers," Phys. Rev. Lett. 94, 093902 (2005).
[CrossRef] [PubMed]

Ghosh, S.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, "Low-Light-Level Optical Interactions with Rubidium Vapor in a Photonic Band-Gap Fiber," Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef] [PubMed]

S. Ghosh, J. Sharping, D. G. Ouzounov, and A. L. Gaeta, "Resonant Optical Interactions with Molecules Confined in Photonic Band-Gap Fibers," Phys. Rev. Lett. 94, 093902 (2005).
[CrossRef] [PubMed]

Gisin, N.

Goh, S.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, "Low-Light-Level Optical Interactions with Rubidium Vapor in a Photonic Band-Gap Fiber," Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef] [PubMed]

Hansen, T.

Jakobsen, C.

Kirby, B. J.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, "Low-Light-Level Optical Interactions with Rubidium Vapor in a Photonic Band-Gap Fiber," Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef] [PubMed]

Knight, J. C.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. StJ. Russell, "Ultimate low loss of hollow-core photonic crystal fibers," Opt. Express 13, 236-244 (2005).
[CrossRef] [PubMed]

F. Benabid, G. Bouwmans, J. C. Knight, P. St J. Russell, and F. Couny, "Ultra-high efficiency laser wavelength conversion in gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen," Phys. Rev. Lett. 93, 123903 (2004).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. StJ. Russell, "Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber," Science 298, 399-402 (2002).
[CrossRef] [PubMed]

Legré, M.

Leon-Saval, S. G.

Light, P. S.

Luiten, A. N.

Maier, S. A.

Mangan, B. J.

Maric, M.

Mason, M. W.

Neumann, J. v.

J. v. Neumann and E. Wigner, Phys. Z. 30, 465 (1929).

Ouzounov, D. G.

S. Ghosh, J. Sharping, D. G. Ouzounov, and A. L. Gaeta, "Resonant Optical Interactions with Molecules Confined in Photonic Band-Gap Fibers," Phys. Rev. Lett. 94, 093902 (2005).
[CrossRef] [PubMed]

Pearce, G. J.

Pla, J.

Poletti, F.

Poulton, C. G.

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, "Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs," Science 318, 1118-1121 (2007).
[CrossRef] [PubMed]

Renshaw, C. K.

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, "Low-Light-Level Optical Interactions with Rubidium Vapor in a Photonic Band-Gap Fiber," Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef] [PubMed]

Richardson, D. J.

Roberts, P. J.

Russell, J.

Russell, P. S. J.

Sabert, H.

Sharping, J.

S. Ghosh, J. Sharping, D. G. Ouzounov, and A. L. Gaeta, "Resonant Optical Interactions with Molecules Confined in Photonic Band-Gap Fibers," Phys. Rev. Lett. 94, 093902 (2005).
[CrossRef] [PubMed]

St, P.

Tomlinson, A.

Wegmuller, M.

Wiederhecker, G. S.

Wigner, E.

J. v. Neumann and E. Wigner, Phys. Z. 30, 465 (1929).

Williams, D. P.

Opt. Express (6)

Opt. Lett. (3)

Philos. Trans. R. Soc. London Ser. A (1)

F. Benabid, "Hollow-core photonic bandgap fibers: new guidance for new science and technology," Philos. Trans. R. Soc. London Ser. A 364, 3439-3462 (2006).
[CrossRef]

Phys. Rev. Lett. (3)

S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, "Low-Light-Level Optical Interactions with Rubidium Vapor in a Photonic Band-Gap Fiber," Phys. Rev. Lett. 97, 023603 (2006).
[CrossRef] [PubMed]

F. Benabid, G. Bouwmans, J. C. Knight, P. St J. Russell, and F. Couny, "Ultra-high efficiency laser wavelength conversion in gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen," Phys. Rev. Lett. 93, 123903 (2004).
[CrossRef] [PubMed]

S. Ghosh, J. Sharping, D. G. Ouzounov, and A. L. Gaeta, "Resonant Optical Interactions with Molecules Confined in Photonic Band-Gap Fibers," Phys. Rev. Lett. 94, 093902 (2005).
[CrossRef] [PubMed]

Phys. Z. (1)

J. v. Neumann and E. Wigner, Phys. Z. 30, 465 (1929).

Science (2)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. StJ. Russell, "Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber," Science 298, 399-402 (2002).
[CrossRef] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, "Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs," Science 318, 1118-1121 (2007).
[CrossRef] [PubMed]

Other (3)

B. Beaudou, F. Couny, F. Benabid, and P. J. Roberts, "Large Pitch Hollow Core Honeycomb Fiber," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies(Optical Society of America, 2008), p. JFC6.

F. Couny, P. J. Roberts, F. Benabid, and T. A. Birks, "Square-Lattice Large-Pitch Hollow-Core Photonic Crystal Fiber," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies(Optical Society of America, 2008), p. CThEE7.
[PubMed]

E. A. J. Marcatili and R. A. Schmeltzer, "Hollow Metallic and Dielectric Wave-guides for Long Distance Optical Transmission and Lasers," Bell Syst. Tech. J.1783-1809 (1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(A, B) Unit cell of a Kagome lattice (the grey lines show the boundary of the unit cell) and of the square lattice, respectively. (C, D) Density of Photonic States (DOPS) diagrams for Kagome lattice and square-lattice structures, respectively, with the same strut thickness and similar node size. Black designates high DOPS and white low DOPS. (E) The cladding mode at kΛ=100 located at the Γ-point of the Brillouin zone, with an effective index neff =0.998, calculated for Kagome structure. (F) Idem for the square crystal, but with neff =0.999.

Fig. 2.
Fig. 2.

(A) Optical micrograph of the cane and (B,C) scanning electron micrograph of fiber Single Cell #4. (D,E,F) Idem for fiber Zero Cell #3.

Fig. 3.
Fig. 3.

Transmission spectra through 2m of (left) single-cell core fibers and (right) zero-cell core fibers manufactured at cladding and core pressures indicated in the insets and listed in Table 1. All traces are normalized to the supercontinuum source. The peak at 1064nm is residual from the supercontinuum source used in the setup.

Fig. 4.
Fig. 4.

Left: Measured attenuation spectrum for (top) fiber Zero cell #3 and (bottom) fiber Single cell #4. Right: Calculated transmission loss spectrum for a structure which approximates fiber Zero Cell #3 (red curve), and for a more ideal structure (black curve).

Fig. 5.
Fig. 5.

Optical micrograph and experimental near-field profile at 1000nm of (A,B) single-cell and (C,D1) and zero-cell core fibers. (D2) Coupling into the silica cladding is possible with similar coupling conditions and operating wavelength as in D1. (D3) At a wavelength of 654nm, light is guided inside the air-holes of the cladding. However, it is still possible to guide in the core defect (sample length: 2m). (E) Fundamental core mode intensity profile calculated at kΛ=100 for a “zero-cell” core fibre, shown on a log scale with 60dB dynamic range. Very little field penetrates into the cladding. (F) Example of HOM calculated at kΛ=100, which is close to phase-matching with cladding modes with a high field component in the air holes. The absolute value of the E-field is shown on a linear scale. This core mode shows strong hybridization with cladding components and consequently an enhanced loss.

Fig. 6.
Fig. 6.

(A). Top: Measured group delay after a propagation in a 1 meter long single cell #4 fiber (open circle) and a nonlinear fit of the experimental data (solid line). Bottom: Experimental group velocity dispersion of the single cell #4 fiber (red open circles), dispersion inferred from the fit to the experimental group delay data (black line), and that of a silica capillary with 52 µm diameter. (B). Crossed-polarizers experiment: Near-field profile after propagation through 10m of single cell #4 fiber with output polarizer/analyzer (top) aligned or (bottom) crossed with the input polarization. The residual light in crossed configuration is in a higher-order mode that accounts for a polarization cross-talk figure of -13.4dB.

Tables (1)

Tables Icon

Table 1. Drawing parameters and physical characteristics of fabricated square-lattice large pitch HC-PCF.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n eff hole = 1 2 ( u m 1 ( ρ hole Λ ) k Λ ) 2

Metrics