Abstract

We report on the formation of organized sub-micron YBa2Cu3O7 (YBCO) dots induced by irradiating femtosecond laser pulses on YBCO films prepared by pulse laser deposition with fluence in the range of 0.21~0.53 J/cm2. The morphology of the YBCO film surface depends strongly on the laser fluences irradiated. At lower laser fluence (~0.21 J/cm2) the morphology was pattern of periodic ripples with sub-micrometer spacing. Slightly increasing the laser fluence to 0.26 J/cm2 changes the pattern into organized sub-micron dots with diameters ranging from 100 nm to 800 nm and height of 150 nm. Further increase of the laser fluence to over 0.32 J/cm2, however, appeared to result in massive melting and led to irregular morphology. The mechanism and the implications of the current findings will be discussed. Arrays of YBCO sub-micron dots with Tc=89.7 K were obtained.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Inao, S. Nakasato, R. Kuroda, and M. Ohtsu, "Near-field lithography as prototype nano-fabrication tool," Microelectronic Eng. 84, 705-7103 (2007).
    [CrossRef]
  2. T. Ito, T. Yamada, Y. Inao, T. Yamaguchi, N. Mizutani, and R. Kuroda, "Fabrication of half-pitch 32 nm resist patterns using near-field lithography with a-Si mask," Appl. Phys. Lett. 89, 033113-1-033113-3 (2006).
    [CrossRef]
  3. M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, "Sub-diffraction-limited patterning using evanescent near-field optical lithography," Appl. Phys. Lett. 75, 3560-3562 (1999).
    [CrossRef]
  4. H. M. van Driel, J. E. Sipe, and J. F. Young, "Laser-induced periodic surface structure on solids: a universal phenomenon," Phys. Rev. Lett. 49, 1955-1958 (1982).
    [CrossRef]
  5. Q. Z. Zhao, S. Malzer, and L. J. Wang, "Self-organized tungsten nanospikes grown on subwavelength ripples induced by femtosecond laser pulses," Opt. Express 15, 15741-15746 (2007).
    [CrossRef] [PubMed]
  6. A. Y. Vorobyev and C. Guo, "Spectral and polarization responses of femtosecond laser-induced periodic surface structures on metals," J. Appl. Phys. 103, 043513-1-043513-3 (2008).
    [CrossRef]
  7. N. C. Kerr, B. A. Omar, S. E. Clark, and D. C. Emmony, "The topography of laser-induced ripple structures," J. Phys. D: Appl. Phys. 23, 884-889 (1990).
    [CrossRef]
  8. P. S. Amit, K. Avinashi, K. N. Tripathi, and K. G. Ravindra, "Laser damage studies of silicon surfaces using ultra-short laser pulses," Opt. Laser Technol. 34, 37-43 (2002).
    [CrossRef]
  9. J. Bonse, M. Munz, and H. Sturm, "Scanning force microscopic investigations of the femtosecond laser pulse irradiation of indium phosphide in air," IEEE Trans. on Nanotechnol. 3, 358-367 (2004).
    [CrossRef]
  10. E. M. Hsu, T. H. R. Crawford, H. F. Tiedje, and H. K. Haugen, "Periodic surface structures on gallium phosphide after irradiation with 150 fs - 7 ns laser pulses at 800 nm," Appl. Phys. Lett. 91, 111102-1-111102-3 (2007).
    [CrossRef]
  11. E. M. Hsu, T. H. R. Crawford, C. Maunders, G. A. Botton, and H. K. Haugen, "Cross-sectional study of periodic surface structures on gallium phosphide induced by ultrashort laser pulse irradiation," Appl. Phys. Lett. 92, 221112-1-221112-3 (2008).
    [CrossRef]
  12. F. Costache, M. Henyk, and J. Reif, "Surface patterning on insulators upon femtosecond laser ablation," Appl. Surf. Sci. 208-209, 486-491 (2003).
    [CrossRef]
  13. A. M. Ozkan, A. Malshe, T. A. Railkar, W. D. Brown, M. D. Shirk, and P. A. Molian, "Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters," Appl. Phys. Lett. 75, 3716-3718 (1999).
    [CrossRef]
  14. A. J. Pedraza, Y. F. Guan, d J. D. Fowlkes, and D. A. Smith, "Nanostructures produced by ultraviolet laser irradiation of silicon. I. Rippled structures," J. Vacuum Sci. and Technol. B 22, 2823-2835 (2004).
    [CrossRef]
  15. G. Zhou, P. M. Fauchet, and A. E. Siegman, "Growth of spontaneous periodic surface structures on solids during laser illumination," Phys.Rev. B 26, 5366-5381 (1982).
    [CrossRef]
  16. B. K. Nayak, M. C. Gupta, and K.W. Kolasinski, "Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation," Appl. Phy. A 90, 399-402 (2008).
    [CrossRef]
  17. Derived from the Debye heat capacity and the Debye temperature of YBCO was obtained from ref. [18].
  18. S. E. Stupp and D. M. Ginsberg, "A review of the linear term in the low temperature specific heat of YBa2Cu3O7-™," Physica C 158, 299-310 (1989).
    [CrossRef]
  19. “X-ray data booklet,” Lawrence Berkeley National Laboratory (2001)

2008 (1)

B. K. Nayak, M. C. Gupta, and K.W. Kolasinski, "Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation," Appl. Phy. A 90, 399-402 (2008).
[CrossRef]

2007 (2)

Y. Inao, S. Nakasato, R. Kuroda, and M. Ohtsu, "Near-field lithography as prototype nano-fabrication tool," Microelectronic Eng. 84, 705-7103 (2007).
[CrossRef]

Q. Z. Zhao, S. Malzer, and L. J. Wang, "Self-organized tungsten nanospikes grown on subwavelength ripples induced by femtosecond laser pulses," Opt. Express 15, 15741-15746 (2007).
[CrossRef] [PubMed]

2004 (2)

J. Bonse, M. Munz, and H. Sturm, "Scanning force microscopic investigations of the femtosecond laser pulse irradiation of indium phosphide in air," IEEE Trans. on Nanotechnol. 3, 358-367 (2004).
[CrossRef]

A. J. Pedraza, Y. F. Guan, d J. D. Fowlkes, and D. A. Smith, "Nanostructures produced by ultraviolet laser irradiation of silicon. I. Rippled structures," J. Vacuum Sci. and Technol. B 22, 2823-2835 (2004).
[CrossRef]

2003 (1)

F. Costache, M. Henyk, and J. Reif, "Surface patterning on insulators upon femtosecond laser ablation," Appl. Surf. Sci. 208-209, 486-491 (2003).
[CrossRef]

2002 (1)

P. S. Amit, K. Avinashi, K. N. Tripathi, and K. G. Ravindra, "Laser damage studies of silicon surfaces using ultra-short laser pulses," Opt. Laser Technol. 34, 37-43 (2002).
[CrossRef]

1999 (2)

A. M. Ozkan, A. Malshe, T. A. Railkar, W. D. Brown, M. D. Shirk, and P. A. Molian, "Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters," Appl. Phys. Lett. 75, 3716-3718 (1999).
[CrossRef]

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, "Sub-diffraction-limited patterning using evanescent near-field optical lithography," Appl. Phys. Lett. 75, 3560-3562 (1999).
[CrossRef]

1990 (1)

N. C. Kerr, B. A. Omar, S. E. Clark, and D. C. Emmony, "The topography of laser-induced ripple structures," J. Phys. D: Appl. Phys. 23, 884-889 (1990).
[CrossRef]

1989 (1)

S. E. Stupp and D. M. Ginsberg, "A review of the linear term in the low temperature specific heat of YBa2Cu3O7-™," Physica C 158, 299-310 (1989).
[CrossRef]

1982 (2)

H. M. van Driel, J. E. Sipe, and J. F. Young, "Laser-induced periodic surface structure on solids: a universal phenomenon," Phys. Rev. Lett. 49, 1955-1958 (1982).
[CrossRef]

G. Zhou, P. M. Fauchet, and A. E. Siegman, "Growth of spontaneous periodic surface structures on solids during laser illumination," Phys.Rev. B 26, 5366-5381 (1982).
[CrossRef]

Alkaisi, M. M.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, "Sub-diffraction-limited patterning using evanescent near-field optical lithography," Appl. Phys. Lett. 75, 3560-3562 (1999).
[CrossRef]

Amit, P. S.

P. S. Amit, K. Avinashi, K. N. Tripathi, and K. G. Ravindra, "Laser damage studies of silicon surfaces using ultra-short laser pulses," Opt. Laser Technol. 34, 37-43 (2002).
[CrossRef]

Avinashi, K.

P. S. Amit, K. Avinashi, K. N. Tripathi, and K. G. Ravindra, "Laser damage studies of silicon surfaces using ultra-short laser pulses," Opt. Laser Technol. 34, 37-43 (2002).
[CrossRef]

Blaikie, R. J.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, "Sub-diffraction-limited patterning using evanescent near-field optical lithography," Appl. Phys. Lett. 75, 3560-3562 (1999).
[CrossRef]

Bonse, J.

J. Bonse, M. Munz, and H. Sturm, "Scanning force microscopic investigations of the femtosecond laser pulse irradiation of indium phosphide in air," IEEE Trans. on Nanotechnol. 3, 358-367 (2004).
[CrossRef]

Brown, W. D.

A. M. Ozkan, A. Malshe, T. A. Railkar, W. D. Brown, M. D. Shirk, and P. A. Molian, "Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters," Appl. Phys. Lett. 75, 3716-3718 (1999).
[CrossRef]

Cheung, R.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, "Sub-diffraction-limited patterning using evanescent near-field optical lithography," Appl. Phys. Lett. 75, 3560-3562 (1999).
[CrossRef]

Clark, S. E.

N. C. Kerr, B. A. Omar, S. E. Clark, and D. C. Emmony, "The topography of laser-induced ripple structures," J. Phys. D: Appl. Phys. 23, 884-889 (1990).
[CrossRef]

Costache, F.

F. Costache, M. Henyk, and J. Reif, "Surface patterning on insulators upon femtosecond laser ablation," Appl. Surf. Sci. 208-209, 486-491 (2003).
[CrossRef]

Cumming, D. R. S.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, "Sub-diffraction-limited patterning using evanescent near-field optical lithography," Appl. Phys. Lett. 75, 3560-3562 (1999).
[CrossRef]

Emmony, D. C.

N. C. Kerr, B. A. Omar, S. E. Clark, and D. C. Emmony, "The topography of laser-induced ripple structures," J. Phys. D: Appl. Phys. 23, 884-889 (1990).
[CrossRef]

Fauchet, P. M.

G. Zhou, P. M. Fauchet, and A. E. Siegman, "Growth of spontaneous periodic surface structures on solids during laser illumination," Phys.Rev. B 26, 5366-5381 (1982).
[CrossRef]

Ginsberg, D. M.

S. E. Stupp and D. M. Ginsberg, "A review of the linear term in the low temperature specific heat of YBa2Cu3O7-™," Physica C 158, 299-310 (1989).
[CrossRef]

Guan, Y. F.

A. J. Pedraza, Y. F. Guan, d J. D. Fowlkes, and D. A. Smith, "Nanostructures produced by ultraviolet laser irradiation of silicon. I. Rippled structures," J. Vacuum Sci. and Technol. B 22, 2823-2835 (2004).
[CrossRef]

Gupta, M. C.

B. K. Nayak, M. C. Gupta, and K.W. Kolasinski, "Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation," Appl. Phy. A 90, 399-402 (2008).
[CrossRef]

Henyk, M.

F. Costache, M. Henyk, and J. Reif, "Surface patterning on insulators upon femtosecond laser ablation," Appl. Surf. Sci. 208-209, 486-491 (2003).
[CrossRef]

Inao, Y.

Y. Inao, S. Nakasato, R. Kuroda, and M. Ohtsu, "Near-field lithography as prototype nano-fabrication tool," Microelectronic Eng. 84, 705-7103 (2007).
[CrossRef]

Kerr, N. C.

N. C. Kerr, B. A. Omar, S. E. Clark, and D. C. Emmony, "The topography of laser-induced ripple structures," J. Phys. D: Appl. Phys. 23, 884-889 (1990).
[CrossRef]

Kolasinski, K.W.

B. K. Nayak, M. C. Gupta, and K.W. Kolasinski, "Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation," Appl. Phy. A 90, 399-402 (2008).
[CrossRef]

Kuroda, R.

Y. Inao, S. Nakasato, R. Kuroda, and M. Ohtsu, "Near-field lithography as prototype nano-fabrication tool," Microelectronic Eng. 84, 705-7103 (2007).
[CrossRef]

Malshe, A.

A. M. Ozkan, A. Malshe, T. A. Railkar, W. D. Brown, M. D. Shirk, and P. A. Molian, "Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters," Appl. Phys. Lett. 75, 3716-3718 (1999).
[CrossRef]

Malzer, S.

McNab, S. J.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, "Sub-diffraction-limited patterning using evanescent near-field optical lithography," Appl. Phys. Lett. 75, 3560-3562 (1999).
[CrossRef]

Molian, P. A.

A. M. Ozkan, A. Malshe, T. A. Railkar, W. D. Brown, M. D. Shirk, and P. A. Molian, "Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters," Appl. Phys. Lett. 75, 3716-3718 (1999).
[CrossRef]

Munz, M.

J. Bonse, M. Munz, and H. Sturm, "Scanning force microscopic investigations of the femtosecond laser pulse irradiation of indium phosphide in air," IEEE Trans. on Nanotechnol. 3, 358-367 (2004).
[CrossRef]

Nakasato, S.

Y. Inao, S. Nakasato, R. Kuroda, and M. Ohtsu, "Near-field lithography as prototype nano-fabrication tool," Microelectronic Eng. 84, 705-7103 (2007).
[CrossRef]

Nayak, B. K.

B. K. Nayak, M. C. Gupta, and K.W. Kolasinski, "Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation," Appl. Phy. A 90, 399-402 (2008).
[CrossRef]

Ohtsu, M.

Y. Inao, S. Nakasato, R. Kuroda, and M. Ohtsu, "Near-field lithography as prototype nano-fabrication tool," Microelectronic Eng. 84, 705-7103 (2007).
[CrossRef]

Omar, B. A.

N. C. Kerr, B. A. Omar, S. E. Clark, and D. C. Emmony, "The topography of laser-induced ripple structures," J. Phys. D: Appl. Phys. 23, 884-889 (1990).
[CrossRef]

Ozkan, A. M.

A. M. Ozkan, A. Malshe, T. A. Railkar, W. D. Brown, M. D. Shirk, and P. A. Molian, "Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters," Appl. Phys. Lett. 75, 3716-3718 (1999).
[CrossRef]

Pedraza, A. J.

A. J. Pedraza, Y. F. Guan, d J. D. Fowlkes, and D. A. Smith, "Nanostructures produced by ultraviolet laser irradiation of silicon. I. Rippled structures," J. Vacuum Sci. and Technol. B 22, 2823-2835 (2004).
[CrossRef]

Railkar, T. A.

A. M. Ozkan, A. Malshe, T. A. Railkar, W. D. Brown, M. D. Shirk, and P. A. Molian, "Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters," Appl. Phys. Lett. 75, 3716-3718 (1999).
[CrossRef]

Ravindra, K. G.

P. S. Amit, K. Avinashi, K. N. Tripathi, and K. G. Ravindra, "Laser damage studies of silicon surfaces using ultra-short laser pulses," Opt. Laser Technol. 34, 37-43 (2002).
[CrossRef]

Reif, J.

F. Costache, M. Henyk, and J. Reif, "Surface patterning on insulators upon femtosecond laser ablation," Appl. Surf. Sci. 208-209, 486-491 (2003).
[CrossRef]

Shirk, M. D.

A. M. Ozkan, A. Malshe, T. A. Railkar, W. D. Brown, M. D. Shirk, and P. A. Molian, "Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters," Appl. Phys. Lett. 75, 3716-3718 (1999).
[CrossRef]

Siegman, A. E.

G. Zhou, P. M. Fauchet, and A. E. Siegman, "Growth of spontaneous periodic surface structures on solids during laser illumination," Phys.Rev. B 26, 5366-5381 (1982).
[CrossRef]

Sipe, J. E.

H. M. van Driel, J. E. Sipe, and J. F. Young, "Laser-induced periodic surface structure on solids: a universal phenomenon," Phys. Rev. Lett. 49, 1955-1958 (1982).
[CrossRef]

Stupp, S. E.

S. E. Stupp and D. M. Ginsberg, "A review of the linear term in the low temperature specific heat of YBa2Cu3O7-™," Physica C 158, 299-310 (1989).
[CrossRef]

Sturm, H.

J. Bonse, M. Munz, and H. Sturm, "Scanning force microscopic investigations of the femtosecond laser pulse irradiation of indium phosphide in air," IEEE Trans. on Nanotechnol. 3, 358-367 (2004).
[CrossRef]

Tripathi, K. N.

P. S. Amit, K. Avinashi, K. N. Tripathi, and K. G. Ravindra, "Laser damage studies of silicon surfaces using ultra-short laser pulses," Opt. Laser Technol. 34, 37-43 (2002).
[CrossRef]

van Driel, H. M.

H. M. van Driel, J. E. Sipe, and J. F. Young, "Laser-induced periodic surface structure on solids: a universal phenomenon," Phys. Rev. Lett. 49, 1955-1958 (1982).
[CrossRef]

Wang, L. J.

Young, J. F.

H. M. van Driel, J. E. Sipe, and J. F. Young, "Laser-induced periodic surface structure on solids: a universal phenomenon," Phys. Rev. Lett. 49, 1955-1958 (1982).
[CrossRef]

Zhao, Q. Z.

Zhou, G.

G. Zhou, P. M. Fauchet, and A. E. Siegman, "Growth of spontaneous periodic surface structures on solids during laser illumination," Phys.Rev. B 26, 5366-5381 (1982).
[CrossRef]

Appl. Phy. A (1)

B. K. Nayak, M. C. Gupta, and K.W. Kolasinski, "Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation," Appl. Phy. A 90, 399-402 (2008).
[CrossRef]

Appl. Phys. Lett. (2)

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, "Sub-diffraction-limited patterning using evanescent near-field optical lithography," Appl. Phys. Lett. 75, 3560-3562 (1999).
[CrossRef]

A. M. Ozkan, A. Malshe, T. A. Railkar, W. D. Brown, M. D. Shirk, and P. A. Molian, "Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters," Appl. Phys. Lett. 75, 3716-3718 (1999).
[CrossRef]

Appl. Surf. Sci. (1)

F. Costache, M. Henyk, and J. Reif, "Surface patterning on insulators upon femtosecond laser ablation," Appl. Surf. Sci. 208-209, 486-491 (2003).
[CrossRef]

IEEE Trans. on Nanotechnol. (1)

J. Bonse, M. Munz, and H. Sturm, "Scanning force microscopic investigations of the femtosecond laser pulse irradiation of indium phosphide in air," IEEE Trans. on Nanotechnol. 3, 358-367 (2004).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

N. C. Kerr, B. A. Omar, S. E. Clark, and D. C. Emmony, "The topography of laser-induced ripple structures," J. Phys. D: Appl. Phys. 23, 884-889 (1990).
[CrossRef]

J. Vacuum Sci. and Technol. B (1)

A. J. Pedraza, Y. F. Guan, d J. D. Fowlkes, and D. A. Smith, "Nanostructures produced by ultraviolet laser irradiation of silicon. I. Rippled structures," J. Vacuum Sci. and Technol. B 22, 2823-2835 (2004).
[CrossRef]

Microelectronic Eng. (1)

Y. Inao, S. Nakasato, R. Kuroda, and M. Ohtsu, "Near-field lithography as prototype nano-fabrication tool," Microelectronic Eng. 84, 705-7103 (2007).
[CrossRef]

Opt. Laser Technol. (1)

P. S. Amit, K. Avinashi, K. N. Tripathi, and K. G. Ravindra, "Laser damage studies of silicon surfaces using ultra-short laser pulses," Opt. Laser Technol. 34, 37-43 (2002).
[CrossRef]

Opt. Express (1)

Phys. Rev. Lett. (1)

H. M. van Driel, J. E. Sipe, and J. F. Young, "Laser-induced periodic surface structure on solids: a universal phenomenon," Phys. Rev. Lett. 49, 1955-1958 (1982).
[CrossRef]

Phys.Rev. B (1)

G. Zhou, P. M. Fauchet, and A. E. Siegman, "Growth of spontaneous periodic surface structures on solids during laser illumination," Phys.Rev. B 26, 5366-5381 (1982).
[CrossRef]

Physica C (1)

S. E. Stupp and D. M. Ginsberg, "A review of the linear term in the low temperature specific heat of YBa2Cu3O7-™," Physica C 158, 299-310 (1989).
[CrossRef]

Other (6)

“X-ray data booklet,” Lawrence Berkeley National Laboratory (2001)

Derived from the Debye heat capacity and the Debye temperature of YBCO was obtained from ref. [18].

T. Ito, T. Yamada, Y. Inao, T. Yamaguchi, N. Mizutani, and R. Kuroda, "Fabrication of half-pitch 32 nm resist patterns using near-field lithography with a-Si mask," Appl. Phys. Lett. 89, 033113-1-033113-3 (2006).
[CrossRef]

A. Y. Vorobyev and C. Guo, "Spectral and polarization responses of femtosecond laser-induced periodic surface structures on metals," J. Appl. Phys. 103, 043513-1-043513-3 (2008).
[CrossRef]

E. M. Hsu, T. H. R. Crawford, H. F. Tiedje, and H. K. Haugen, "Periodic surface structures on gallium phosphide after irradiation with 150 fs - 7 ns laser pulses at 800 nm," Appl. Phys. Lett. 91, 111102-1-111102-3 (2007).
[CrossRef]

E. M. Hsu, T. H. R. Crawford, C. Maunders, G. A. Botton, and H. K. Haugen, "Cross-sectional study of periodic surface structures on gallium phosphide induced by ultrashort laser pulse irradiation," Appl. Phys. Lett. 92, 221112-1-221112-3 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

XRD signals of YBCO thin films at various laser fluences.

Fig. 2.
Fig. 2.

(a) The resistance versus temperature curve measured before femtosecond laser irradiation (fluence=0 J/cm2). (b) The magnetization versus temperature curve measured at 10 Oe after femtosecond laser irradiation with various fluences (0.26~0.53 J/cm2).

Fig. 3.
Fig. 3.

SEM images show the surface morphology of YBCO thin films at various laser fluences. (a) Fluence=0 J/cm2 (b) Fluence=0.21 J/cm2 (c) Fluence=0.26 J/cm2. The solid lines are a guide to the eye emphasizing the alignment of YBCO nanodots. (d) Fluence=0.32 J/cm2 (e) Fluence=0.53 J/cm2 (f) AFM image of (c).

Fig. 4.
Fig. 4.

EDS spectra show the composition of area 1 and area 2 in Fig. 3(c) and Fig. 3(e).

Metrics