Abstract

We present an experimental and theoretical study of a new scheme for Near-Field Fluorescence Correlation Spectroscopy that, using the field enhancement by optical nanoantennas, allows the reduction of the observation volume 4 orders of magnitude below the diffraction limit. This reduction can be used in two different ways: to increase the sample concentration and to improve the spatial resolution of the dynamics under study. Our experimental results using individual gold nanoparticles and a 150µM Rose Bengal solution in glycerol confirm the volume reduction.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Magde, E. Elson, and W. W. Webb, "Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy," Phys. Rev. Lett. 29, 705-708 (1972).
    [CrossRef]
  2. E. Bismuto, E. Gratton, and D. C. Lamb "Dynamics of ANS Binding to Tuna Apomyoglobin Measured with Fluorescence Correlation Spectroscopy," Biophys. J. 81, 3510-3521 (2001).
    [CrossRef] [PubMed]
  3. L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, "Fluorescence Correlation Spectroscopy in Subdiffraction Focal Volumes," Phys. Rev. Lett. 94,178104 (2005).
    [CrossRef] [PubMed]
  4. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, "Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission," Proc. Nat. Acad. Sci. 97,8206-8210 (2000).
    [CrossRef] [PubMed]
  5. H. Rigneault and P. Lenne, "Fluorescence correlation spectroscopy on a mirror," J. Opt. Soc. Am. B 20, 2203-2214 (2003).
    [CrossRef]
  6. T. E. Starr and N. L. Thompson, "Total Internal Reflection with Fluorescence Correlation Spectroscopy: Combined Surface Reaction and Solution Diffusion," Biophys. J. 80, 1575-1584 (2001).
    [CrossRef] [PubMed]
  7. M. F. García-Parajó, B. I. de Bakker, M. Koopman, A. Cambi, F. de Lange, C. G. Figdor, and N. F. van Hulst, "Near-Field Fluorescence Microscopy: An optical Nanotool to Study Protein Organization at the Cell Membrane," Nano Biotech. 1, 113-120 (2005).
    [CrossRef]
  8. Y. Kawata, C. Xu, and W. Denk, "Feasibility of molecular-resolution fluorescence near-field microscopy using multi-photon absorption and field enhancenment near a sharp tip," J. Appl. Phys. 85, 1294 (1999).
    [CrossRef]
  9. N. Calander, P. Muthu, Z. Gryczynski, I. Gryczynski, and J. Borejdo "Fluorescence correlation spectroscopy in a reverse Kretchmann surface plasmon assisted microscope," Opt. Express 16, 13381-13390 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-17-13381.
    [CrossRef] [PubMed]
  10. J. Borejdo, N. Calander, Z. Gryczynski, and I. Gryczynski, "Fluorescence correlation spectroscopy in surface plasmon coupled emission microscope," Opt. Express 14, 7878-7888 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-17-7878.
    [CrossRef] [PubMed]
  11. M. Foquet, J. Korlach, W. R. Zipfel, W. W. Webb, and H. G. Craighead, "Focal Volume Confinement by Submicrometer-Sized Fluidic Channels," Anal. Chem. 76, 1618 - 1626 (2004).
    [CrossRef] [PubMed]
  12. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations," Science 299,682-686 (2003).
    [CrossRef] [PubMed]
  13. M. Leutenegger, M. Gösch, A. Perentes, P. Hoffmann, O. J. F. Martin, and T. Lasser, "Confining the sampling volume for Fluorescence Correlation Spectroscopy using a sub-wavelength sized aperture," Opt. Express 14, 956-969 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-2-956.
    [CrossRef] [PubMed]
  14. J. Wenger, D. Gérard, P. Lenne, H. Rigneault, J. Dintinger, T. W. Ebbesen, A. Boned, F. Conchonaud, and D. Marguet, "Dual-color fluorescence cross-correlation spectroscopy in a single nanoaperture : towards rapid multicomponent screening at high concentrations," Opt. Express 14, 12206-12216 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-25-12206.
    [CrossRef] [PubMed]
  15. H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, "Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures," Phys. Rev. Lett. 95, 117401 (2005).
    [CrossRef] [PubMed]
  16. C. Zander, J. Enderlein, R. A. Keller (ed), Single-Molecule Detection in Solution-Methods and Applications (Wiley-VCH, 2002), Chap. 3.
    [CrossRef]
  17. C. Fradin, A. Abu-Arish, R. Granek, and M. Elbaum, "Fluorescence Correlation Spectroscopy Close to a Fluctuating Membrane," Biophys. J. 84, 2005-2020 (2003).
    [CrossRef] [PubMed]
  18. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2007).
  19. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, "Plasmonic Enhancement of Molecular Fluorescence," Nano Lett. 7, 496-501 (2007).
    [CrossRef] [PubMed]
  20. K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, "Metal-enhanced fluorescence: an emerging tool in biotechnology," Curr. Op. in Biotech 16, 55-62, (2005).
    [CrossRef]
  21. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, "Strong Enhancement of the Radiative Decay Rate of Emitters by Single Plasmonic Nanoantennas," Nano Lett. 7, 2871-2875 (2007).
    [CrossRef] [PubMed]
  22. P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," Phys. Rev. Lett. 96, 113002, (2006).
    [CrossRef] [PubMed]
  23. P. Bharadwaj and L. Novotny, "Spectral dependence of single molecule fluorescence enhancement," Opt. Express 15, 14266-14274 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-21-14266.
    [CrossRef] [PubMed]

2008

2007

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, "Plasmonic Enhancement of Molecular Fluorescence," Nano Lett. 7, 496-501 (2007).
[CrossRef] [PubMed]

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, "Strong Enhancement of the Radiative Decay Rate of Emitters by Single Plasmonic Nanoantennas," Nano Lett. 7, 2871-2875 (2007).
[CrossRef] [PubMed]

P. Bharadwaj and L. Novotny, "Spectral dependence of single molecule fluorescence enhancement," Opt. Express 15, 14266-14274 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-21-14266.
[CrossRef] [PubMed]

2006

2005

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, "Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures," Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef] [PubMed]

L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, "Fluorescence Correlation Spectroscopy in Subdiffraction Focal Volumes," Phys. Rev. Lett. 94,178104 (2005).
[CrossRef] [PubMed]

M. F. García-Parajó, B. I. de Bakker, M. Koopman, A. Cambi, F. de Lange, C. G. Figdor, and N. F. van Hulst, "Near-Field Fluorescence Microscopy: An optical Nanotool to Study Protein Organization at the Cell Membrane," Nano Biotech. 1, 113-120 (2005).
[CrossRef]

2004

M. Foquet, J. Korlach, W. R. Zipfel, W. W. Webb, and H. G. Craighead, "Focal Volume Confinement by Submicrometer-Sized Fluidic Channels," Anal. Chem. 76, 1618 - 1626 (2004).
[CrossRef] [PubMed]

2003

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations," Science 299,682-686 (2003).
[CrossRef] [PubMed]

C. Fradin, A. Abu-Arish, R. Granek, and M. Elbaum, "Fluorescence Correlation Spectroscopy Close to a Fluctuating Membrane," Biophys. J. 84, 2005-2020 (2003).
[CrossRef] [PubMed]

H. Rigneault and P. Lenne, "Fluorescence correlation spectroscopy on a mirror," J. Opt. Soc. Am. B 20, 2203-2214 (2003).
[CrossRef]

2001

T. E. Starr and N. L. Thompson, "Total Internal Reflection with Fluorescence Correlation Spectroscopy: Combined Surface Reaction and Solution Diffusion," Biophys. J. 80, 1575-1584 (2001).
[CrossRef] [PubMed]

E. Bismuto, E. Gratton, and D. C. Lamb "Dynamics of ANS Binding to Tuna Apomyoglobin Measured with Fluorescence Correlation Spectroscopy," Biophys. J. 81, 3510-3521 (2001).
[CrossRef] [PubMed]

2000

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, "Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission," Proc. Nat. Acad. Sci. 97,8206-8210 (2000).
[CrossRef] [PubMed]

1999

Y. Kawata, C. Xu, and W. Denk, "Feasibility of molecular-resolution fluorescence near-field microscopy using multi-photon absorption and field enhancenment near a sharp tip," J. Appl. Phys. 85, 1294 (1999).
[CrossRef]

1972

D. Magde, E. Elson, and W. W. Webb, "Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy," Phys. Rev. Lett. 29, 705-708 (1972).
[CrossRef]

Abu-Arish, A.

C. Fradin, A. Abu-Arish, R. Granek, and M. Elbaum, "Fluorescence Correlation Spectroscopy Close to a Fluctuating Membrane," Biophys. J. 84, 2005-2020 (2003).
[CrossRef] [PubMed]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," Phys. Rev. Lett. 96, 113002, (2006).
[CrossRef] [PubMed]

Bharadwaj, P.

Bismuto, E.

E. Bismuto, E. Gratton, and D. C. Lamb "Dynamics of ANS Binding to Tuna Apomyoglobin Measured with Fluorescence Correlation Spectroscopy," Biophys. J. 81, 3510-3521 (2001).
[CrossRef] [PubMed]

Blom, H.

L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, "Fluorescence Correlation Spectroscopy in Subdiffraction Focal Volumes," Phys. Rev. Lett. 94,178104 (2005).
[CrossRef] [PubMed]

Boned, A.

Bonod, N.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, "Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures," Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef] [PubMed]

Borejdo, J.

Calander, N.

Cambi, A.

M. F. García-Parajó, B. I. de Bakker, M. Koopman, A. Cambi, F. de Lange, C. G. Figdor, and N. F. van Hulst, "Near-Field Fluorescence Microscopy: An optical Nanotool to Study Protein Organization at the Cell Membrane," Nano Biotech. 1, 113-120 (2005).
[CrossRef]

Capoulade, J.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, "Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures," Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef] [PubMed]

Conchonaud, F.

Craighead, H. G.

M. Foquet, J. Korlach, W. R. Zipfel, W. W. Webb, and H. G. Craighead, "Focal Volume Confinement by Submicrometer-Sized Fluidic Channels," Anal. Chem. 76, 1618 - 1626 (2004).
[CrossRef] [PubMed]

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations," Science 299,682-686 (2003).
[CrossRef] [PubMed]

de Bakker, B. I.

M. F. García-Parajó, B. I. de Bakker, M. Koopman, A. Cambi, F. de Lange, C. G. Figdor, and N. F. van Hulst, "Near-Field Fluorescence Microscopy: An optical Nanotool to Study Protein Organization at the Cell Membrane," Nano Biotech. 1, 113-120 (2005).
[CrossRef]

de Lange, F.

M. F. García-Parajó, B. I. de Bakker, M. Koopman, A. Cambi, F. de Lange, C. G. Figdor, and N. F. van Hulst, "Near-Field Fluorescence Microscopy: An optical Nanotool to Study Protein Organization at the Cell Membrane," Nano Biotech. 1, 113-120 (2005).
[CrossRef]

Denk, W.

Y. Kawata, C. Xu, and W. Denk, "Feasibility of molecular-resolution fluorescence near-field microscopy using multi-photon absorption and field enhancenment near a sharp tip," J. Appl. Phys. 85, 1294 (1999).
[CrossRef]

Dintinger, J.

Dyba, M.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, "Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission," Proc. Nat. Acad. Sci. 97,8206-8210 (2000).
[CrossRef] [PubMed]

Ebbesen, T. W.

Eggeling, C.

L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, "Fluorescence Correlation Spectroscopy in Subdiffraction Focal Volumes," Phys. Rev. Lett. 94,178104 (2005).
[CrossRef] [PubMed]

Egner, A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, "Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission," Proc. Nat. Acad. Sci. 97,8206-8210 (2000).
[CrossRef] [PubMed]

Elbaum, M.

C. Fradin, A. Abu-Arish, R. Granek, and M. Elbaum, "Fluorescence Correlation Spectroscopy Close to a Fluctuating Membrane," Biophys. J. 84, 2005-2020 (2003).
[CrossRef] [PubMed]

Elson, E.

D. Magde, E. Elson, and W. W. Webb, "Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy," Phys. Rev. Lett. 29, 705-708 (1972).
[CrossRef]

Figdor, C. G.

M. F. García-Parajó, B. I. de Bakker, M. Koopman, A. Cambi, F. de Lange, C. G. Figdor, and N. F. van Hulst, "Near-Field Fluorescence Microscopy: An optical Nanotool to Study Protein Organization at the Cell Membrane," Nano Biotech. 1, 113-120 (2005).
[CrossRef]

Foquet, M.

M. Foquet, J. Korlach, W. R. Zipfel, W. W. Webb, and H. G. Craighead, "Focal Volume Confinement by Submicrometer-Sized Fluidic Channels," Anal. Chem. 76, 1618 - 1626 (2004).
[CrossRef] [PubMed]

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations," Science 299,682-686 (2003).
[CrossRef] [PubMed]

Fradin, C.

C. Fradin, A. Abu-Arish, R. Granek, and M. Elbaum, "Fluorescence Correlation Spectroscopy Close to a Fluctuating Membrane," Biophys. J. 84, 2005-2020 (2003).
[CrossRef] [PubMed]

García-Parajó, M. F.

M. F. García-Parajó, B. I. de Bakker, M. Koopman, A. Cambi, F. de Lange, C. G. Figdor, and N. F. van Hulst, "Near-Field Fluorescence Microscopy: An optical Nanotool to Study Protein Organization at the Cell Membrane," Nano Biotech. 1, 113-120 (2005).
[CrossRef]

Gérard, D.

Giannini, V.

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, "Strong Enhancement of the Radiative Decay Rate of Emitters by Single Plasmonic Nanoantennas," Nano Lett. 7, 2871-2875 (2007).
[CrossRef] [PubMed]

Gómez Rivas, J.

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, "Strong Enhancement of the Radiative Decay Rate of Emitters by Single Plasmonic Nanoantennas," Nano Lett. 7, 2871-2875 (2007).
[CrossRef] [PubMed]

Goodrich, G. P.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, "Plasmonic Enhancement of Molecular Fluorescence," Nano Lett. 7, 496-501 (2007).
[CrossRef] [PubMed]

Gösch, M.

Granek, R.

C. Fradin, A. Abu-Arish, R. Granek, and M. Elbaum, "Fluorescence Correlation Spectroscopy Close to a Fluctuating Membrane," Biophys. J. 84, 2005-2020 (2003).
[CrossRef] [PubMed]

Gratton, E.

E. Bismuto, E. Gratton, and D. C. Lamb "Dynamics of ANS Binding to Tuna Apomyoglobin Measured with Fluorescence Correlation Spectroscopy," Biophys. J. 81, 3510-3521 (2001).
[CrossRef] [PubMed]

Gryczynski, I.

Gryczynski, Z.

Halas, N. J.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, "Plasmonic Enhancement of Molecular Fluorescence," Nano Lett. 7, 496-501 (2007).
[CrossRef] [PubMed]

Hell, S. W.

L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, "Fluorescence Correlation Spectroscopy in Subdiffraction Focal Volumes," Phys. Rev. Lett. 94,178104 (2005).
[CrossRef] [PubMed]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, "Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission," Proc. Nat. Acad. Sci. 97,8206-8210 (2000).
[CrossRef] [PubMed]

Hoffmann, P.

Jakobs, S.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, "Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission," Proc. Nat. Acad. Sci. 97,8206-8210 (2000).
[CrossRef] [PubMed]

Johnson, B. R.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, "Plasmonic Enhancement of Molecular Fluorescence," Nano Lett. 7, 496-501 (2007).
[CrossRef] [PubMed]

Kastrup, L.

L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, "Fluorescence Correlation Spectroscopy in Subdiffraction Focal Volumes," Phys. Rev. Lett. 94,178104 (2005).
[CrossRef] [PubMed]

Kawata, Y.

Y. Kawata, C. Xu, and W. Denk, "Feasibility of molecular-resolution fluorescence near-field microscopy using multi-photon absorption and field enhancenment near a sharp tip," J. Appl. Phys. 85, 1294 (1999).
[CrossRef]

Klar, T. A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, "Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission," Proc. Nat. Acad. Sci. 97,8206-8210 (2000).
[CrossRef] [PubMed]

Koopman, M.

M. F. García-Parajó, B. I. de Bakker, M. Koopman, A. Cambi, F. de Lange, C. G. Figdor, and N. F. van Hulst, "Near-Field Fluorescence Microscopy: An optical Nanotool to Study Protein Organization at the Cell Membrane," Nano Biotech. 1, 113-120 (2005).
[CrossRef]

Korlach, J.

M. Foquet, J. Korlach, W. R. Zipfel, W. W. Webb, and H. G. Craighead, "Focal Volume Confinement by Submicrometer-Sized Fluidic Channels," Anal. Chem. 76, 1618 - 1626 (2004).
[CrossRef] [PubMed]

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations," Science 299,682-686 (2003).
[CrossRef] [PubMed]

Lamb, D. C.

E. Bismuto, E. Gratton, and D. C. Lamb "Dynamics of ANS Binding to Tuna Apomyoglobin Measured with Fluorescence Correlation Spectroscopy," Biophys. J. 81, 3510-3521 (2001).
[CrossRef] [PubMed]

Lasser, T.

Lenne, P.

Lenne, P. F.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, "Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures," Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef] [PubMed]

Leutenegger, M.

Levene, M. J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations," Science 299,682-686 (2003).
[CrossRef] [PubMed]

Magde, D.

D. Magde, E. Elson, and W. W. Webb, "Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy," Phys. Rev. Lett. 29, 705-708 (1972).
[CrossRef]

Marguet, D.

Martin, O. J. F.

Muskens, O. L.

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, "Strong Enhancement of the Radiative Decay Rate of Emitters by Single Plasmonic Nanoantennas," Nano Lett. 7, 2871-2875 (2007).
[CrossRef] [PubMed]

Muthu, P.

Novotny, L.

Perentes, A.

Popov, E.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, "Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures," Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef] [PubMed]

Rigneault, H.

Sánchez-Gil, J. A.

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, "Strong Enhancement of the Radiative Decay Rate of Emitters by Single Plasmonic Nanoantennas," Nano Lett. 7, 2871-2875 (2007).
[CrossRef] [PubMed]

Starr, T. E.

T. E. Starr and N. L. Thompson, "Total Internal Reflection with Fluorescence Correlation Spectroscopy: Combined Surface Reaction and Solution Diffusion," Biophys. J. 80, 1575-1584 (2001).
[CrossRef] [PubMed]

Tam, F.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, "Plasmonic Enhancement of Molecular Fluorescence," Nano Lett. 7, 496-501 (2007).
[CrossRef] [PubMed]

Thompson, N. L.

T. E. Starr and N. L. Thompson, "Total Internal Reflection with Fluorescence Correlation Spectroscopy: Combined Surface Reaction and Solution Diffusion," Biophys. J. 80, 1575-1584 (2001).
[CrossRef] [PubMed]

Turner, S. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations," Science 299,682-686 (2003).
[CrossRef] [PubMed]

van Hulst, N. F.

M. F. García-Parajó, B. I. de Bakker, M. Koopman, A. Cambi, F. de Lange, C. G. Figdor, and N. F. van Hulst, "Near-Field Fluorescence Microscopy: An optical Nanotool to Study Protein Organization at the Cell Membrane," Nano Biotech. 1, 113-120 (2005).
[CrossRef]

Webb, W. W.

M. Foquet, J. Korlach, W. R. Zipfel, W. W. Webb, and H. G. Craighead, "Focal Volume Confinement by Submicrometer-Sized Fluidic Channels," Anal. Chem. 76, 1618 - 1626 (2004).
[CrossRef] [PubMed]

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations," Science 299,682-686 (2003).
[CrossRef] [PubMed]

D. Magde, E. Elson, and W. W. Webb, "Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy," Phys. Rev. Lett. 29, 705-708 (1972).
[CrossRef]

Wenger, J.

Xu, C.

Y. Kawata, C. Xu, and W. Denk, "Feasibility of molecular-resolution fluorescence near-field microscopy using multi-photon absorption and field enhancenment near a sharp tip," J. Appl. Phys. 85, 1294 (1999).
[CrossRef]

Zipfel, W. R.

M. Foquet, J. Korlach, W. R. Zipfel, W. W. Webb, and H. G. Craighead, "Focal Volume Confinement by Submicrometer-Sized Fluidic Channels," Anal. Chem. 76, 1618 - 1626 (2004).
[CrossRef] [PubMed]

Anal. Chem.

M. Foquet, J. Korlach, W. R. Zipfel, W. W. Webb, and H. G. Craighead, "Focal Volume Confinement by Submicrometer-Sized Fluidic Channels," Anal. Chem. 76, 1618 - 1626 (2004).
[CrossRef] [PubMed]

Biophys. J.

C. Fradin, A. Abu-Arish, R. Granek, and M. Elbaum, "Fluorescence Correlation Spectroscopy Close to a Fluctuating Membrane," Biophys. J. 84, 2005-2020 (2003).
[CrossRef] [PubMed]

E. Bismuto, E. Gratton, and D. C. Lamb "Dynamics of ANS Binding to Tuna Apomyoglobin Measured with Fluorescence Correlation Spectroscopy," Biophys. J. 81, 3510-3521 (2001).
[CrossRef] [PubMed]

T. E. Starr and N. L. Thompson, "Total Internal Reflection with Fluorescence Correlation Spectroscopy: Combined Surface Reaction and Solution Diffusion," Biophys. J. 80, 1575-1584 (2001).
[CrossRef] [PubMed]

J. Appl. Phys.

Y. Kawata, C. Xu, and W. Denk, "Feasibility of molecular-resolution fluorescence near-field microscopy using multi-photon absorption and field enhancenment near a sharp tip," J. Appl. Phys. 85, 1294 (1999).
[CrossRef]

J. Opt. Soc. Am. B

Nano Biotech.

M. F. García-Parajó, B. I. de Bakker, M. Koopman, A. Cambi, F. de Lange, C. G. Figdor, and N. F. van Hulst, "Near-Field Fluorescence Microscopy: An optical Nanotool to Study Protein Organization at the Cell Membrane," Nano Biotech. 1, 113-120 (2005).
[CrossRef]

Nano Lett.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, "Plasmonic Enhancement of Molecular Fluorescence," Nano Lett. 7, 496-501 (2007).
[CrossRef] [PubMed]

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, "Strong Enhancement of the Radiative Decay Rate of Emitters by Single Plasmonic Nanoantennas," Nano Lett. 7, 2871-2875 (2007).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. Lett.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, "Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures," Phys. Rev. Lett. 95, 117401 (2005).
[CrossRef] [PubMed]

D. Magde, E. Elson, and W. W. Webb, "Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy," Phys. Rev. Lett. 29, 705-708 (1972).
[CrossRef]

L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, "Fluorescence Correlation Spectroscopy in Subdiffraction Focal Volumes," Phys. Rev. Lett. 94,178104 (2005).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," Phys. Rev. Lett. 96, 113002, (2006).
[CrossRef] [PubMed]

Proc. Nat. Acad. Sci.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, "Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission," Proc. Nat. Acad. Sci. 97,8206-8210 (2000).
[CrossRef] [PubMed]

Science

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations," Science 299,682-686 (2003).
[CrossRef] [PubMed]

Other

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2007).

C. Zander, J. Enderlein, R. A. Keller (ed), Single-Molecule Detection in Solution-Methods and Applications (Wiley-VCH, 2002), Chap. 3.
[CrossRef]

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, "Metal-enhanced fluorescence: an emerging tool in biotechnology," Curr. Op. in Biotech 16, 55-62, (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a): Scheme of the Near-Field FCS experiment. A NP is laying on a glass-liquid interface. (b): Considering a probe diffusing from r to r′, (i) reflected on the coverslip as coming from r1, (ii) reflected on the NP as coming from r2, (iii) reflected on both surfaces as coming from r3.

Fig. 2.
Fig. 2.

Intensity profiles outside a spherical gold NP (distance is normalized to the radius a of the NP). Dots: Calculated according to Mie theory. Full line: Fits to exp(-x/d) (left) and exp[-2ρ2o 2] (right). Both d and ωo scale linearly with the particle radius a.

Fig. 3.
Fig. 3.

(Left): ACF for 150µM Rose Bengal in 80% glycerol/water at room temperature acquired with (a), and without (b) a 40nm radius gold NP in the observation volume. The fit of the experimental data with Eq. (5) and the individual contributions of each process (diffusion in green and binding kinetics in red) to the total ACF are also shown. (Right): Comparison of the residuals obtained by fitting the experimental data with Eq. (5) (solid line), and the correlation without a NP (background signal), curve (b) of left panel (points).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

G ( τ ) = I ( t ) · I ( t + τ ) I 2
I ( r , t ) = + Q ( r ) · p ( r ) · C ( r , t ) dV
p T ( r ) = p 2 DG ( r ) + α · p 2 DG exp ( r )
G diff ( τ ) = 32 N l arg e 2 α 2 N small 2 ( 4 τ 9 τ small + 1 ) ( 2 π τ τ small + e τ τ small ( 1 2 τ τ small ) Erfc [ τ τ small ] )
G T ( τ ) = β 1 ( 4 τ 9 τ small + 1 ) ( 2 π τ τ small + e τ τ small ( 1 2 τ τ small ) Erfc [ τ τ small ] ) + A e τ τ R
G ( τ ) = V V Q 2 ( r ) · p T ( r ) · p T ( r ) · g ( r , r , τ ) dV dV ( c V Q ( r ) · p ( r ) dV ) 2
G ij ( τ ) = κ V V Q 2 ( r ) · p i ( r ) · p j ( r ) · g ( r , r , τ ) dV dV ( c V Q ( r ) · p T ( r ) dV ) 2
G ( τ ) = [ N l arg e 4 2 + α N small ] 2 ( f 0 + f 1 + f 2 )
f 0 = N l arg e 16 [ ( τ τ l arg e ) + 1 ] 1 [ ( τ 25 τ l arg e ) + 1 ] 1 2
f 1 = α 2 N small ( 2 τ τ l arg e + 1 + ω 02 2 ω 01 2 ) 1 2 ( 2 τ 25 τ l arg e + 1 + ω 02 2 25 ω 01 2 ) 1 2 e 2 a 2 25 ω 01 2 ( 2 τ 25 τ l arg e + 1 + ω 02 2 25 ω 01 2 )
f 2 = α 2 N small 2 ( 4 τ 9 τ small + 1 ) ( 2 π τ τ small + e τ τ small ( 1 2 τ τ small ) Erfc [ τ τ small ] )
G diff ( τ ) 32 f 2 N l arg e 2

Metrics