Abstract

We report on a nonlinear optical endoscope that adopts a hollow core photonic crystal fiber for single-mode illumination delivery and a multimode one for signal collection. Femtosecond laser pulses up to 100 mW can be delivered at a centered wavelength of 800 nm. The two-photon fluorescence response of our system is shown to have axial and lateral resolutions of 5.8um and 0.6um respectively. Fluorescence detection was obtained at different wavelengths between 790 and 840 nm which could allow SHG detection for example. The maximal field-of-view of the acquired images is 420 µm×420 µm. Detection efficiency is greater by using an avalanche photodiode in comparison to a photo multiplier tube. Results presented here demonstrate the ability of the system to resolve cellular details and the potential of the device for future in vivo imaging diagnosis

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning microscopy," Science 248, 73-76 (1990).
    [CrossRef] [PubMed]
  2. K. König, "Review: Multiphoton microscopy in life sciences," J. Microsc. 200, 83-104 (2000).
    [CrossRef] [PubMed]
  3. K. König and I. Riemann, "High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution," J. Biomed. Opt. 8, 432-439 (2003).
    [CrossRef] [PubMed]
  4. F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, "A miniature head-mounted two-photon microscope: High-resolution brain imaging in freely moving animals," Neuron 31, 903-912 (2001).
    [CrossRef] [PubMed]
  5. F. Helmchen, "Miniaturization of fluorescence microscopes using fibre optics," Exp. Physiol. 87, 737-745 (2002).
    [CrossRef] [PubMed]
  6. W. Göbel, J. N. D. Kerr, A. Nimmerjahn, and F. Helmchen, "Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective," Opt. Lett. 29, 2521-2523 (2004).
    [CrossRef] [PubMed]
  7. J.C. Jung and M. J. Schnitzer, "Multiphoton Endoscopy, " Opt. Lett. 28, 902-904 (2003).
    [CrossRef] [PubMed]
  8. E.J. Seibel and Q. Y. L. Smithwick, "Unique Features of Optical Scanning, Single Fiber Endoscopy," Lasers Surg. Med. 30, 177-183 (2002).
    [CrossRef] [PubMed]
  9. L. Fu, X. Gan, and M. Gu, "Nonlinear optical microscopy based on double-clad photonic crystal fibers," Opt. Express 13, 5528-5534 (2005).
    [CrossRef] [PubMed]
  10. L. Fu, A. Jain, H. Xie, C. Cranfield, and M. Gu, "Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror," Opt. Express 14, 1027-1032 (2006).
    [CrossRef] [PubMed]
  11. L. Fu, A. Jain, C. Cranfield, H. Xie, and M. Gu, "Three-dimensional nonlinear optical endoscopy," J. Biomed. Opt. Lett. 12, 0405011-04050113 (2007).
    [CrossRef]
  12. J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, "In vivo mammalian brain Imaging using one- and two-photon fluorescence microendoscopy," J. Neurophysiol. 92, 3121-3133 (2004).
    [CrossRef] [PubMed]
  13. D. Mehta, J. C. Jung, B. A. Flusberg, and M. J. Schnitzer, "Fiber optic in vivo imaging in the mammalian nervous system," Curr. Opin. Neurobiol. 14, 617-628 (2004).
    [CrossRef] [PubMed]
  14. B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, "In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope," Opt. Lett. 30, 2272-2274 (2005).
    [CrossRef] [PubMed]
  15. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, "Fiber-optic fluorescence imaging," Nature Methods 2, 941-950 (2005).
    [CrossRef] [PubMed]
  16. Monfared, N. H. Blevins, E. L. M. Cheung, J. C. Jung, G. Popelka, and M. J. Schnitzer, "In vivo Imaging of mammalian cochlear blood flow using fluorescence microendoscopy," Otology Neurotology 27, 144-152 (2006).
    [CrossRef] [PubMed]
  17. M. T. Myaing, D. J. MacDonald, and X. Li, "Fiber-optic scanning two-photon fluorescence endoscope," Opt. Lett. 31, 1076-1078 (2006).
    [CrossRef] [PubMed]
  18. W. Piyawattanametha, R. P. J. Barretto, T. H. Ko, B. A. Flusberg, E. D. Cocker, H. Ra, D. Lee, O. Solgaard, and M. J. Schnitzer, "Fast-scanning two-photon fluorescence imaging based on a microelectromechanical systems two- dimensional scanning mirror," Opt. Lett. 31, 2018-2020 (2006).
    [CrossRef] [PubMed]
  19. H. Ra, W. Piyawattanametha, Y. Taguchi, D. Lee, M. J. Mandella, and O. Solgaard, "Two-dimensional MEMS scanner for dual-axes confocal microscopy," J. Microelectromech. Syst. 16, 969-976 (2007).
    [CrossRef]
  20. K. C. Maitland, H. J. Shin, H. Ra, D. Lee, O. Solgaard, and R. Richards-Kortum, "Single fiber confocal microscope with a two-axes gimbaled MEMS scanner for cellular imaging," Opt. Express 14, 8604-8612 (2006).
    [CrossRef] [PubMed]
  21. J. Sawinski and W. Denk, "Miniature random-access fiber scanner for in vivo multiphoton imaging," J. Appl. Phys. 102, 034701 (2007).
    [CrossRef]
  22. E. J. Seibel, R. S. Johnston, C. M. Brown, J. A. Dominitz, and M. B. Kimmey, "Novel ultrathin scanning fiber endoscope for cholangioscopy and pancreatoscopy," Gastrointest. Endosc. 65, Ab125-Ab125 (2007).
    [CrossRef]
  23. L. Fu and M. Gu, "Fibre-optic nonlinear optical microscopy and endoscopy," J. Microsc. 226,195-206 (2007).
    [CrossRef] [PubMed]
  24. K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, "Clinical two-photon microendoscopy," Microsc. Res. and Tech. 70, 398-402 (2007).
    [CrossRef]
  25. I. Riemann, S. Schenkl, R. Le Harzic, D. Sauer, A. Ehlers, B. Messerschmidt, M. Kaatz, R. Bückle, and K. König, "Two-photon imaging using a flexible endoscope," Proc.SPIE, 6851, (2008).
    [CrossRef]
  26. C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, "Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo," Opt. Express 16, 5556-5564 (2008).
    [CrossRef] [PubMed]
  27. C. L. Hoy, N. J. Durr, P. Chen, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, "Miniaturized probe for femtosecond laser microsurgery and two-photon imaging," Opt. Express 16, 9996-10005 (2008).
    [CrossRef] [PubMed]
  28. B. Messerschmidt, A. Kraeplin, S. Schenkl, I. Riemann, M. Stark, A. Ehlers, A. Tchernook, R. Le Harzic, and K. König, "Novel concept of GRIN optical systems for high resolution microendoscopy: Part 1. Physical aspects," Proc.SPIE 6432, (2007).
    [CrossRef]
  29. W. Göbel, A. Nimmerjahn, and F. Helmchen, "Distortion-free delivery of nanojoule femtosecond pulses from a Ti : sapphire laser through a hollow-core photonic crystal fiber," Opt. Lett. 29, 1285-1287 (2004).
    [CrossRef] [PubMed]
  30. J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, "Endoscope-compatible confocalmicroscope using a gradient index-lens system," Opt. Commun. 188, 267-273 (2001).
    [CrossRef]
  31. S. Schenkl, A. Ehlers, R. Le Harzic, M. Stark, I. Riemann, B. Messerscmidt, M. Kaatz, and K. König, "Rigid and High NA Multiphoton Fluorescence GRIN-Endoscopes," Proc. SPIE, 6631 (2007).
    [CrossRef]

2008

2007

L. Fu, A. Jain, C. Cranfield, H. Xie, and M. Gu, "Three-dimensional nonlinear optical endoscopy," J. Biomed. Opt. Lett. 12, 0405011-04050113 (2007).
[CrossRef]

H. Ra, W. Piyawattanametha, Y. Taguchi, D. Lee, M. J. Mandella, and O. Solgaard, "Two-dimensional MEMS scanner for dual-axes confocal microscopy," J. Microelectromech. Syst. 16, 969-976 (2007).
[CrossRef]

J. Sawinski and W. Denk, "Miniature random-access fiber scanner for in vivo multiphoton imaging," J. Appl. Phys. 102, 034701 (2007).
[CrossRef]

E. J. Seibel, R. S. Johnston, C. M. Brown, J. A. Dominitz, and M. B. Kimmey, "Novel ultrathin scanning fiber endoscope for cholangioscopy and pancreatoscopy," Gastrointest. Endosc. 65, Ab125-Ab125 (2007).
[CrossRef]

L. Fu and M. Gu, "Fibre-optic nonlinear optical microscopy and endoscopy," J. Microsc. 226,195-206 (2007).
[CrossRef] [PubMed]

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, "Clinical two-photon microendoscopy," Microsc. Res. and Tech. 70, 398-402 (2007).
[CrossRef]

2006

2005

2004

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, "In vivo mammalian brain Imaging using one- and two-photon fluorescence microendoscopy," J. Neurophysiol. 92, 3121-3133 (2004).
[CrossRef] [PubMed]

D. Mehta, J. C. Jung, B. A. Flusberg, and M. J. Schnitzer, "Fiber optic in vivo imaging in the mammalian nervous system," Curr. Opin. Neurobiol. 14, 617-628 (2004).
[CrossRef] [PubMed]

W. Göbel, A. Nimmerjahn, and F. Helmchen, "Distortion-free delivery of nanojoule femtosecond pulses from a Ti : sapphire laser through a hollow-core photonic crystal fiber," Opt. Lett. 29, 1285-1287 (2004).
[CrossRef] [PubMed]

W. Göbel, J. N. D. Kerr, A. Nimmerjahn, and F. Helmchen, "Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective," Opt. Lett. 29, 2521-2523 (2004).
[CrossRef] [PubMed]

2003

K. König and I. Riemann, "High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution," J. Biomed. Opt. 8, 432-439 (2003).
[CrossRef] [PubMed]

J.C. Jung and M. J. Schnitzer, "Multiphoton Endoscopy, " Opt. Lett. 28, 902-904 (2003).
[CrossRef] [PubMed]

2002

F. Helmchen, "Miniaturization of fluorescence microscopes using fibre optics," Exp. Physiol. 87, 737-745 (2002).
[CrossRef] [PubMed]

E.J. Seibel and Q. Y. L. Smithwick, "Unique Features of Optical Scanning, Single Fiber Endoscopy," Lasers Surg. Med. 30, 177-183 (2002).
[CrossRef] [PubMed]

2001

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, "Endoscope-compatible confocalmicroscope using a gradient index-lens system," Opt. Commun. 188, 267-273 (2001).
[CrossRef]

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, "A miniature head-mounted two-photon microscope: High-resolution brain imaging in freely moving animals," Neuron 31, 903-912 (2001).
[CrossRef] [PubMed]

2000

K. König, "Review: Multiphoton microscopy in life sciences," J. Microsc. 200, 83-104 (2000).
[CrossRef] [PubMed]

1990

W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Aksay, E.

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, "In vivo mammalian brain Imaging using one- and two-photon fluorescence microendoscopy," J. Neurophysiol. 92, 3121-3133 (2004).
[CrossRef] [PubMed]

Anderson, E. P.

Barretto, R. P. J.

Ben-Yakar, A.

Brown, C. M.

E. J. Seibel, R. S. Johnston, C. M. Brown, J. A. Dominitz, and M. B. Kimmey, "Novel ultrathin scanning fiber endoscope for cholangioscopy and pancreatoscopy," Gastrointest. Endosc. 65, Ab125-Ab125 (2007).
[CrossRef]

Bückle, R.

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, "Clinical two-photon microendoscopy," Microsc. Res. and Tech. 70, 398-402 (2007).
[CrossRef]

Buess, G.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, "Endoscope-compatible confocalmicroscope using a gradient index-lens system," Opt. Commun. 188, 267-273 (2001).
[CrossRef]

Chen, P.

Cheung, E. L. M.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, "Fiber-optic fluorescence imaging," Nature Methods 2, 941-950 (2005).
[CrossRef] [PubMed]

Cocker, E. D.

Cranfield, C.

L. Fu, A. Jain, C. Cranfield, H. Xie, and M. Gu, "Three-dimensional nonlinear optical endoscopy," J. Biomed. Opt. Lett. 12, 0405011-04050113 (2007).
[CrossRef]

L. Fu, A. Jain, H. Xie, C. Cranfield, and M. Gu, "Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror," Opt. Express 14, 1027-1032 (2006).
[CrossRef] [PubMed]

Denk, W.

J. Sawinski and W. Denk, "Miniature random-access fiber scanner for in vivo multiphoton imaging," J. Appl. Phys. 102, 034701 (2007).
[CrossRef]

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, "A miniature head-mounted two-photon microscope: High-resolution brain imaging in freely moving animals," Neuron 31, 903-912 (2001).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Dominitz, J. A.

E. J. Seibel, R. S. Johnston, C. M. Brown, J. A. Dominitz, and M. B. Kimmey, "Novel ultrathin scanning fiber endoscope for cholangioscopy and pancreatoscopy," Gastrointest. Endosc. 65, Ab125-Ab125 (2007).
[CrossRef]

Durr, N. J.

Ehlers, A.

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, "Clinical two-photon microendoscopy," Microsc. Res. and Tech. 70, 398-402 (2007).
[CrossRef]

Engelbrecht, C. J.

Fee, M. S.

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, "A miniature head-mounted two-photon microscope: High-resolution brain imaging in freely moving animals," Neuron 31, 903-912 (2001).
[CrossRef] [PubMed]

Flusberg, B. A.

Fu, L.

L. Fu, A. Jain, C. Cranfield, H. Xie, and M. Gu, "Three-dimensional nonlinear optical endoscopy," J. Biomed. Opt. Lett. 12, 0405011-04050113 (2007).
[CrossRef]

L. Fu and M. Gu, "Fibre-optic nonlinear optical microscopy and endoscopy," J. Microsc. 226,195-206 (2007).
[CrossRef] [PubMed]

L. Fu, A. Jain, H. Xie, C. Cranfield, and M. Gu, "Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror," Opt. Express 14, 1027-1032 (2006).
[CrossRef] [PubMed]

L. Fu, X. Gan, and M. Gu, "Nonlinear optical microscopy based on double-clad photonic crystal fibers," Opt. Express 13, 5528-5534 (2005).
[CrossRef] [PubMed]

Gan, X.

Göbel, W.

Gu, M.

L. Fu and M. Gu, "Fibre-optic nonlinear optical microscopy and endoscopy," J. Microsc. 226,195-206 (2007).
[CrossRef] [PubMed]

L. Fu, A. Jain, C. Cranfield, H. Xie, and M. Gu, "Three-dimensional nonlinear optical endoscopy," J. Biomed. Opt. Lett. 12, 0405011-04050113 (2007).
[CrossRef]

L. Fu, A. Jain, H. Xie, C. Cranfield, and M. Gu, "Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror," Opt. Express 14, 1027-1032 (2006).
[CrossRef] [PubMed]

L. Fu, X. Gan, and M. Gu, "Nonlinear optical microscopy based on double-clad photonic crystal fibers," Opt. Express 13, 5528-5534 (2005).
[CrossRef] [PubMed]

Helmchen, F.

Hoy, C. L.

Jain, A.

L. Fu, A. Jain, C. Cranfield, H. Xie, and M. Gu, "Three-dimensional nonlinear optical endoscopy," J. Biomed. Opt. Lett. 12, 0405011-04050113 (2007).
[CrossRef]

L. Fu, A. Jain, H. Xie, C. Cranfield, and M. Gu, "Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror," Opt. Express 14, 1027-1032 (2006).
[CrossRef] [PubMed]

Johnston, R. S.

C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, "Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo," Opt. Express 16, 5556-5564 (2008).
[CrossRef] [PubMed]

E. J. Seibel, R. S. Johnston, C. M. Brown, J. A. Dominitz, and M. B. Kimmey, "Novel ultrathin scanning fiber endoscope for cholangioscopy and pancreatoscopy," Gastrointest. Endosc. 65, Ab125-Ab125 (2007).
[CrossRef]

Jung, J. C.

B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, "In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope," Opt. Lett. 30, 2272-2274 (2005).
[CrossRef] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, "Fiber-optic fluorescence imaging," Nature Methods 2, 941-950 (2005).
[CrossRef] [PubMed]

D. Mehta, J. C. Jung, B. A. Flusberg, and M. J. Schnitzer, "Fiber optic in vivo imaging in the mammalian nervous system," Curr. Opin. Neurobiol. 14, 617-628 (2004).
[CrossRef] [PubMed]

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, "In vivo mammalian brain Imaging using one- and two-photon fluorescence microendoscopy," J. Neurophysiol. 92, 3121-3133 (2004).
[CrossRef] [PubMed]

Jung, J.C.

Kaatz, M.

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, "Clinical two-photon microendoscopy," Microsc. Res. and Tech. 70, 398-402 (2007).
[CrossRef]

Kerr, J. N. D.

Kimmey, M. B.

E. J. Seibel, R. S. Johnston, C. M. Brown, J. A. Dominitz, and M. B. Kimmey, "Novel ultrathin scanning fiber endoscope for cholangioscopy and pancreatoscopy," Gastrointest. Endosc. 65, Ab125-Ab125 (2007).
[CrossRef]

Knittel, J.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, "Endoscope-compatible confocalmicroscope using a gradient index-lens system," Opt. Commun. 188, 267-273 (2001).
[CrossRef]

Ko, T. H.

König, K.

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, "Clinical two-photon microendoscopy," Microsc. Res. and Tech. 70, 398-402 (2007).
[CrossRef]

K. König and I. Riemann, "High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution," J. Biomed. Opt. 8, 432-439 (2003).
[CrossRef] [PubMed]

K. König, "Review: Multiphoton microscopy in life sciences," J. Microsc. 200, 83-104 (2000).
[CrossRef] [PubMed]

Lee, D.

Li, X.

MacDonald, D. J.

Maitland, K. C.

Mandella, M. J.

H. Ra, W. Piyawattanametha, Y. Taguchi, D. Lee, M. J. Mandella, and O. Solgaard, "Two-dimensional MEMS scanner for dual-axes confocal microscopy," J. Microelectromech. Syst. 16, 969-976 (2007).
[CrossRef]

Mehta, A. D.

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, "In vivo mammalian brain Imaging using one- and two-photon fluorescence microendoscopy," J. Neurophysiol. 92, 3121-3133 (2004).
[CrossRef] [PubMed]

Mehta, D.

D. Mehta, J. C. Jung, B. A. Flusberg, and M. J. Schnitzer, "Fiber optic in vivo imaging in the mammalian nervous system," Curr. Opin. Neurobiol. 14, 617-628 (2004).
[CrossRef] [PubMed]

Messerschmidt, B.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, "Endoscope-compatible confocalmicroscope using a gradient index-lens system," Opt. Commun. 188, 267-273 (2001).
[CrossRef]

Monfared,

Monfared, N. H. Blevins, E. L. M. Cheung, J. C. Jung, G. Popelka, and M. J. Schnitzer, "In vivo Imaging of mammalian cochlear blood flow using fluorescence microendoscopy," Otology Neurotology 27, 144-152 (2006).
[CrossRef] [PubMed]

Myaing, M. T.

Nimmerjahn, A.

Piyawattanametha, W.

Possner, T.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, "Endoscope-compatible confocalmicroscope using a gradient index-lens system," Opt. Commun. 188, 267-273 (2001).
[CrossRef]

Ra, H.

Richards-Kortum, R.

Riemann, I.

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, "Clinical two-photon microendoscopy," Microsc. Res. and Tech. 70, 398-402 (2007).
[CrossRef]

K. König and I. Riemann, "High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution," J. Biomed. Opt. 8, 432-439 (2003).
[CrossRef] [PubMed]

Sawinski, J.

J. Sawinski and W. Denk, "Miniature random-access fiber scanner for in vivo multiphoton imaging," J. Appl. Phys. 102, 034701 (2007).
[CrossRef]

Schenkl, S.

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, "Clinical two-photon microendoscopy," Microsc. Res. and Tech. 70, 398-402 (2007).
[CrossRef]

Schnieder, L.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, "Endoscope-compatible confocalmicroscope using a gradient index-lens system," Opt. Commun. 188, 267-273 (2001).
[CrossRef]

Schnitzer, M. J.

W. Piyawattanametha, R. P. J. Barretto, T. H. Ko, B. A. Flusberg, E. D. Cocker, H. Ra, D. Lee, O. Solgaard, and M. J. Schnitzer, "Fast-scanning two-photon fluorescence imaging based on a microelectromechanical systems two- dimensional scanning mirror," Opt. Lett. 31, 2018-2020 (2006).
[CrossRef] [PubMed]

B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, "In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope," Opt. Lett. 30, 2272-2274 (2005).
[CrossRef] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, "Fiber-optic fluorescence imaging," Nature Methods 2, 941-950 (2005).
[CrossRef] [PubMed]

D. Mehta, J. C. Jung, B. A. Flusberg, and M. J. Schnitzer, "Fiber optic in vivo imaging in the mammalian nervous system," Curr. Opin. Neurobiol. 14, 617-628 (2004).
[CrossRef] [PubMed]

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, "In vivo mammalian brain Imaging using one- and two-photon fluorescence microendoscopy," J. Neurophysiol. 92, 3121-3133 (2004).
[CrossRef] [PubMed]

J.C. Jung and M. J. Schnitzer, "Multiphoton Endoscopy, " Opt. Lett. 28, 902-904 (2003).
[CrossRef] [PubMed]

Seibel, E. J.

C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, "Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo," Opt. Express 16, 5556-5564 (2008).
[CrossRef] [PubMed]

E. J. Seibel, R. S. Johnston, C. M. Brown, J. A. Dominitz, and M. B. Kimmey, "Novel ultrathin scanning fiber endoscope for cholangioscopy and pancreatoscopy," Gastrointest. Endosc. 65, Ab125-Ab125 (2007).
[CrossRef]

Seibel, E.J.

E.J. Seibel and Q. Y. L. Smithwick, "Unique Features of Optical Scanning, Single Fiber Endoscopy," Lasers Surg. Med. 30, 177-183 (2002).
[CrossRef] [PubMed]

Shin, H. J.

Smithwick, Q. Y. L.

E.J. Seibel and Q. Y. L. Smithwick, "Unique Features of Optical Scanning, Single Fiber Endoscopy," Lasers Surg. Med. 30, 177-183 (2002).
[CrossRef] [PubMed]

Solgaard, O.

Stepnoski, R.

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, "In vivo mammalian brain Imaging using one- and two-photon fluorescence microendoscopy," J. Neurophysiol. 92, 3121-3133 (2004).
[CrossRef] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Taguchi, Y.

H. Ra, W. Piyawattanametha, Y. Taguchi, D. Lee, M. J. Mandella, and O. Solgaard, "Two-dimensional MEMS scanner for dual-axes confocal microscopy," J. Microelectromech. Syst. 16, 969-976 (2007).
[CrossRef]

Tank, D. W.

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, "A miniature head-mounted two-photon microscope: High-resolution brain imaging in freely moving animals," Neuron 31, 903-912 (2001).
[CrossRef] [PubMed]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Xie, H.

L. Fu, A. Jain, C. Cranfield, H. Xie, and M. Gu, "Three-dimensional nonlinear optical endoscopy," J. Biomed. Opt. Lett. 12, 0405011-04050113 (2007).
[CrossRef]

L. Fu, A. Jain, H. Xie, C. Cranfield, and M. Gu, "Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror," Opt. Express 14, 1027-1032 (2006).
[CrossRef] [PubMed]

Curr. Opin. Neurobiol.

D. Mehta, J. C. Jung, B. A. Flusberg, and M. J. Schnitzer, "Fiber optic in vivo imaging in the mammalian nervous system," Curr. Opin. Neurobiol. 14, 617-628 (2004).
[CrossRef] [PubMed]

Exp. Physiol.

F. Helmchen, "Miniaturization of fluorescence microscopes using fibre optics," Exp. Physiol. 87, 737-745 (2002).
[CrossRef] [PubMed]

Gastrointest. Endosc.

E. J. Seibel, R. S. Johnston, C. M. Brown, J. A. Dominitz, and M. B. Kimmey, "Novel ultrathin scanning fiber endoscope for cholangioscopy and pancreatoscopy," Gastrointest. Endosc. 65, Ab125-Ab125 (2007).
[CrossRef]

J. Appl. Phys.

J. Sawinski and W. Denk, "Miniature random-access fiber scanner for in vivo multiphoton imaging," J. Appl. Phys. 102, 034701 (2007).
[CrossRef]

J. Biomed. Opt.

K. König and I. Riemann, "High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution," J. Biomed. Opt. 8, 432-439 (2003).
[CrossRef] [PubMed]

J. Biomed. Opt. Lett.

L. Fu, A. Jain, C. Cranfield, H. Xie, and M. Gu, "Three-dimensional nonlinear optical endoscopy," J. Biomed. Opt. Lett. 12, 0405011-04050113 (2007).
[CrossRef]

J. Microelectromech. Syst.

H. Ra, W. Piyawattanametha, Y. Taguchi, D. Lee, M. J. Mandella, and O. Solgaard, "Two-dimensional MEMS scanner for dual-axes confocal microscopy," J. Microelectromech. Syst. 16, 969-976 (2007).
[CrossRef]

J. Microsc.

L. Fu and M. Gu, "Fibre-optic nonlinear optical microscopy and endoscopy," J. Microsc. 226,195-206 (2007).
[CrossRef] [PubMed]

K. König, "Review: Multiphoton microscopy in life sciences," J. Microsc. 200, 83-104 (2000).
[CrossRef] [PubMed]

J. Neurophysiol.

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, "In vivo mammalian brain Imaging using one- and two-photon fluorescence microendoscopy," J. Neurophysiol. 92, 3121-3133 (2004).
[CrossRef] [PubMed]

Lasers Surg. Med.

E.J. Seibel and Q. Y. L. Smithwick, "Unique Features of Optical Scanning, Single Fiber Endoscopy," Lasers Surg. Med. 30, 177-183 (2002).
[CrossRef] [PubMed]

Microsc. Res. and Tech.

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, "Clinical two-photon microendoscopy," Microsc. Res. and Tech. 70, 398-402 (2007).
[CrossRef]

Nature Methods

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, "Fiber-optic fluorescence imaging," Nature Methods 2, 941-950 (2005).
[CrossRef] [PubMed]

Neuron

F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, "A miniature head-mounted two-photon microscope: High-resolution brain imaging in freely moving animals," Neuron 31, 903-912 (2001).
[CrossRef] [PubMed]

Opt. Commun.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, "Endoscope-compatible confocalmicroscope using a gradient index-lens system," Opt. Commun. 188, 267-273 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Otology Neurotology

Monfared, N. H. Blevins, E. L. M. Cheung, J. C. Jung, G. Popelka, and M. J. Schnitzer, "In vivo Imaging of mammalian cochlear blood flow using fluorescence microendoscopy," Otology Neurotology 27, 144-152 (2006).
[CrossRef] [PubMed]

Science

W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Other

S. Schenkl, A. Ehlers, R. Le Harzic, M. Stark, I. Riemann, B. Messerscmidt, M. Kaatz, and K. König, "Rigid and High NA Multiphoton Fluorescence GRIN-Endoscopes," Proc. SPIE, 6631 (2007).
[CrossRef]

I. Riemann, S. Schenkl, R. Le Harzic, D. Sauer, A. Ehlers, B. Messerschmidt, M. Kaatz, R. Bückle, and K. König, "Two-photon imaging using a flexible endoscope," Proc.SPIE, 6851, (2008).
[CrossRef]

B. Messerschmidt, A. Kraeplin, S. Schenkl, I. Riemann, M. Stark, A. Ehlers, A. Tchernook, R. Le Harzic, and K. König, "Novel concept of GRIN optical systems for high resolution microendoscopy: Part 1. Physical aspects," Proc.SPIE 6432, (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Picture of the two photon endoscope experimental setup with the endoscope tube coupled with the electronic, hardware and software controllers. (b) SEM micrographs of the PCF core and cladding structure. (c) Details of the endoscope head. (d) Schematic representation of the different components of the optical scanning head. (e) Photography of the two axes piezo scanner.

Fig. 2.
Fig. 2.

Two-photon images of target grid performed at different zoom using successively the PMT and the APD detector.

Fig. 3.
Fig. 3.

Two-photon images of mixed preparation of 1 and 2 µm microspheres performed at different wavelengths with the APD detector.

Fig. 4.
Fig. 4.

Two-photon image of mixed preparation of 0.2 and 6 µm microspheres.

Fig. 5.
Fig. 5.

Fluorescence intensity profiles of a 0.2 µm example microsphere along the lateral (a), (b) and axial (c) dimensions are shown. Red traces are Gaussian-shaped curves fitted to the data points.

Fig. 6.
Fig. 6.

Two-photon image of a mixed preparation of labeled mitochondria in fixed cells and chromosomes.

Metrics